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Abstract—Our world is far from being perfectly balanced, 
and therefore most real-world data is inherently imbalanced. To 
effectively work with such data, there are various approaches to 
imbalanced learning. However, finding the most successful model 
configuration for a specific dataset is a problem, even for an 
experienced data scientist. To solve it, there are various 
approaches to automated machine learning. However, their 
applicability to imbalanced learning problems is an open 
question. This paper presents an approach to the optimization 
search of bagging and boosting ensembles (based on re-weighting 
and undersampling techniques), and also provides an 
experimental comparison with the well-known FLAML solution. 
The benchmark results on data with the imbalance level of 
moderate and extreme demonstrated worthy competition in 
f1-measure and an overwhelming advantage in balanced 
accuracy. The optimization search time was on average several 
minutes longer for our solution. The proposed approach is 
implemented as an open source framework and can be found on 
Github (ImbaML). 

I. INTRODUCTION 
The problem of imbalanced classification is quite common. 

Examples include, but not limited to: detection of spam or 
fraud, prediction of failures in the hardware infrastructure of a 
data center, medical diagnostics of rare diseases, identification 
of hacking attempts to an Internet resource by intruders, 
modeling of insurance risks, prediction of environmental 
disasters. The proportion of the positive class (PCR) for the 
case of binary classification is expressed by the formula: 

 (1) 

For the case of balanced classification . For 
imbalanced . If , then the level 
of imbalance is mild. If , then the level of 
imbalance is moderate. If , then the level of 
imbalance is extreme. In the case of mild imbalance, it is still 
possible to rely on classical machine learning approaches, but 
for moderate and extreme imbalance they are no longer as 
effective. 

To effectively solve this problem, methods based on 
resampling and reweighting are used. Resampling is a change 
in the proportion of class instances by adding or removing 
instances. Undersampling is removing instances of the 
dominant class. While oversampling is adding instances of the 
minor class. There are many different implementations of each 
of the methods, including random generation or removal, 
interpolation, or the nearest neighbor method. Reweighting, in 
turn, is a technique for changing the weight of a class instance. 
Common scenario is upweighting, where the weight value of a 

given class is multiplied by a certain value. In most cases, 
reweighting techniques are implemented in ensemble 
methods(boosting and bagging).  

Metrics that are robust to imbalances in the proportion of 
class instances are used as measures of assessing the predictive 
ability of the model, such as: f1-measure, AUC-PR(area under 
precision and recall curve), balanced accuracy, precision and 
recall [1]. 

At the same time, manual search for the most effective of 
the above methods for a given data set is quite a difficult task 
even for an experienced data scientist. In such cases, various 
approaches to automated machine learning (AutoML) usually 
come to the rescue. They also allow you to automate data 
processing and modeling processes. However, their 
effectiveness in solving the problem of imbalanced binary 
classification is an open question [2, 3].  

This work is aimed at analyzing the effectiveness of 
existing AutoML solutions and proposing our own approach 
based on optimization over the configuration space of 
ensemble algorithms implementing the reweighting and 
resampling techniques. The described approach made it 
possible to achieve decent results on the benchmark for 
imbalanced classification relative to the f1 and balanced 
accuracy measures for the test sample and the time of 
optimization search. 

II. RELATED WORK

This section will cover the most popular AutoML 
solutions for classification tasks on tabular data. Attention will 
also be paid to their mechanisms for solving imbalanced 
learning problems, if mentioned in the relevant papers. All 
existing solutions can be divided into two categories: those 
focused on selecting a model and setting its hyperparameters 
and those focused on ensembling of the most effective models. 

The AutoGluon(AG) solution is based on three main 
principles: training as many different models as possible, 
bagging them to obtain predictions, and then stacking these 
models to combine their predictions into a final model(also 
known as meta-model). Stacking is an ensemble technique, the 
principle of which is similar to the design of neural networks, 
except that at each layer there are machine learning models (in 
the case of AG, these are bag models), which pass predictions 
(in the case of classification, their probabilities) on the data set 
(averaged by layer) as additional features to the next layer. The 
metamodel aggregates predictions from previous layers to 
form final predictions. During the development of AG, its 
creators tested the performance of 1310 models on 200 
different data sets [4]. AG has several presets that 
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conditionally affect the quality of predictions by determining 
the composition and order of algorithms in the search space 
[5]. 

The Tree-based pipeline optimization tool (TPOT) uses 
the genetic programming (GP) mechanism to design machine 
learning pipelines. GP selects genetic operators (in the case of 
TPOT, pipeline structural elements) based on specified fitness 
measures, mutation operations, and crossover. As the name 
suggests, pipelines are presented in tree form. Model ensemble 
is not performed, so its applicability for the imbalanced 
learning tasks is questionable [6]. 

The approach presented in the Auto-sklearn solution is to 
"warm up" the optimization search based on meta-learning 
and use the ensemble selection method. Simple, statistical and 
information-theoretical meta-features, such as the number of 
instances, the number of features, the number of classes, 
entropy, etc., are used as data for meta-learning [7]. The 
optimization algorithm is Bayesian optimization, which is a 
sequential design strategy for global optimization of "black 
box" functions. Ensemble selection is a technique for greedy 
design of an ensemble of models, the structural elements of 
which are selected based on maximization of the value of the 
validation metric [8]. 

The FLAML solution created at Microsoft Research is 
designed to search for a machine learning model and optimize 
its hyperparameters with a focus on low fit and prediction time 
costs, as well as an emphasis on model interpretability. The 
optimization strategy considers the structure of the search 
space to order the algorithms to trade-off validation error and 
time spent. FLAML iteratively decides the model, sample size 
and resampling strategy based on their compound impact on 
the mentioned variables. Ensemble techniques are not used [9]. 

The LightAutoML solution developed in Sber is another 
alternative for finding a lightweight model. The search space 
mainly consists of boosting and linear models. It is mainly 
applicable to the financial sector, where imbalanced data is 
quite common [10]. 

III. METHODOLOGY

This article describes an improved version of the 
previously proposed approach (Algorithm 1) [11]. 

Algorithm 1 Automated imbalanced ensemble learning 
Input: imbalanced dataset: D, quality metric: M, number 
of trials: T. 
Output: ensemble model: Best, quality: Q. 

1:  Data processing of D. 
2: Train and test splits: train and test. 
3: Initialize TPE(train, M, T, reweighting and 
undersampling ensembles). 
4: For trial in T do 
5:      Choose ensemble configuration: E, based on TPE 
internal logic    
6:    Score ← Calculate mean cross-validation score(train, 
M, E) 

7:   Compare with Best and overwrite  Best if Score is 
greater  
8: end for 
9: Predictions ← Predict(Best, test) 
10: Q ← Evaluate(Predictions, M)   
11: Return Best, Q 

The input parameters are: a tabular dataset with class 
imbalance, quality metric name and optionally number of 
trials. Dataset undergoes a pre-processing stage that includes: 
filling in missing values, encoding categorical data into 
numerical form, etc. Next, the dataset is split into training and 
testing in a ratio of 80 to 20 (with stratification). Later, the 
training set will also be split into training and validation parts 
during the cross-validation procedure(also with stratification). 
This procedure involves splitting the training dataset into 8 
folds, one of which is used to calculate the specified validation 
metric. The search space includes the following classifiers: 
AdaUBoost, AdaCost, AsymBoost, BalancedRandomForest, 
BalancedBagging [12]. The number of optimization trials is 
70. For large datasets, the search space is halved.

The Ray framework is used as a computing core, and 
HyperOpt is used to represent the search space and optimize it 
[13, 14]. The optimization algorithm chosen is Tree-structured 
Parzen estimator (TPE). It is a computationally efficient 
implementation of Bayesian optimization. The search space in 
this case is represented as a tree, which allows limiting the 
choice of incompatible configurations of the model and its 
hyperparameters. Its main drawback is its sequential nature, 
which limits the possibilities of parallel search. However, in 
our implementation, Ray is used, which allows running several 
trials concurrently, distributing them across threads. As a result 
of optimization, the model with the highest value of the 
validation metric is saved to evaluate its predictive ability [15]. 

Presented methodology is a combination of boosting and 
bagging ensemble methods, which, together with the 
optimization algorithm used, allow achieving decent results on 
test data with effective time costs. 

IV. EVALUATION

To evaluate the efficiency of the proposed solution, we 
will conduct a benchmark with the FLAML framework on an 
unlimited time budget. The choice of FLAML is due to the 
fact that this solution is designed on the same principle as the 
approach proposed in this article, i.e. on the search for the best 
individual model, which is subsequently used for predictions 
on test data. We have also tried other solutions, like 
Auto-sklearn, LightAutoML and TPOT, but  the first two were 
incompatible with the scikit-learn version used by the 
imbalanced-learn package(we needed it to run benchmarks 
from Zenodo); the latter one is very computationally expensive 
and therefore takes a long running time to achieve decent 
results.  

As a validation metric, we will use the 
f1-measure(harmonic mean of accuracy and recall) and 
balanced accuracy(average of recall on each class). Data sets 
will be taken from Zenodo [16]. The problem being solved is 
classification. Below is information on the sets used indicating 
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the proportion of the positive class of the target variable (Table 
I) and the results of running FLAML and ImbaML (the
proposed solution) upon the f1-measure, alongside 
optimization search time for each solution(Table II). 

TABLE I.  CHARACTERISTICS OF DATASETS 

Dataset name PCR 

ecoli 0,12 

optical_digits 0,11 

satimage 0,11 

pen_digits 0,11 

abalone 0,1 

sick_euthyroid 0,1 

spectrometer 0,09 

car_eval_34 0,08 

isolet 0,08 

us_crime 0,08 

yeast_ml8 0,08 

scene 0,08 

libras_move 0,07 

thyroid_sick 0,07 

coil_2000 0,06 

arrhythmia 0,06 

solar_flare_m0 0,05 

oil 0,04 

car_eval_4 0,04 

wine_quality 0,04 

letter_img 0,04 

yeast_me2 0,04 

webpage 0,03 

ozone_level 0,03 

mammography 0,02 

protein_homo <0,01 

abalone_19 <0,01 

TABLE II.  BENCHMARK RESULTS. VALUE OF F1-MEASURE ON TEST SAMPLE 

Value of f1-measure Optimization search 
time(min.) 

Dataset 
name ImbaML FLAML ImbaML FLAML 

ecoli 0.706 0.6 5 1 

optical_digi
ts 

0.92 0.977 12 2 

satimage 0.598 0.711 13 2 

pen_digits 0.998 0.998 16 1 

abalone 0.401 0.205 7 3 

sick_euthyr
oid 

0.816 0.831 7 1 

spectromete
r 

0.842 0.842 8 1 

car_eval_34 0.931 0.885 4 1 

isolet 0.807 0.866 112 85 

us_crime 0.522 0.458 5 2 

yeast_ml8 0.187 0 9 3 

scene 0.286 0.053 21 26 

libras_move 0.75 0.75 5 1 

thyroid_sic
k 

0.852 0.884 6 1 

coil_2000 0.207 0.084 16 3 

arrhythmia 1 0.75 3 2 

solar_flare_
m0 

0.258 0.19 4 1 

oil 0.556 0.364 4 1 

car_eval_4 0.897 1 4 1 

wine_qualit
y 

0.324 0.385 4 3 

letter_img 0.929 0.957 7 2 

yeast_me2 0.36 0.4 4 1 
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webpage 0.619 0.812 74 17 

ozone_level 0.276 0 6 1 

mammogra
phy 

0.672 0.719 5 3 

protein_ho
mo 

0.831 0 23 75 

abalone_19 0.071 0 1 2 

For a more visual presentation of the results  on the 
test sample (upon f1-measure), bar charts are provided (Fig. 1, 
Fig. 2). 

Fig. 1. Comparison of performance upon f1-measure 

Fig. 2. Comparison of optimization search time for the first run 

As a result we got a decent competitiveness upon 
f1-measure. In some cases, FLAML failed to find even a 
minimally efficient solution, i.e. the f1-measure value was 
zero. On average, optimization search in our solution takes a 
few minutes more than in FLAML. In the worst and best case 
scenarios, the difference for both sides was approximately an 
hour. 

We also conducted the Mann-Whitney U-rank test to more 
accurately assess the results obtained. This type of statistical 
test is used to test if two independent samples(from different 
populations) have equal distributions. The null hypothesis is 
that the distributions of the ImbaML and FLAML quality 
scores are equal. The alternative is that the distributions are 
not equal. The significance level is 0.5. As a result, we 
obtained a p-value of 0.84, so we cannot reject the null 
hypothesis. There is no stochastically significant advantage 
from any side. 

The results upon a balanced accuracy metric are also 
presented (Table III). 

TABLE III.  BENCHMARK RESULTS. VALUE OF BALANCED ACCURACY ON TEST SAMPLE

Value of balanced accuracy Optimization search 
time(min.) 

Dataset 
name ImbaML FLAML ImbaML FLAML 

ecoli 0.888 0.714 6 1 

optical_digi
ts 0.984 0.977 19 2 

satimage 0.878 0.811 14 2 

pen_digits 0.997 0.998 14 1 

abalone 0.79 0.559 8 5 

sick_euthyr
oid 0.955 0.907 8 1 

spectromete
r 0.909 0.934 8 1 

car_eval_34 0.955 0.923 5 1 

isolet 0.947 0.913 133 66 

us_crime 0.887 0.674 9 2 

yeast_ml8 0.584 0.5 23 3 

scene 0.696 0.512 45 27 

libras_move 0.803 0.8 7 1 
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thyroid_sic
k 0.979 0.912 7 2 

coil_2000 0.686 0.518 16 3 

arrhythmia 0.994 0.8 7 2 

solar_flare_
m0 0.681 0.562 7 1 

oil 0.782 0.622 8 1 

car_eval_4 0.988 1 6 1 

wine_qualit
y 0.825 0.632 14 3 

letter_img 0.975 0.959 12 2 

yeast_me2 0.851 0.647 6 1 

webpage 0.902 0.864 46 17 

ozone_level 0.671 0.499 9 2 

mammogra
phy 0.933 0.807 8 3 

protein_ho
mo 0.956 0.909 170 80 

abalone_19 0.849 0.5 6 2 

For a more visual presentation of the results  on the test 
sample (upon balanced accuracy), bar charts are provided (Fig. 
3, Fig. 4). 

Fig. 3. Comparison of performance upon balanced accuracy measure 

Fig. 4. Comparison of optimization search time for the second run 

As a result, our solution was almost always more efficient 
by a balanced accuracy measure. In most cases, the time it 
took to find a model was approximately ten minutes longer 
than in FLAML. However, in this run, more time was spent by 
our solution in computationally expensive cases, while the 
time spent by FLAML remained comparable to the previous 
run. 

Again, we conducted the Mann-Whitney U-rank test to 
evaluate the results obtained, but this time with another 
alternative hypothesis. The null hypothesis is that the 
distributions of the ImbaML and FLAML quality scores are 
equal. The alternative is that the distribution of ImbaML is 
stochastically greater than that of FLAML. The significance 
level is 0.05. As a result, we obtained a p-value of 0.02, 
therefore we reject the hypothesis of equality and accept the 
alternative one. This time, there is a stochastically significant 
advantage of the ImbaML solution.  

V. CONCLUSION 
The described approach allowed us to achieve positive 

results on the benchmark datasets for imbalanced classification 
relative to the balanced accuracy measure and decent results 
relative to the f1-measure. Statistical tests confirmed results 
obtained. On average, we also achieved comparable results for 
the optimization search time.  

The developed solution has decent practical applicability, 
however it makes sense to integrate advanced ensemble 
techniques (like stacking or ensemble construction, etc.) to be 
competitive with state-of-the-art AutoML solutions, like 
Auto-Gluon, etc. It is also planned to refine the methodology 
for the case of multi-class classification and maybe add 
functionality of working with data of different modalities(like 
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text, audio, images, etc.). The solution is open source and can 
be found on Github1. 
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