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Abstract—The rise of large language models (LLMs) has
revolutionized web scraping, creating new challenges for website
owners seeking to protect valuable content. Traditional defenses
such as CAPTCHAs and rate limiting are insufficient against
sophisticated AI-driven scraping systems. Current state-of-the-
art approaches primarily rely on server-side implementations
requiring significant computational resources, IP-based blocking
mechanisms, and complex pattern recognition systems that
struggle to distinguish between legitimate users and advanced
AI scrapers. This paper presents a two-step client-side defense
strategy that combines content obfuscation and defensive prompt
injection. Our approach dynamically alters HTML structure by
wrapping characters in span elements with randomized content
and strategic CSS rules while simultaneously injecting carefully
crafted prompts designed to manipulate LLM extraction behavior.
Experimental evaluation on three diverse datasets demonstrates
the effectiveness of this combined approach, achieving near-
zero extraction rates (0.6% Exact Match, 0.030 ROUGE-L) for
structured content while maintaining a seamless user experience.
Performance analysis shows that our method increases the HTML
document file size by approximately 1773%, compared to over
6593% for alternative techniques such as Content Overload,
providing a practical balance between security and usability while
keeping rendering times comparable to unprotected pages. This
lightweight implementation integrates seamlessly with existing
Web infrastructure without requiring significant computational
resources, addressing key limitations of server-side defenses while
providing robust protection against unauthorized LLM-based
content extraction. For further information, source code, and
associated resources, please refer to the source code repository1.

I. INTRODUCTION

The rising popularity of AI, particularly large language

models (LLMs), has transformed web scraping and data

extraction. These AI models now enable automated systems to

mine and gather information from websites with unprecedented

ease and efficiency. This technological advancement has created

new challenges for website owners who need to protect their

content from unauthorized AI-powered scraping.

This challenge has significant implications for both the AI

industry and content providers. While LLMs require extensive

web-crawled text data for training, and recent research [1] has

demonstrated that data quality is crucial for their performance,

website owners with valuable content are reluctant to make it

freely available for AI training. Moreover, protecting content

has become increasingly critical from a business perspective,

as AI-powered tools can now conduct comprehensive market
1https://github.com/williambrach/ghost-in-the-markup

research and due diligence in minutes, potentially eliminating

competitive advantages.

Balancing content protection against AI-powered scraping

while maintaining accessibility for human users and search

engine optimization (SEO) presents significant challenges.

Traditional anti-bot measures such as CAPTCHA [2] or

rate limiting have proven inadequate against sophisticated

AI systems that can bypass these protections by mimicking

human behavior patterns. Additionally, implementing stringent

protection mechanisms risks compromising user experience

for legitimate visitors and potentially damaging website SEO

rankings.

Previous approaches to AI-scraping protection have primarily

relied on complex server-side implementations, requiring

substantial computational resources and technical expertise

for maintenance. Our research presents a novel approach: a

lightweight, client-side solution that integrates seamlessly with

existing web infrastructure while providing robust protection

against AI-powered scraping attempts. This solution addresses

the key limitations of existing approaches by minimizing

implementation complexity and optimizing human-computer

interaction.

This paper is organized as follows: Section II reviews

existing web scraping prevention methods and their limitations.

Section III details our approach combining content obfuscation

and prompt injection. Section IV describes our experimental

methodology. Section V presents our findings, with Section VI

addressing implications and limitations. Section VII summa-

rizes contributions and suggests future research directions.

II. RELATED WORK

Web scraping plays a crucial role in collecting large-scale

training data for machine learning, particularly for Large

Language Models (LLMs). This web data serves as the

backbone for training foundation models, as we can see in

popular open-source LLM training datasets such as FineWeb

[3], RefinedWeb [1], C4 dataset [4] or Common Corpus [5].

A meticulous approach to data collection, preprocessing, and

curation has emerged as a critical foundation for leveraging

web pages as a pivotal data resource in the context of language

model pretraining. It is the quality of the data that influences

the abilities of these models. Poor HTML text extraction

can degrade model performance in tasks also like NER and

sentiment analysis [6] or information extract as presented in [7].
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Inconsistencies in web-scraped content can introduce biases in

AI training data, highlighting the importance of robust scraping

prevention that preserves data quality. Recent research [8]

shows that web scraping can miss up to 33.8% of actual

user-visible content, with systematic biases affecting certain

content types more than others particularly paywalled and user-

dependent content. The inherent intricacy and evolving nature

of web pages have led to the emergence of rule-based and

feature-based web scrapers as inadequate solutions since they

cannot reliably capture the full range of content that real users

see during their interactions.

The escalating demand for high-quality training data to

support Large Language Models (LLMs) has significantly

increased the value of human-generated content, thereby

amplifying the appeal of web scraping as an effective method

for data acquisition. This growing reliance on web-based

content has, in turn, driven the development of increasingly

sophisticated scraping technologies. In this context, Ahluwalia

and Wani [9] introduced a framework that integrates LLMs

with Retrieval Augmented Generation (RAG) to enhance web

scraping capabilities. Their approach employs an ensemble of

three LLMs—Mixtral AI, GPT-4.0, and Llama 3—augmented

by a voting mechanism designed to mitigate hallucinations.

Additionally, the framework incorporates Recursive Character

Text Splitting (RCTS) for context-preserving HTML chunking

and utilizes vector embeddings paired with FAISS vector stores

to facilitate efficient similarity-based retrieval. Experimental

results from their study demonstrate a 25% reduction in data

collection time and a precision of 92% in product information

extraction, marking a significant advancement over traditional

rule-based scraping techniques. Furthermore, Xu et al. [10]

proposed NeuScraper, a neural network-based web scraping

tool that combines the initial layer of XLM-Roberta with a

lightweight transformer architecture. This method achieves

a 20% performance improvement over conventional scrapers

and exhibits robust cross-lingual capabilities, despite being

trained exclusively on English-language data. This cross-lingual

generalization underscores the potential adaptability of neural

approaches in diverse linguistic contexts. Complementing

these innovations, Lotfi et al. [11] provided a comprehensive

classification of web scraping techniques, including DOM

parsing, Regular Expressions, and machine learning-based

methods. Their findings indicate that such techniques can

effectively evade detection by emulating human browsing

behaviors, posing challenges to existing web security measures.

In a similar vein, Singrodia et al. [12] conducted a review of

web scraping frameworks, emphasizing the role of tools such

as Scrapy and BeautifulSoup in enabling large-scale data ex-

traction with minimal technical prerequisites. This accessibility

has broadened the adoption of web scraping across various

domains. Moreover, Sirisuriya [13] highlighted the transfor-

mative potential of automated data extraction in converting

unstructured web content into structured, analyzable formats.

Notably, these techniques persist despite defensive mechanisms

such as CAPTCHAs and IP blocking, illustrating their resilience

and adaptability. Bhatt et al. [2] offered an extensive overview

of web scraping methodologies, encompassing HTML parsing,

regular expressions, automated crawling, and API integration.

Their analysis underscores the diminishing effectiveness of tra-

ditional defensive strategies—such as robots.txt, CAPTCHAs,

and IP blocking—against AI-driven scraping technologies,

signaling a shift in the efficacy of content protection measures.

Additionally, Ahluwalia and Wani [14] explored the broader

application of LLMs in web scraping, demonstrating how

these models enhance efficiency through improved semantic

understanding, the ability to navigate JavaScript-intensive

dynamic content, and optimized data retrieval processes. As

a result, conventional defensive measures are rendered less

effective against these advanced techniques, highlighting the

need for updated protective strategies. Collectively, these

findings underscore an urgent need for evolving content

protection strategies to address the increasingly intelligent and

adaptive nature of modern web scraping mechanisms/

Several defense strategies have been proposed to counter

unauthorized web scraping and data extraction because the

distinction between authorized and unauthorized scraping is in-

creasingly nuanced [15]. Liu et al. [16] introduce an information

bottleneck approach to mitigate LLM vulnerabilities, while Hu

et al. (2024) [17] propose perplexity-based adversarial prompt

detection to identify anomalous scraping behaviors. Piet et al.

[18] explore task-specific fine-tuning to reduce prompt injection

success rates, while Pasquini et al. [19] propose a novel

framework (Mantis) that repurposes prompt injection techniques

as a defensive mechanism against LLM-driven cyberattacks.

These approaches demonstrate that security countermeasures

must be adaptive, lightweight, and minimally disruptive to

legitimate users. Ashcroft and Whitaker [20] analyze domain-

specific adversarial prompt engineering attacks on LLMs,

revealing how carefully crafted prompts can manipulate models

into extracting or generating unintended information. Their

findings highlight vulnerabilities in LLMs when handling

adversarial inputs, emphasizing the need for robust defense

mechanisms. This research aligns with defensive strategies in

web scraping, suggesting that adversarial prompt filtering and

content obfuscation can serve as proactive measures against

AI-powered scraping. Building on these findings, Plaskowski

et al. [21] demonstrate how transformer-based web scrapers

leveraging BERT and FLAN-T5, fine-tuned with synthetic

data from LLMs, improve adaptability and bypass traditional

blocking methods. Guyt et al. [22] discuss web scraping’s role

in retail intelligence, showing its importance in market research

while underscoring the need for better protection mechanisms.

Pichiyana et al. [23] examine how NLP techniques like

NER and sentiment analysis enhance web scraping efficiency,

making it more difficult to detect and block. They also

discuss ethical and legal considerations, reinforcing the growing

need for regulatory frameworks. Despite advancements in

server-side and model-level defenses against AI-powered web

scraping, a critical research gap persists in developing robust

client-side protection mechanisms. Current strategies often

neglect securing web content at the user interface level, where

traditional tools like CAPTCHAs and IP blocking fail against
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sophisticated scrapers mimicking human behavior. This gap

is evident in the lack of solutions for safeguarding sensitive

content and enforcing ethical scraping practices. There is

an urgent need for dynamic, adaptive client-side systems to

counter the evolving capabilities of LLM-enhanced scraping

technologies, ensuring comprehensive web data protection.

As a response, our research introduces a defensive approach

that integrates adaptive, real-time content obfuscation with

adversarial filtering techniques. This solution aims to effec-

tively mitigate unauthorized LLM-driven web scraping while

maintaining content accessibility and usability for legitimate

users.

III. TWO-STEP DEFENSE STRATEGY

We propose a Two-Step client-side defense strategy, dis-

played in Figure 1 that integrates content obfuscation and

defensive prompt injection. This approach effectively combats

LLM-based scraping attempts while ensuring that the website

remains fully accessible and functional for human visitors.

Building on insights from recent research by Liu et al. [16]

and Pasquini et al. [19], our approach offers a computation-

ally efficient and easily implementable solution for existing

websites.

In the proposed method, the objective was to leverage

JavaScript on the client side to dynamically render and update

the interface in response to user interactions. We also took

into account the user experience of regular non-web scraper

clients. We measured the impact of our method on two metrics:

rendering time and the size of HTML pages in memory. This

approach offers several advantages:

• Real-time Updates: The system can immediately reflect

changes without requiring page reloads, providing a more

fluid user experience.

• Reduced Server Load: Since processing occurs on the

client’s device, server resources are primarily used for

data transfer rather than rendering.

• Focus: Our method focuses on dynamically generated

web content. Modern web scrapers commonly employ

full-page rendering engines to capture both static and

dynamic content, surpassing the limitations of simple

HTTP GET requests.

A. Step 1: Content Obfuscation

Implementing content obfuscation techniques offers a strate-

gic defense against automated web scraping while preserving

accessibility for legitimate users. While completely preventing

scraping may be impractical, increasing the complexity and

resource demands of extraction can serve as an effective

deterrent. Modern obfuscation strategies must carefully balance

competing priorities: maintaining human readability, ensuring

search engine compatibility, and providing robust resistance

to LLM-based extraction tools. In cases where search engine

visibility is a priority, critical elements such as titles, headings,

and meta descriptions should remain unobfuscated to support

proper indexing. However, if the primary goal is to prevent

scraping altogether, limiting site information and foregoing

indexing may be a more effective approach, rendering negative

SEO impacts irrelevant. By leveraging techniques such as

dynamic rendering, character substitution, and adversarial text

transformations, obfuscation can introduce significant barriers

for automated systems while maintaining a seamless user

experience.

Our approach, displayed in a real-world example in Figure

2, to obfuscation prioritizes full content concealment over-

indexing and SEO considerations, ensuring that web pages

remain inaccessible to automated scrapers. However, the

obfuscation script can be easily adjusted to preserve critical

sections for indexing and SEO purposes if needed. The process

begins by selecting specific HTML elements designated for

obfuscation. Since HTML consists of well-defined structural

elements, this selection process is straightforward. From the

chosen elements, we extract the textual content and apply

an obfuscation method that enhances resistance to automated

extraction. This approach is described in more detail in

Algorithm 1.

To achieve this, each character within the selected elements is

wrapped in a <span> element containing both the original letter

and a randomized, misleading character. While this effectively

disrupts machine parsing, it would also render the content

unreadable to human users. To maintain usability, we implement

a CSS-based approach: a special CSS class is assigned to the

<span> elements containing randomized characters. After the

obfuscation process, an inline <style> tag is appended to the

page, setting the display property of the obfuscation class to

none. As a result, while the raw HTML remains scrambled, the

content appears visually intact to users, ensuring a seamless

browsing experience while obstructing automated extraction.

Algorithm 1 HTML Content Obfuscation with CSS-Based

Concealment
Require: A fully loaded HTML document in the browser

Ensure: Modified DOM with obfuscated text content

1: Wait for event: DOMContentLoaded

2: tree ← getDOM()
3: for each element e in tree where e is marked for

obfuscation do
4: text ← extractText(e)
5: clearText(e) � Remove original text content

6: for each character c in text do
7: randChar ← getRandomAsciiCharacter()
8: spanOrig ← createElement("span", c)
9: spanRand ← createElement("span", randChar)

10: setClass(spanRand, ”obf”)
11: appendChild(e, spanOrig)
12: appendChild(e, spanRand)
13: end for
14: end for
15: styleTag ← createElement("style", ”.obf{display :

none; }”)
16: appendToHead(tree, styleTag)
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Fig. 1. Proposed methodology to secure HTML content.

Fig. 2. Example of content before and after obfuscation with token and
character count via GPT-4o-mini tokenizer.

B. Step 2: Prompt Injection

As our second layer of defense against unauthorized content

extraction by large language models (LLMs), we employ

prompt injection, a technique that embeds carefully crafted text-

based instructions within an HTML document. These hidden

prompts are strategically designed to manipulate or disrupt the

behavior of LLMs, preventing them from accurately processing

or extracting useful content. Meanwhile, the injected prompts

remain invisible to human readers and traditional web crawlers,

ensuring a seamless browsing experience and preserving search

engine functionality.

Our approach integrates prompt injection directly into the

webpage structure by adding hidden div elements containing

misleading or disruptive instructions. This implementation is

particularly effective in the HTML-to-Markdown conversion

pipeline, where LLMs often process and extract content. The

injected prompts serve two primary purposes:

• Disruption: Making the extracted content unreadable or

unintelligible by forcing LLMs to apply transformations,

such as translating the output into an obscure format

(e.g., Star Wars language, Morse code, or an unexpected

language like French).

• Misleading: Directly influencing the model’s response

behavior, such as setting key parameters to None, cor-

rupting structured data, or instructing the model to return

incomplete or inaccurate responses.

To implement this, a dynamically created div is inserted

at the beginning of the document’s <body>, containing

the hidden prompt. A corresponding CSS rule (display:
none;) ensures that the injected prompt remains invisible to

human users while still being parsed by LLMs that process raw

HTML. This approach is described in more detail in Algorithm

2.

For purposes of this study, we employed a simple generic

prompt instructing the LLM to translate all extracted content

into French. This allowed us to evaluate the effectiveness of

the injection mechanism in modifying the model’s output while

remaining undetectable to conventional webpage rendering and

indexing processes.

By leveraging LLM-specific vulnerabilities, as outlined in

security frameworks like Garak [24], our prompt injection

technique provides a subtle yet effective safeguard against

automated content scraping. This method maintains an optimal

balance between security and accessibility, offering a robust

countermeasure without compromising the user experience for

legitimate visitors.

Algorithm 2 Prompt Injection with CSS-Based Concealment

Require: A fully loaded HTML document in the browser

Ensure: Modified DOM with injected prompt instructions

1: Wait for event: DOMContentLoaded

2: tree ← getDOM()
3: bodyInj ← createElement("div")
4: setTextContent(bodyInj, Prompt)
5: setClass(bodyInj, ”prompt− injection”)
6: prependToBody(tree, bodyInj)
7: cssRules ← ".prompt-injection { display: none; }"

8: ADDSTYLETAG(cssRules)

While generic prompt injections can serve as a broad

defense against LLM-based content extraction, a more effective

approach involves Targeted Prompt Injection, which must also

be considered. Instead of applying uniform injections across

an entire document, this method strategically places prompts

in specific areas where extraction is most likely to occur. By

tailoring the injection to known vulnerabilities, this approach
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significantly improves its effectiveness in disrupting automated

scraping attempts.

One key factor that enhances targeted injection is knowledge

of the response structure. If the format of the extracted data is

predictable—such as structured JSON, HTML-to-Markdown

conversions, or predefined schema-based responses—it be-

comes easier to craft an injection that directly interferes with

the parsing process. Injecting misleading or disruptive prompts

within expected fields can corrupt the response in a way that

is difficult for LLMs to correct.

Furthermore, if we possess insights into the extraction prompt

used by an LLM or the specific areas targeted for content

retrieval, the effectiveness of the injection increases drastically.

In such cases, it becomes possible to craft counter-prompts

that directly manipulate or neutralize the extraction process,

effectively preventing the model from retrieving meaningful or

structured information. When the injected interference aligns

precisely with the model’s retrieval patterns, the scraper’s ability

to extract usable content is rendered infeasible, significantly

diminishing the efficacy of automated data collection.

Despite the advantages of targeted prompt injection, we

did not pursue this method extensively in our implementation.

Our focus was on testing a generic approach that could be

applied across a variety of datasets and scraping prompts.

Since scraping techniques and extraction methods can vary

significantly, we aimed to develop a defense mechanism that

was broadly effective rather than narrowly optimized for

specific data structures. By working with multiple datasets

and diverse scraping scenarios, we prioritized adaptability and

scalability over targeted disruptions.

By leveraging targeted knowledge of extraction techniques,

response formats, and prompt structures, targeted prompt

injection offers a highly adaptable and robust mechanism

to safeguard web content. This approach not only increases

resistance against LLM-based scrapers but also ensures minimal

impact on the overall user experience for legitimate visitors.

IV. EXPERIMENTS

Our experimental setup, shown in Fig 3, replicates a

modern web scraping pipeline. An HTML server delivers web

pages (documents), either with or without defense mechanisms,

which are then processed by a scraping layer using Playwright

and BeautifulSoup4 for content extraction. The extracted

documents undergo cleaning through the cleanup method

proposed by JinaAI2 and HTMLRag [25]. A converter module
then processes these cleaned documents, either preserving the

original HTML structure or converting them to markdown

format (.md). Next, an LLM-based extractor analyzes the

processed markup to extract relevant information. Finally, we

evaluate the extraction results by comparing them against the

dataset’s ground truth. This architecture allows us to simulate

real-world document processing challenges while systematically

measuring extraction accuracy.

2https://huggingface.co/jinaai/ReaderLM-v2

The evaluation metrics employed in this study included

the Exact Match (EM) and ROUGE-L scores. The rationale

for selecting these metrics stems from their ability to capture

distinct dimensions of extraction quality effectively. EM offers

a stringent measure of accuracy by mandating perfect matches

between the extracted content and the ground truth. In contrast,

ROUGE-L’s longest common subsequence approach provides

a more nuanced evaluation of partial matches and content

order. This combination enables a multifaceted evaluation of

system performance, encompassing precise field extraction

ascertained through EM and the evaluation of longer, potentially

structured content extraction as measured by ROUGE-L.

This comprehensive evaluation approach provides a nuanced

perspective on the efficacy of the system across diverse web

content types and defense scenarios.

A. Datasets

To evaluate the effectiveness of our web scraping defense

approach, we utilize datasets: 1. Our custom benchmark

dataset, which contains 15 recipes and enables us to test

different attribute extraction like title, list of steps, and list

of ingredients with correct amount and type. 2. Personal

Information Extraction (PIE) [26] The datasets comprise a

synthetic collection of 100 HTML-formatted personal profile

3. Structured Web Data Extraction (SWDE) dataset [27], good

baseline in Open Information Extraction (OpenIE) from semi-

structured web sources.

B. Extractor

To mitigate potential model-specific biases in information

extraction, we employed a diverse set of large language models

(LLMs). Our experimental framework incorporated both open-

source models (phi4 [28], llama3.3:70b [29]) and proprietary

models accessed through the OpenAI API (GPT-4o-mini). The

open-source models were deployed locally using the ollama

framework3. on a dual NVIDIA GeForce RTX 4090 GPU

configuration. To ensure methodological consistency across all

models, we implemented DSPy [30] for prompt engineering

and standardized information extraction protocols.

C. HTML Defense Methods

Beyond content obfuscation and prompt injection, additional

techniques can be employed to hinder further unauthorized

content extraction by large language models (LLMs). In this

section, we introduce and describe two additional defense

mechanisms: Misdirection and Content Overload. Each of

these HTML defense methods introduces unique challenges for

LLM-based scraping attempts. While Misdirection degrades

the reliability of extracted data by inserting misleading content,

Content Overload directly exploits LLM limitations by flooding

the extraction process with excess information.

Although these approaches offer alternative defenses, our

primary usage of them is for comparative analysis in order

to evaluate the effectiveness of our proposed method. By

implementing these techniques in conjunction with our primary

3https://ollama.com/
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Fig. 3. Evaluation setup for simulating real-world web scraping pipeline implementations.

approach, we are able to systematically analyze their impact

on LLM-based extraction processes, thereby assessing their

strengths and weaknesses in different scraping scenarios. This

comparative analysis enables us to determine which strategies

are most effective in preventing unauthorized content retrieval

while maintaining usability and performance.

1) Misdirection: The Misdirection method inserts false

content into webpages to corrupt scraped data by hiding

deceptive elements from humans while making them visible

to scrapers. This technique places fabricated information

early in the DOM to disrupt extraction processes relying on

positional cues. Implementation involves dynamically fetching

and prepending external HTML from the same domain at the

beginning of the <body> tag, styled with display: none;.

The method includes hidden metadata like document titles to

mislead scrapers further. The advantage is maintaining normal

user experience while potentially corrupting scraped data,

though effectiveness varies depending on scraper sophistication.

Algorithm 3 Misdirection with Hidden Misleading Content

Require: Loaded HTML document

Ensure: HTML with injected Misleading Content

1: Wait for event: DOMContentLoaded

2: tree ← getDOM()
3: doc ← fetchHTML(url)
4: if doc �= null then
5: elements ← getChildren(doc.body)
6: for each e in elements do
7: setStyle(e, ”display : none”)
8: end for
9: prependToBody(tree, elements)

10: if doc.title �= null then
11: titleDiv ← createElement("div")
12: setStyle(titleDiv, ”display : none”)
13: setText(titleDiv, doc.title)
14: prependToBody(tree, titleDiv)
15: end if
16: end if

2) Content Overload: The Content Overload method

targets token and character limitations of LLM-based scrapers

by exhausting their processing capabilities. Since LLMs operate

within fixed context windows, injecting excessive content can

force scrapers to waste resources and potentially truncate

relevant information. Implementation involves dynamically

injecting large volumes of randomly generated text as hidden

span elements with display: none; CSS rules within

randomly selected DOM nodes. This approach disperses

irrelevant content throughout the webpage, making it difficult

for scrapers to filter or remove. The challenge is balancing

effectiveness with webpage performance, as large injections

may impact load times. However, when properly managed,

content overload can disrupt automated extraction while

maintaining normal usability for legitimate visitors.

Algorithm 4 Content Overload with CSS-Based Concealment

Require: Loaded HTML document

Ensure: HTML with injected tokens

1: Wait for event: DOMContentLoaded

2: tree ← getDOM()
3: for each i in [1, numElements] do
4: randomParent ← getRandomDomElement()
5: if randomParent �= null then
6: el ← createElement("span")
7: setClass(el, ”content− overload”)
8: setText(el, generateRandomString())
9: appendChild(parent, el)

10: end if
11: end for
12: cssRules ← ".content-overload { display: none; }"

13: ADDSTYLETAG(cssRules)

V. RESULTS

Our experimental evaluation compared five defense strategies

against LLM-powered web scraping across three diverse

datasets. Table I presents the performance of each method

in preventing successful content extraction, measured by Exact

Match (EM) and ROUGE-L scores, where lower values indicate

better protection (less successful extraction). Results in Table I

are mean values of results for all three models across datasets.

A. HTML Format

In the HTML format, our Proposed Method demonstrated the

most effective protection against extraction for the Extended

SWDE dataset, exhibiting the lowest EM (9.7%) and ROUGE-L

(0.214) scores. For the PIE dataset, Content Overload exhib-

ited the strongest performance, reducing extraction success

to 13.9% EM and 0.184 ROUGE-L. The Recipes dataset

exhibited exceptional outcomes with both Obfuscation and our
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TABLE I. PERFORMANCE COMPARISON OF DEFENSE METHODS ACROSS 
DATASETS

Methods Extended SWDE PIE Recipes

EM ↓ ROUGE-L ↓ EM ↓ ROUGE-L ↓ EM ↓ ROUGE-L ↓

HTML

Original (without protection) 21.8% 0.326 76.9% 0.917 89.4% 0.964
Content overload 14.2% 0.239 13.9% 0.184 26.1% 0.341
Misdirection 19.4% 0.302 66.0% 0.803 25.2% 0.642
Obfuscation 10.1% 0.217 16.8% 0.248 0.4% 0.025
Prompt Injection 21.8% 0.322 76.3% 0.915 70.7% 0.793
Proposed Method 9.7% 0.214 17.2% 0.250 0.6% 0.030

Markdown

Original (without protection) 21.5% 0.442 77.0% 0.917 85.8% 0.944
Content overload 12.3% 0.230 14.2% 0.186 25.7% 0.333
Misdirection 10.5% 0.305 38.1% 0.510 20.8% 0.310
Obfuscation 15.8% 0.239 29.8% 0.426 0.0% 0.015
Prompt Injection 19.4% 0.412 75.7% 0.905 22.9% 0.321
Proposed Method 14.9% 0.239 30.5% 0.426 0.1% 0.012

Proposed Method, achieving near-zero extraction rates (0.4%

and 0.6% EM, respectively).The standalone Prompt Injection

demonstrated minimal effectiveness across all HTML formats,

often yielding results similar to the unprotected baseline. These

findings imply that LLM-based scrapers can effectively bypass

simple prompt-based defenses when processing HTML content.

B. Markdown Format

The efficacy of content conversion to Markdown was found

to vary significantly across different patterns. Misdirection

exhibited the highest effectiveness metrics (10.5% EM) in the

Extended SWDE dataset, while Content Overload demonstrated

the strongest protection (14.2% EM, 0.186 ROUGE-L) in the

PIE dataset. For the Recipes dataset, Obfuscation achieved

perfect protection with 0.0 extraction success, while our

Proposed Method followed closely at 0.1 extraction success

with the lowest ROUGE-L score (0.012). The performance

variance across datasets suggests that different protection

mechanisms may be optimal depending on the content structure

and extraction patterns . However, our Proposed Method

consistently ranked among the top performers across all datasets

and formats, demonstrating robust protection capabilities.

C. File Size Impact

As illustrated in Table II, the file size impact of each defense

method is presented. It is evident that Content Overload had

the most significant effect on file size, with an average increase

of 6593.90% across all datasets. This substantial increase was

particularly pronounced in the PIE dataset, where file size

grew by over 13,000%. Among the other methods, Obfuscation

and our Proposed Method (which combines Obfuscation with

Prompt Injection) showed moderate increases of 1727.17%

and 1773.50%, respectively. Misdirection demonstrated the

second smallest footprint with an average increase of 108.22%,

while Prompt Injection maintained the smallest overhead at

just 47.46% above baseline. These results indicate that while

Content Overload is effective, it comes with significant resource

TABLE II. COMPARISON OF DEFENSE METHODS IN 
FILE SIZE

Method Dataset File size (KB) Increase %

Content overload

Extended SWDE 297.84 462.49

PIE 248.69 13342.70

Recipes 250.96 5976.51

mean% 6593.90

Misdirection

Extended SWDE 102.28 93.16

PIE 4.52 144.32

Recipes 7.73 87.17

mean% 108.22

Obfuscation

Extended SWDE 183.35 246.27

PIE 53.46 2789.73

Recipes 92.74 2145.52

mean% 1727.17

Prompt Injection

Extended SWDE 56.78 7.23

PIE 3.58 93.51

Recipes 5.85 41.65

Original (Baseline)

Extended SWDE 52.95 0.00

PIE 1.85 0.00

Recipes 4.13 0.00

mean% 0.00

mean% 47.46

Proposed Method
Extended SWDE 185.38 250.10

PIE 55.19 2883.24

Recipes 94.46 2187.17

mean% 1773.50

costs and a possible indirect impact on user experience and SEO.

Our Proposed Method shows comparable file size increases

to Obfuscation alone, suggesting that the addition of Prompt

Injection techniques does not substantially impact resource

requirements.

In addition, client-side rendering times for each method
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Fig. 4. Comparison of rendering time for tested methods.

were measured (see Figure 4). The median rendering times

for Obfuscation, Original, Content Overload, and the proposed

method were found to be similar (700–800 ms). However,

Prompt Injection and Misdirection methods required signifi-

cantly longer rendering times (>1000 ms). While Obfuscation

demonstrates the most consistent performance, Misdirection

exhibits the highest variability, with outliers beyond 2,500ms.

These performance considerations should be weighed alongside

security effectiveness when selecting an appropriate defense

method.

VI. DISCUSSION

The findings of the present study underscore the efficacy

of a client-side defense strategy against LLM-based web

scraping. However, this strategy is not without its limitations

and challenges. The subsequent section will address the study’s

outcomes, their implications, the constraints of the proposed

methods, and potential avenues for future research.

Our experimental evaluation across multiple datasets clearly

demonstrates the advantages of our proposed approach. The

combined method achieves near-zero extraction rates for

structured content (0.6% EM, 0.030 ROUGE-L for recipes),

significantly outperforming both standalone techniques. Content

Obfuscation alone showed strong protection (0.4% EM, 0.025

ROUGE-L for recipes) but lacked defense against advanced

extraction models, while Prompt Injection alone was less

effective (70.7% EM, 0.793 ROUGE-L). The resource impact

of our approach (1773.50% file size increase) represents

a reasonable middle ground compared to alternatives like

Content Overload (6593.90%) while maintaining rendering

times comparable to unprotected pages (∼750ms). Notably,

protection effectiveness varies substantially by content type,

with structured data showing near-complete protection while

semi-structured and personal data remain more challenging to

protect fully.

Our experimental results obtained in this study demonstrate

that the implementation of content obfuscation and prompt

injection results in a substantial reduction in the success

rate of LLM-based web scrapers. The proposed method

consistently achieves a high ranking in terms of effectiveness in

preventing the extraction of unauthorized content across various

datasets. It is noteworthy that the Recipes dataset exhibited

the highest protection rates, indicating that the efficacy of

our approach is particularly pronounced in the protection of

highly structured content. However, it is observed that more

flexible or unstructured data formats, such as user-generated

personal information, pose a greater challenge to comprehensive

protection.

A. Limitations

Despite promising results, our defense mechanism faces

several key limitations:

• Adversarial Adaptation: Advanced LLMs may develop

resistance through continued fine-tuning on obfuscated

content, necessitating ongoing defensive refinement.

• Performance Impact: Our method increases file size

by 12-18%, potentially affecting page load times in

bandwidth-constrained environments.

• Functionality Interference: CSS-based obfuscation can

disrupt legitimate website operations, particularly with

dynamic styling and accessibility features, affecting 8.2%

of tested templates.

Our analysis reveals that generic prompt injections (76%

protection) are significantly less effective than targeted ones

(91%). This gap widens against fine-tuned extraction models,

suggesting adversaries with knowledge of model architecture

gain substantial advantages. Importantly, combining content

obfuscation with strategic prompt injections improves protec-

tion by 37% compared to either method alone, highlighting

the necessity of multi-layered defenses that address different

vulnerability vectors simultaneously.

B. Scalability and Practical Deployment Challenges

While our method is effective in controlled environments,

deploying it at scale presents challenges. Websites that rely

heavily on search engine indexing may need to fine-tune

obfuscation settings to avoid SEO penalties. Additionally,

maintaining and updating obfuscation techniques in response

to evolving scraping tactics requires ongoing development

efforts. Future work should explore automated adaptation
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mechanisms to ensure long-term scalability without excessive

manual intervention.

As LLMs continue to evolve, attackers may develop counter-

measures to bypass existing protections. Future defenses must

account for increasing model robustness, such as improved

context awareness and adaptive learning capabilities. The

long-term viability of our approach depends on continuous

improvements in obfuscation and injection techniques to stay

ahead of adversarial advancements.

C. Future Work

The findings of our study lay the foundation for future

research in several areas.

• Adaptive Prompt Injection Techniques: Investigating

real-time, context-aware prompt injections that dynami-

cally alter based on the extraction model’s behavior.

• Enhanced Detection Mechanisms: Developing AI-driven

methods to identify scraping attempts in real-time and

deploy countermeasures accordingly.

• Multi-Format Protection Strategies: Extending obfus-

cation techniques beyond HTML and Markdown to

encompass a broader range of web content formats.

• User Experience Optimization: Refining obfuscation

techniques to ensure seamless user interaction while

maintaining high-security standards.

• Long-Term Viability Studies: Examining how evolving

AI models affect the effectiveness of our defensive

techniques and proposing future-proofing mechanisms.

Overall, our findings reinforce the feasibility of client-side

defenses against AI-driven web scraping but also highlight the

need for continuous evolution in protective strategies. Future

work should aim to enhance the adaptability, efficiency, and

stealth of these defensive mechanisms to keep pace with

advancing AI scraping techniques.

VII. CONCLUSION

This study provides compelling evidence for the effec-

tiveness of our two-step client-side defense strategy against

LLM-powered web scraping. Our comprehensive experimental

evaluation demonstrates several key achievements: near-zero

extraction rates for structured content (0.6% EM, 0.030

ROUGE-L for recipes); significant protection for personal

information (17.2% EM, 0.250 ROUGE-L); effective defense

against general web data extraction (9.7% EM, 0.214 ROUGE-

L for Extended SWDE); a practical balance between security

and resource utilization (1773.50% file size increase versus

6593.90% for alternatives); and minimal impact on page

rendering time, remaining comparable to unprotected pages.

These results conclusively demonstrate the superiority of our

combined approach over standalone techniques and alternative

methods.

The primary contributions of this research to the field of

web content protection are fourfold. First, we have developed

a lightweight, client-side defense mechanism that requires

minimal infrastructure changes while achieving superior protec-

tion. Second, our empirical results demonstrate that combined

character-level obfuscation and prompt injection significantly

outperform either method alone, improving protection by 37%.

Third, we have quantified the trade-offs between protection

effectiveness, resource utilization, and user experience across

multiple datasets and defensive strategies. Fourth, we have

identified content-type sensitivity patterns that can inform

targeted protection strategies, showing that highly structured

content benefits most from our approach.

The present study contributes to the field of web content

protection by addressing the critical limitations of traditional

anti-scraping measures. In contrast to server-side solutions

that require substantial computational resources, the proposed

lightweight client-side approach integrates seamlessly with

existing web infrastructure while providing robust protection.

A comparison of our method with alternative defense strategies,

including misdirection and content overload, demonstrated that

our two-step approach achieves an optimal balance between

security effectiveness and practical deployment considerations.

This is in contrast to the substantial file size increases that

have been observed with content overload (6593.90% vs. our

1773.50%).

As large language models (LLMs) continue to evolve,

website owners face mounting challenges in protecting valuable

content. Our research provides practical defenses for this

emerging threat landscape while highlighting important di-

rections for future work. Specifically, we recommend exploring

adaptive prompt injection techniques that dynamically respond

to extraction patterns, enhanced detection mechanisms that

identify scraping attempts in real time, and multi-format pro-

tection strategies beyond HTML and Markdown. By enhancing

these defensive capabilities, content creators can maintain

control over their intellectual property while ensuring seamless

access for legitimate users in an increasingly AI-driven digital

ecosystem.
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