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Abstract— The digitalization of chemical processes, which use 
advancement of AI for data management and analysis, offers 
significant potential to boost operational efficiency and drive 
innovation in the pharmaceutical, chemical, and materials science 
industries. Process such as Single-Screw Extruder, Co-rotating 
extruder  and Twin-Screw Extruders process, can benefit from 
digitalization, which could enhance the operation efficiency of 
mixing, compounding, processing materials, such as plastics and 
polymers. However, the digitalization of chemical processes could 
be challenging, as it requires managing independent diverse and 
complex process flow data analysis, especially when there is lack 
of critical Linkage Keys (LKs) for  data linkage. In the extrusion  
process, new processing steps or materials often result in entity 
name changes. User-defined criteria rely on these changes because 
they require complete data linkage that matches the updated 
entity names. Existing data linkage methods like Re-Link[1] 
match words using lexical and semantic similarity. However, they 
often fall short when linking relationships based on knowledge, 
facts, and theories, as they primarily focus on mathematical 
similarity. Bit Vector [2] further enhances record matching and 
entity resolution by utilizing patterns. Despite these 
advancements, these methods struggle to achieve the knowledge-
based linkage based on user criteria when entity names change, 
and when the same equipment name is referred to differently 
across datasets. To address these challenges, we propose a novel 
data linkage technique using Dynamic Multiple LKs (DMLKs), 
driven by user-defined criteria derived from historical data & 
expert knowledge. Our approach utilizes a two-stage ensemble 
ML model. In the first stage, the model generates numerous 
DMLKs by learning from meaning, facts, patterns, theories, 
principles, and procedures, which helps in recognizing entity name 
change based on diverse patterns and terminologies. In the second 
stage, these LKs are optimized using user-defined criteria, such as 
process name, material name, and sensing parameters, ensuring 
the LKs align with the most desired criteria, focusing on the most 
relevant data for effective linkage. Our technique achieved a 
maximum 83.4% precision score and a 12.6% improvement over 
the Re-Link. This improvement demonstrates our model’s ability 
to prioritize the most relevant data features based on user criteria. 
By simplifying the linkage of complex chemical processes, the 
DMLKs approach enhances the management of independent 
process flow data, significantly boosting operational efficiency in 
the chemical industry, particularly in extrusion processes.  

Keywords— Data Linkage, Linkage Keys, User Criteria, 
Dynamic Multiple Linkage Keys 

I. INTRODUCTION 

 In recent years, digitalized chemistry (DC), also known as 
Chemistry 4.0, has become a key force driving change in the 
chemical material industries[3]. This involves using digital tools 
like big data, artificial intelligence, and smart sensors to data 
collection, analyses of how materials are made and developed. 
As a result, areas like pharmaceuticals, food processing, and 
materials science have become much more efficient. By using 
advanced data analysis, these industries can run experiments 
faster, make production processes smoother, and come up with 
new and innovative products. Market analysis shows that the 
global Chemistry 4.0 market was valued at USD 64.61 billion in 
2022 and is expected to reach USD 124.32 billion by 2029, with 
a Compound Annual Growth Rate (CAGR) of 9.8% from 2023 
to 2029[4]. This notable growth highlights the increasing 
dependence on digital technologies to revolutionize chemical 
research, production, and material development. The 
development of new materials often required fine-tuning 
numerous process parameters, such as temperature, pressure 
profiles, screw speeds, and feed rates, to achieve desired 
properties. Digitalization tackles this complexity with precise 
instead of managing manual parameters. By leveraging DC, it 
becomes possible to integrate data across various stages of the 
process from material characterization to process monitoring. 
Utilizing this integrated data allows industries to implement 
real-time monitoring, predictive maintenance, optimized 
operational workflows, and new material development analysis. 
These advancements lead to higher product quality, and efficient 
operation in the chemical sector. An application of DC is 
observed in complex industrial processes like extrusion 
machines. An extrusion is a continuous material processing 
system equipped with two intermeshing; co-rotating screws 
housed within a cylindrical barrel. It performs multiple 
functions, including conveying, mixing, shearing, heating, 
cooling, and shaping materials under precise process controls 
[5]. Screw extrusions are representative and important because 
they play a key role in advanced material processing. They are 
widely used in industries like polymer compounding, 
pharmaceuticals, and food processing for tasks such as mixing, 
kneading, and extruding materials[6]. However, for the 
development of new material, user define the criteria based on 
industries expert knowledge and historical data for efficient 
production such as process setting, equipment or sensor it is 
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important to analyse specific data of the complete process to 
know new process effect and cause. It leads to the linkage of 
data based on user criteria such as based on new process name, 
equipment name or sensor. Each stage of the extrusion process 
generates its own independent data. However, integrating this 
data requires a common key, which is often missing. Without 
this common linkage, it becomes difficult to analyze the process 
of material characterization. To address this challenge, it is 
crucial to implement robust data integration frameworks that 
connect different data sources based on user criteria. This 
approach enables comprehensive analysis and valuable insights 
that drive process integration. Integrating complex and diverse 
data types such as process sensing data, materials information, 
equipment information, simulation outputs, and feature 
evaluations is essential to maximizing the full potential of DC.  

 Managing diverse and complex process flow data in 
extrusion is challenging for data linkage. In process flow, when 
new materials or processing stages are introduced, users often 
need to link data specific to these new or desired entities. 
However, in a extrusion, each step of the process generates 
independent data, and the absence of LKs makes it difficult to 
link this data. Current data linking methods, like Re-Link and 
Bit Vector, often fail to manage complex data based on user 
criteria and knowledge-based learning. This limits the ability to 
link independent datasets and derive insights and optimize 
processes. To overcome these issues, we propose a method for 
creating DMLKs based on user-defined criteria from expert 
knowledge and historical data. Our solution uses a two-stage 
ensemble ML and BERT model. In the first stage, the model 
generates initial DMLKs by learning from the data. This helps 
identify relationships and variations in the datasets. In the 
second stage, these keys are refined using user-defined criteria, 
such as equipment name or process value, to tailor them to 
specific datasets. It can revolutionize material flow and product 
development. By dynamically creating and refining LKs, we 
ensure robust data integration even with diverse datasets. This 
supports effective research and development and scalable 
chemical production, bridging the gap between lab experiments 
and large-scale manufacturing. In summary, the deployment of 
DMLKs within DC represents a significant advancement, 
enhancing data management, driving innovation, and ensuring 
operational excellence across industries. This development 
underscores the transformative potential of DC, leading to a new 
era of efficiency and innovation. By leveraging data from 
sources like material composition [8], process parameters, 
simulations, and evaluations, we aim to unlock the full potential 
of chemistry data digitalization, improving efficiency, quality, 
and innovation in industries reliant on extrusion and related 
processes. 

 The literature survey on Data linkage will be summarized 
in section II. Problem overview, challenges of data linkage and 
methodology used for input dataset for DMLKs in III and 
IV. Section V briefly explains the result and discussion of our 
research. Section V presents the conclusion of this research. 

II. RELATED WORK 

Data Linkage has been widely studied in literature over the 
past decades. We have classified literature based on technology 
used in the linkage process such as Re-Link using lexical and 

semantic similarity measure[9] for the record linkage, and Bit 
vector record linkage use entity resolution by using temporal 
patterns. 

A. ReLink: Complete-Link Industrial Record Linkage Over 
Hybrid Feature Spaces 

Record Linkage (Re-Link) is the task of identifying records 
from different databases that refer to the same real-world entity. 
This is crucial for organizations to integrate data across silos, 
improving efficiency in data engineering, analytics, and 
business applications like personalized marketing. State-of-the-
art (SOTA) ML techniques for Re-Link. However, these 
methods often struggle with industrial data due to schema 
heterogeneity, the need to leverage data structure, and the lack 
of training data. Re-Link is a proposed system designed to 
incorporate both lexical and semantic similarity measures[7]. 
This processes records by selecting attribute pairs across 
databases, applying value transformations, and extracting 
features. It then trains a combination of traditional and deep 
learning models on these features. Key Technical contributions:  

1) Complete-Linkage: Similarity across related but not 
identical attribute pairs when databases do not share the 
same schema.  

2) Hybrid Feature Spaces: Semantic similarity measures. 
Feature augmentation to handle data sparsity and 
repetitive attributes.  

3) End-to-End Solution: Achieve high F1 scores on both 
benchmark and real-world datasets.  

In conclusion, Re-Link's hybrid approach, combining lexical 
and semantic features and addressing industrial challenges, 
provides a robust solution for record linkage tasks, 
demonstrating superior performance over existing SOTA. 

B. Bit Vector Record Linkage 

This work describes an advanced system and method designed 
to improve the accuracy and efficiency of record matching 
[13]and entity resolution, particularly in healthcare. This system 
enhances traditional record linkage methods by incorporating 
power-spectrum-based temporal patterns and phenotypic bit-
vector fingerprints. The process begins with retrieving candidate 
health records, each associated with multiple encounters. The 
likelihood of these spectra determined using Bayesian Chain 
Monte Carlo simulation, helping to identify temporal patterns in 
the data. Concurrently, a record linkage scoring weight is 
calculated using methods such as the Fellegi-Sunter(F-S) 
approach. These weights are combined with the power spectrum 
likelihood using methods like root-mean-square(RMS) 
transformation or cosine transformation to form a composite 
score for each record. These composite scores are ranked, and a 
threshold is applied to identify matching records, with records 
exceeding the threshold considered probable matches. Records 
identified as matches through the composite score and 
fingerprint similarity are then merged to form a unified health 
record. This methodology significantly enhances the precision 
of record linkage by leveraging time-series analysis, making it 
particularly valuable in healthcare settings where accurate 
patient data matching is crucial for health record and improving 
data accuracy and utilization in healthcare delivery and research 
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Fig.1 Overall view of extrusion process example data management system 

 

III. PROBLEM OVERVIEW 

In this section we introduced the problem statement and 
challenges in material flow data linkage. We also explained the 
user criteria and their importance in dynamic data LKs. A 
critical component of DC is the efficient management and 
integration of complex data streams, which include device 
configuration, raw materials, device configuration 
specifications, process sensing, material properties and 
simulation. 

A. Data Managemnet System of extrusion  

In the realm of chemical manufacturing, extrusion process is 
a sophisticated piece of equipment used for continuous mixing, 
compounding, or processing of materials. The extrusion 
operates through a series of stages where materials are 
conveyed, mixed, and transformed under controlled conditions.  

The digitalization of extrusion processes allows for 
systematic collection and analysis of data at each stage such as 
(Stage1: Input material-1, experimental input, Device 
configuration of the extrusion machine, Stage 2 to Stage N-1 : 
Which is extrusion process consider as intermediate stage for the 
sensing device such as Temperature, Pressure and humidity and 
viscosity of material, And Final stage is the output where the 
final material ready for the evaluation output. Thus, enabling 
better process control and optimization. When new materials or 
processing stages are introduced, to identify the effect of new 
process users often need to link data to these new or desired 
processes. The complete overview is shown below in Fig.1 
which has the following data management system. This diagram 
outlines a process and data management system for an 
experimental and simulation setup involving materials 
processing. Experimental Conditions (1): Define the recipe and 

conditions for the raw materials. Device Configuration (2): Start 
by setting up the equipment for the experiment. Simulation Input 
(3): Input the experimental conditions and parameters into the 
simulation software. Simulation Output (4): Run the simulation 
and collect the output data. Process Sensing (5): Use sensors to 
collect data during the material processing. Continuously 
monitor the equipment to ensure it operates correctly and 
measure the temperature, pressure, and humidity parameters. 
Characteristic Evaluation (6): Analyze the properties of the 
processed materials.  

B. Problem Statement 

The primary technical challenge lies in the integration of 
heterogeneous and large volume data generated at distinct stages 
of the extrusion process as per user requirement. 

TABLE I.  EXTRUSION  PROCESS DATA TYPE  

Data Type Dataset 
Experimental Input (1), (2) 
Experimental output (4), (5) 
Simulation Input (3) 
Simulation Output (4) 
Evaluation result (6) 

TABLE II.  DATA NEED TO LINKED  

Tables that need to be 
linked together as 
analysis data 

(1)Experimental input raw material 

(2) Device configuration 

(5) Process sensing data 

(6) Characteristic evaluation 

 

Device configuration (2) Sensing device (5) Experimental Input (1) Simulation input /output (3,4) 

Hopper1 Hopper 2

          Stage 1             Stage 2            Stage 3 Stage N-1 

Input 
Material-1 

Input 
Material-2 

Intermediate  
Stage 

Final 
 Output 

Output 

Extrusion Process Flow 

Raw 
Material 
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 Each operational step produces distinct datasets with name 
variable with has different name in other stages, encompassing 
variables such as material feed rates, screw speed, temperature 
profiles, and torque measurements. The lack of standardized 
LKs complicates the task of correlating these datasets, which is 
essential for comprehensive process understanding and 
optimization. Current methods like Re-Link and Bit Vector 
struggle to manage changes in the name of materials, stages, and 
naming conventions, leading to poor data integration. This limits 
the ability to improve efficiency and innovation in extrusion 
operations. The chart emphasizes the need to link all data tables 
using LKs. This linkage allows researchers to compare and 
contrast experimental results with simulation outcomes, 
ensuring comprehensive data analysis and validation of the 
findings. 

C. Challenges Faced in Material  Flow Data Linkage  

 In digitalization processes, each stage of operation 
produces independent datasets, due to which it has no 
direct linkage and without proper LKs, accurately 
integrating this information based on user criteria 
becomes challenging. 

 Existing methods exhibit significant limitations when 
faced with dynamic and evolving datasets. For instance, 
the introduction of new materials, variations in 
processing stages, or inconsistent nomenclature for 
equipment across different datasets can lead to 
inaccurate or incomplete data linkage. 

D. User Criteria 

The user criteria are based on the industry expert knowledge 
to optimize the LKs initiate with the user criteria and followed 
by the historical data for the achieving the maximum output in 
optimized steps. Considering the extrusion process where the 
user is curious about the new added steps or the material. And 
how the outcome value will be changed.  User criteria are 
customized and can be based on expert knowledge or historical 
data, depending on factors like yield efficiency or vendor 
specifications. The key parameters that can be used to define 
user criteria for linking data in the extrusion process. These 
criteria help generate the appropriate LKs, User-based criteria, 
such as process or equipment name, are added as new features. 
Key Parameters for User-Defined Criteria is a set of rules pre-
defined for maximum yield such as in case of extrusion for high 
quality material design. Examples such as Temperature Range 
Process Name: Distillation, Equipment Name: Heater, Pressure 
Range, Reactor Type Preference, Flow Rate Range, 
Concentration Range. These parameters are derived from expert 
knowledge or based on historical performance data and used to 
identify appropriate dynamic LKs, ensuring the system meets 
high yield expectations. These user-defined rules enhance the 
model’s ability to classify whether a product batch meets quality 
standards. In conclusion, expert knowledge is critical in setting 
criteria for LKs generation. By focusing on features like 
temperature, pressure, and equipment type, the system becomes 
more effective in analysis and decision-making, ensuring that 
the extrusion process data is accurately linked and optimized. 

IV. METHODOLOGY 

In this chapter, we propose data linkage technology for the 
data without having LKs. We have designed the architecture 
based on the issues faced by the existing technologies. To 
overcome such issues, we come up with novel ideas. So, the idea 
to select the two-stage ML model and system architecture as 
explained in section 4A and section 4B in detail, respectively. 

A. Proposed DMLK technology 

To tackle the data-linking challenges discussed earlier, we 
created a dynamic data linkage framework that adjusts to user-
defined criteria, making it easier to connect related information 
even when the data is complex or lacks obvious connections. 
This approach addresses two main issues: First similar word but 
different meanings, sometimes words look the same but mean 
different things depending on the context, which makes linking 
tricky. Our first stage, using a BERT model classifier, focuses 
on understanding these nuanced meanings. It captures patterns, 
facts, theories, and other contextual details that relate to specific 
topics. Second similar context, different datasets, Datasets may 
contain related information but don’t directly link to each other. 
Our second stage leverages both the first model’s results and the 
user’s specific requirements to identify new LKs. It processes 
unconnected information by interpreting it within context, 
drawing knowledge from previously unseen data to create new 
linkages key. DMLKs aims to identify the LKs for data link 
dynamically. Utilizes BERT for knowledge identification from 
multiple tables. Overall, the proposed approach aims to address 
the challenges in DC data utilization by developing a solution 
that leverages NLP and ML techniques for efficient data linkage 
using LKs. To identify linking keys across different datasets that 
do not share a common key. 

B. Proposed Architecture 

The architecture is divided into the detailed components and 
functionalities of the model architecture diagram shown in  
Fig. 2. Each part has been marked as a number and presented in 
a diagram. 

I. Feature Engineering Techniques: The data linkage 
technology incorporates advanced feature engineering 
techniques tailored for numerical, categorical, and 
textual features. This helps to pull out key facts, 
meanings of words, and theories from each type of 
data. It is important because it helps solve issue one.  

II. NLP Model: NLP models BERT are trained using 
historical data. The architecture adopts a diverse set of 
algorithms, including deep learning, decision trees, and 
ensemble methods. Issue one is solved using the first 
stage ML which generates the LKs.  

III. DMLK Generation: To get data linkage across 
disparate datasets, BERT dynamically generates 
multiple LKs based on the extracted features. These 
keys are like labels that help connect similar records 
from various data sources, like equipment details, 
process data, and material info. And tackles issue two 
using BERT classifier [10].  
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IV. User-Defined Criteria and LKs Prioritization: The 
architecture incorporates user-defined criteria for data 
matching, allowing user to iteratively refine matching 
rules based on domain expertise and specific 
requirements. Additionally, multiple LKs are 
generated and prioritized to optimize the efficiency and 
accuracy of data linkage processes. 

V. Model Integration and Analysis: Based on user criteria 
the architecture emphasizes the integration of newly 
generated features into existing models. Integration, 
thorough analysis is conducted to assess the 
distribution of the new features and their relationships 
with existing features.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Model architecture 
 

VI. Re-Training Tree-Based Models: Tree-based models, 
including AdaBoost and XG-Boost, are re-trained 
iteratively based on updated datasets and refined 
feature sets. This iterative re-training process enhances 
model accuracy and adaptability to evolving data 
patterns and distributions.  

VII. Feature Importance Analysis: A critical aspect of 
architecture involves evaluating the importance of 
features in the data through techniques such as 
precision. Analyzing feature importance analysis is 
conducted to determine the significance of each 
feature. Precision is used by the fitted attribute. This 

involves using feature attributes precision plots, such 
as heatmap and network graph, to identify the top LKs. 
Typically, by identifying the highest values of the 
precision score and choosing those that meet an 
acceptable limit.  

VIII. Potential LKs: Once the potential LKs are identified 
based on the user criteria. If the user criteria are not 
satisfied, the process iterates, and the user criteria are 
redefined, potentially considering other records to 
meet the requirements. This iterative approach allows 
for continuous refinement of the LKs selection process 
until satisfactory results are achieved. 

Experiment 
raw data two 

Hybrid Feature Spaces (i) 
Feature engineering techniques applied to numerical, categorical, and textual features. 

NLP Model (ii) 
Train BERT model on the extrusion industrial data for learning data and classification 

DMLKs Generation (iii) 
Based on captures patterns, facts, theories, and other contextual details model generates the dynamic linkage key 

Linkage Key 1 data 
Linkage Key 2 data 

 
Linkage Key N data 

…

Linkage Key feature N 

Output of DMLKs 

New data Recipe 
User-Defined  
Criteria (iv) 

Update User 
Criteria 

Re-trained the ML model (vi) 
Based on new feature and modified 

architecture re-trained the AdaBoost model

Update new features to ML Architecture (v)   
Analyse the new feature and its distribution with generated linkage keys. 

Potential Linkage 
Key (viii) 

Linkage Key 
evaluation 

Matrices(vii)

Experiment 
raw data one 

Equipment 
monitoring 

Feature  
evaluation 

Process 
sensing  

… 
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Dynamic key present in large in number, So, user defined 
criteria come in picture to identify the potential LKs. I have 
represented three steps as shown in Fig. 3, such as multiple LKs 
data which is output of ML1 used as input of the ML2 for 
generating the linkage based on user criteria. The architecture 
of ML2 as shown in Fig. 3 has been modified and tuned using 
the user criteria which is a novel approach we have used here. 
And by turning the ML2 with the new feature architecture we 
have generated potential LKs. To make the analysis of the raw 
data, it is important to manage data management in hybrid 
feature space shown in Fig. 4 for combining data based on one 
hot encoding. Hybrid feature spaces are the integration of 
distinct types of features, such as numerical, categorical, and 
textual features, in a unified framework. This approach is 
commonly used in ML and data analysis to leverage the 
strengths of diverse types of data for better model performance. 
Hybrid feature space can be applied to numerical, categorical, 
and textual features. Then the ML1 model as shown in Fig. 4 
(ensemble decision-tree classifier methods) has been used for 
generating the DMLK which is (solution of issue 1). The 
classification model is trained by industrial chemical data, and 
it is used with the BERT for the knowledge-based learning of 
the classification model. Once the test data which is in tabular 
form is given to the classifier, it is classified based on the 
knowledge. And generate a large number of DMLKs. 
 
Multiple LKs Data                                              

User based LKs. 

                                        Expert Knowledge 

 

 

 

 

 

 

 
Fig. 3.   Model integration using user defined criteria 

 

 
 

Fig. 4.   Linkge key classifier using user defined criteria 

C. DMLKs Learning Function 

a) Data Preprocessing and Integration: The 
preprocessing pipeline effectively concatenated text data from 
six distinct dataframes, representing various aspects of 
mineralogical data. This ensured compatibility with the 
downstream NLP tasks. In the equation (1) creating a unified 
corpus of text T, where each text Ti  is a combination of column 
entries. Mathematically,  

Tiൌ ሪ 𝑐𝑜𝑛𝑐𝑎𝑡൫𝐶൯                                ሺ1ሻ


ୀଵ
 

where 𝐶 represents the jth column in the ith dataframe. 

b) Embedding Generation Using BERT: Each Ti is 
tokenized into Xi = tokenizer ( Ti), resulting in a sequence of 
tokens Xi. In the equation(2), tokens were encoded into 
embeddings Ei ∈Rd using the pre-trained BERT model:  

 E i = 𝑓BERT ( X i )                                 ሺ2ሻ 

where 𝑑 is the embedding dimension, and 𝑓BERT denotes the 
BERT encoding function.  
The pooler output 𝐸 = [ 𝐸 1 , 𝐸 2, … , 𝐸 m ] formed the matrix 
of embeddings for 𝑚 texts.[11] 

c) DMKLs Matching Calculation: We introduced a 
DMLKs matching metric M(i,j) in the equation(3), which 
evaluates the similarity between texts Ti  and Tj dynamically 
based on their alignment in terms of semantic meaning, facts, 
patterns, theories, principles, and procedures. This accounts for 
variations in terminologies and entity naming conventions. The 
metric is defined as: 

𝑀ሺ𝑖, 𝑗ሻ ൌ
 ଵሺாೖ,ாೕೖሻ



ೖసభ

ௗ
                          (3) 

where align( Eik , Ejk ) is a function that evaluates semantic 
alignment between corresponding dimensions Eik  and Ejk, and 
1(⋅) is an indicator function returning 1 if aligned and 0 
otherwise. 

d) Agglomerative Clustering: Clustering has been 
performed using the precomputed matching matrix M. The 
agglomerative clustering algorithm minimized linkage 
distances E(i,j) in equation(4), Ck calculated as in equation(5 ): 

E(i,j) = 1 - M(i,j)                                 ሺ4ሻ 

𝐶 ൌ 𝑎𝑟𝑔 𝑚𝑖𝑛 ቆ
 ሺ,ሻ


,ೕ∈ೖ

||
ቇ                  (5) 

where assigned cluster labels Ck  and∣k∣ represents the size of 
cluster k. [12] 

e) LKs Assignment based on user criteria: For each 
feature i in cluster k, the linkage key L(i) is calculated as in 
equation(6): 

L(i)=Ck  + Uk                                ሺ6ሻ 

where: Ck is the cluster label for i. Uk is a user-defined 
adjustment factor applied to cluster k, enabling prioritization or 
weighting of specific clusters. 

User Criteria 

New Feature 

Model 
Integration 

LK1 data 
LK2 data 
LK2 data 
LK3 data 

 
 

LKn1 data 
LKn2 data 

 

LK1 
LK2 
LK3 
LK4 
LK5 
Potential 

Linkage key 
Re-Trained 

model output 

LK1 data 
LK2 data 
LK2 data 
LK3 data 

 
 

LKn1 data 

LKn2 data 
Trained Model 
Feature data 

LK1 

LK2 

LKn 

Ensemble 
learning

Potential 
Linkage 
E

User criteria 

Input 

Hybrid feature space 
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D. Input Data 

 To make the analysis of independent industry raw data , it is 
important to make it useful for the learning model preference. In 
case of data linkage, As the chemical industrial data are 
available in vast amounts. To make it useful for the analysis and 
get the useful inference to increase production, automation and 
new material development, data needs to be linked so that it can 
be analyzed easily and applied to researchers for the application 
of new age cutting technologies. We have used the data 
explained below for the input of our model. The presented data 

is open-source data for our model analysis, For the actual 
analysis we have used the IMA database [14] of mineral  
properties and Walmart-Amazon[15] dataset has been used. The 
IMA database is for creating a complete set of high-quality 
spectral data forms as well characterized minerals and is 
developing the technology to share the information. Datasets 
include attributes names mineral name, unique formula (RRUFF 
and IMA) in plain text (Abellaite is NaPb²⁺₂(CO₃)₂(OH)), IMA 
number and RRUFF ids, chemistry  elements, structural group. 
RRUFF is an acronym for Raman, X-ray, and Infrared. 

TABLE III.  INTERNATIONAL MINERALOGICAL ASSOCIATION (IMA) DATABSE 

(a)                                                            (b)                                                                            (c)

 

(d)                                                                                                                       (e) 

There are four independent tabular data which is shown in Table 
III(b, c, d, e) and Table III (a) is the user defined dataset which 
need to link based on the DMLKs approach, but these four data 
are internally correlated to each other which need to determine 
using the LKs. And potential LKs are derived using User defined 
data Table III (a). As shown tabular data in Table III(b, c, d, e) , 
there is no common key present. So for the linkage there need to 
derive the linkage key among the column of datasets, Because 
all these data are internally correlated, So correlation has to 
derived based on the DMLKs. 

V. RESULTS AND DISCUSSION 

Based on  the experiment run we have evaluated the IMA 
database for the generating DMLKs and then potential LKs 
based on the user criteria. The evaluation of result is resented in 
the two stages. In the experiment we used the matrices such as 
precision and recall values for the evaluation. Firstly the 
DMKLs learning of the IMA properties and then evaluate the 
percentage matching based on the learning from meaning, facts, 
patterns, theories, principles, and procedures, which helps in 
recognizing entity name change based on diverse patterns and 
terminologies. And then second stage, these LKs are optimized 
using user-defined criteria, such as equipment type, process 
name, material name, and sensing parameter range, ensuring the 
LKs align with the most desired criteria, focusing on the most 
relevant data for effective linkage. The evaluation metrics 
precision is used to evaluate the potential linkage. 

A. Linkage key Precision Value 

 The LKs are calculated of the given tabular data presented in 
Table III (a, b, c, c, d, e). We calculated the linkage key pairs 
and evaluated based on the precision value. These data needs 
links and to generate the LKs, the precision of  the LKs has been 
derived using a two-stage learning algorithm using user criteria. 

 
Fig. 5.   Precison heatmap of linkage keys 

S.
N. 

Mineral 
Name 

Chemistry 
Elements 

1. Abellaite Na Pb C O H 
2. Abelsonite Ni C H N 
3. Abhurite Sn O H Cl 
4. Abernathyite K U O As H 
… … … 

S.
N. 

RRUFF 
Chemistry(Plain) 

RRUFF 
IDs 

1. NaPb2+2(CO3)2(OH) NaN 
2. Ni2+C31H32N4 R070007 
3. Sn2+21O6(OH)14Cl16 NaN 
4. K(U6+O2)As5+O4A.3H2O  NaN 
… … … 

S.
N. 

IMA Chemistry 
(Plain) 

IMA 
Number 

1. NaPb2(CO3)2(OH) 2014-111 
2. NiC31H32N4 1975-013 
3. Sn2+21O6(OH)14Cl16 1983-054 
4. K(UO2)AsO4A.3H2O NaN 
… … … 

S.N. Mineral Name Chemistry Elements 
1. Abellaite Na Pb C O H 
2. Abelsonite Ni C H N 
3. Abhurite Sn O H Cl 
4. Abernathyite K U O As H 
… … … 

S.N. Mineral Name Chemistry Elements 
1. Abellaite Na Pb C O H 
2. Abelsonite Ni C H N 
3. Abhurite Sn O H Cl 
4. Abernathyite K U O As H 
… … … 
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The heatmap presented in Fig. 5 visualizes the precision values 
obtained from evaluating various linkage key pairs which 
indicates the accuracy of the linkage between datasets. The 
elements of the heatmap show a precision value of 1, indicating 
the same tabular data and their attributes. The highest potential 
linkage key based on user criteria Table III (a) the precision 
values are: Between “Mineral Name” and “RRUFF Chemistry 
(plain)” with a precision of 0.9167 are highly related based on 
the chemical formula of compound. Between “IMA Number” 
and “Crystal Systems” with a precision of 0.8571. Between 
“Crystal Systems” and “RRUFF Chemistry (plain)” with a 
precision of 0.8750. These values suggest a strong correlation 
and effective linkage between these particular pairs of datasets, 
indicating their potential utility for precise data integration. 
Conversely, lower precision values are evident in pairs such as 
“Space Groups” with “Chemistry Elements” (0.1111) and 
“Fleischers Group name” with “Mineral Name” (0.1818). These 
lower values suggest weaker correlations where linkage 
possibility is least. The network graph depicted in figure 6 
illustrates the precision values between different linkage key 
pairs, providing a visual representation of the correlations within 
the dataset. Each node represents a dataset category, while the 
edges connecting them are labeled with precision values, 
indicating the strength of their linkage. Consistent with the 
heatmap analysis, certain pairs exhibit high precision, 
highlighted by thicker edges in the graph. The dataset with their 
same data attributes, with precision values of 1. Overall, the 
network graph provides a comprehensive view of the precision 
values, highlighting both strong and weak linkage data 
integration. 

 
Figure. 6  Network graph of precison linkage keys 

 
This visualization aids in identifying key areas for improvement 
in data integration strategies, ensuring more accurate and 
reliable synthesis across datasets. 

TABLE IV.  PRECISION OF AGAINST BASELINES DATASETS  

Dataset Precision  Method 
Industry Data 0.778 Re-Link 
Walmart-Amazon 0.708 Re-Link 
Walmart-Amazon 0.834 DMLKs 
IMA Data 0.9167 DMLKs 

 
The Re-Link method has precision score of 0.778 on Industry 
data, and to the Walmart-Amazon dataset, yielding a precision 
of 0.708 over Re-link. In contrast, the proposed DMLKs 
methodology was utilized for the IMA dataset and Walmart-
Amazon dataset, achieving a significantly higher precision 
score of 0.9167 and 0.834 respectivelly of  as illustritated in 
Table IV. These results demonstrate the superior performance 
of the DMLKs approach in accurately linking complex datasets 
compared to traditional methods like Re-Link. 

There is significant imprevemt of 0.128 precision score for 
Walmart-Amazon dataset. 

VI. CONCLUSION AND FUTURE WORK 

The research demonstrates the effectiveness of the proposed 
DMLKs methodology in enhancing data linkage within 
digitalized chemical processes, particularly for the industrial 
process flow data. We performed experiment over the IMA data 
and Walmart-Amazon data by leveraging user-defined criteria, 
the experiment achieved an maximum 91.67% precision score 
for IMA and 83.4% for Walmart-Amazon data, marking a 
significant improvement 12.8% over traditional methods like 
Re-Link. This advancement underscores the potential of 
DMLKs to address the challenges posed by complex and diverse 
datasets, facilitating more accurate and efficient data integration. 
The results highlight the DMLKs’ ability to dynamically 
generate and optimize linkage keys, ensuring precise data 
alignment and contributing to the operational efficiency and 
innovation in chemical industries. In the future we will focus on 
diverse domain data linkage such as healthcare, logistics where 
complex data linkage is crucial. 
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