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Abstract— This study assesses the efficiency of large language 

models (LLMs) in generating university course structures, 
comparing traditional methods with Retrieval-Augmented 
Generation (RAG). It involves a comparative analysis across 
twelve courses using four LLMs: starling-lm-7b-alpha, 
openchat_3.5, saiga2_13b, and gpt-3.5-turbo, with four distinct 
prompting approaches. Findings indicate that advanced 
prompting techniques significantly influence model performance 
and response variability. The study underscores the importance 
of selecting appropriate LLMs and prompting strategies to 
optimize educational outcomes, highlighting RAG's role in 
enhancing data retrieval accuracy in educational technology. 

I. INTRODUCTION 

Large language models (LLMs) significantly impact 
natural language processing and machine learning, offering 
capabilities that range from writing coherent articles to 
engaging in complex dialogues. In education, LLMs enhance 
learning by supporting personalized and multilingual 
education, thereby increasing accessibility and inclusivity. 
They adapt content to diverse learning styles and needs, 
effectively bridging knowledge gaps and enriching learner 
engagement [1] 

Additionally, LLMs help automate educational content 
creation, aligning with curricular goals and reducing educators' 
workloads, thereby boosting efficiency in educational 
administration [2, 3]. Recent progress in generative AI and 
large language models has propelled numerous innovations in 
educational technology aimed at automating the tedious tasks 
of creating and analyzing text-based content, such as 
formulating open-ended questions and evaluating responses 
from student feedback surveys [4], [5]. 

According to recent studies, such LLMs as BERT, GPT-2, 
GPT-3, OpenAI's Codex, and T5 were used in automating 
various educational tasks [1]. BERT variants are extensively 
utilized for tasks like content profiling and labeling, while 
GPT models excel in content generation, such as creating math 
problems or evaluating student responses [6]. Despite their 
capabilities, the adoption of newer models like GPT-3 is 
limited due to the high costs associated with their commercial 
use, reflecting a broader trend in educational technology  
where the potential of LLMs to support teaching, learning, and 
administrative processes is balanced against the challenges of 
implementation and the need for model fine-tuning [7]. 

The present paper explores the transformative potential of 
large language models in designing university course 
structures. This study employs the Retrieval-Augmented 
Generation (RAG) technique, utilizing a university courses 
database to provide relevant course context through keyword-
specific searches. The research encompasses an experimental 
comparison of four prompting approaches (zero-shot, few-
shot, chain-of-thought, and tree-of-thought) across 12 
university courses executed on four large language models: 
starling-lm-7b-alpha, openchat_3.5, saiga2_13b, and gpt-3.5-
turbo. Starling-7b and OpenChat-3.5 were taken as the most 
successful ones in the previous study [8]. The experiment also 
checks the amount of topics proposed for various levels of 
education and evaluates them using embeddings measuring 
number of subject areas covered and proximity to the existing 
courses in the university.  

II. METHODS 

A. Prompt Engineering 

Large language models (LLMs) demonstrate significant 
efficacy in content generation due to their sophisticated 
design, which mimics human’s creative processes. However, 
to achieve specific outcomes, it's crucial to guide these models 
accurately. One effective method for directing LLMs is 
through prompt engineering, which involves strategic 
formulation of queries that precisely influence the model's 
output, ensuring that the content produced adheres to specific 
requirements and relevancy for the intended tasks. It might 
include selecting specific words, phrases, amplifiers and 
contextual cues that enhance the AI's understanding of the 
query.  

In the conducted experiment, four prompting techniques 
were employed: zero-shot, few-shot, chain-of-thought, and 
tree-of-thought. Each method offers a distinct manner of 
presenting information to the large language model. 

In the zero-shot approach, a large language model receives 
a task without additional examples and attempts to solve it 
using its prior experience. An example prompt might be:  

"Describe the structure of a course on Web programming" 
— without any preliminary examples or explanations. 

In the few-shot approach, the model is provided with 
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several examples which aid LLM to understand the context 
and the desired response format. This approach is effective 
when it is necessary to guide the model towards a specific 
response style or when the model needs to understand the 
specific context of the task. 

Below is an example of a prompt for an LLM that could be 
used for generating a web development course program using 
a few-shot approach. The examples provided are based on 
topics from previously developed similar courses at the 
university. From these examples, the LLM is expected to 
understand the desired level of detail for topics in the course, 
as well as the balance between depth and breadth of the 
material.  

"You are a teaching assistant. Develop a course structure 
for the 'Web Programming' discipline for undergraduate 
students with an emphasis on the practical aspects. The course 
should include the study of Django and Vue.js frameworks and 
cover topics such as working with sockets, the OSI network 
model, Apache vs Nginx, OOP, and design patterns including 
MVC. To better understand the structure, include the 
following examples in your request:  

Example 1: Basics of Web Programming Introduction to 
HTML, CSS, and JavaScript Web page structure, Basics of 
styling, Basics of programming in JavaScript  

Example 2: Advanced Web Programming Using Django 
and Vue.js frameworks Django architecture, Basics of Vue.js, 
Data binding and component-based approach" 

The chain-of-thought approach encourages models to 
sequentially explain their thought process. This technique is 
particularly valuable for tasks requiring deep logical analysis, 
such as in mathematics and when dealing with abstract 
concepts. In the context of curriculum development, it helps 
form logical connections between sections and topics of a 
course. It also ensures structured learning for students, 
ensuring that each subsequent module builds on the 
knowledge acquired in previous sections. Below is an example 
of a request using this technique.  

"You are a teaching assistant. Develop a course structure 
for the discipline “Web programming”. Start by analyzing 
what knowledge, skills and abilities students already have 
before starting the course. Then, for each section of the 
course, explain why you chose those topics and subtopics and 
how they relate to students' prior knowledge. Include 
reflection on how each topic prepares students for subsequent 
topics, justifying why you believe that after studying one topic, 
students are ready to move on to the next. Provide examples of 
assignments or projects that will help consolidate acquired 
knowledge and skills. Summarize by explaining how the entire 
course structure contributes to the educational goals of the 
discipline" 

The tree-of-thought approach can be seen as an extension 
of the chain-of-thought concept. It allows the model to 
simultaneously consider multiple reasoning pathways, similar 
to a tree structure. This method is used for highly complex 
problems that have multiple possible solutions or require a 
comprehensive analysis of different aspects of the issue. 

Below is an example prompt incorporating elements of tree-
of-thought, where the model simulates a competitive 
discussion aimed at achieving a consensus on the themes to be 
included in the course structure. 

"You are a teaching assistant. Develop a course structure 
for the discipline “Web programming”. Simulate a situation 
where 100 experts create a course in a discipline. Each expert 
includes from 5 to 7 topics in his course. Your task is to create 
a list of the main topics that must be mastered. Start by 
identifying topics that appear in at least 5 programs. Consider 
why these topics are often chosen by experts: perhaps they are 
critical to understanding the discipline. Then analyze how 
these popular topics are interconnected and how the exclusion 
of less popular topics might affect the overall understanding of 
the discipline. Based on the results of the analysis, propose a 
final list of topics, explaining how each of them contributes to 
the achievement of the educational goals of the course." 

B. Large Language Models Used 

There was conducted an experiment within which were 
generated 12 academic course programs from various subject 
areas, including Computer Networks, Information Security 
Management, Foreign Language in Professional Activity, Web 
Programming, Fundamentals of Economics, Technological 
Foresight, Mathematical Linguistics, UML Analysis and 
Design, Agile Management, Laser Physics, Art, Science and 
Technology, and Biometrics and Neurotechnology. 

Then, for every course, four distinct prompts were devised 
utilizing established prompt-engineering techniques. For the 
few-shot method, examples from current university courses 
crafted by faculty were incorporated. This collection of 
prompts was then presented to four LLMs. Before text was 
proposed to each LLM, it underwent several preprocessing 
steps: 

1) Language Detection: The langdetect library identified 
whether the text was in Russian or English.  

2) Stopword Removal: Based on the detected language, 
NLTK’s predefined stopword lists were applied. 
Additionally, an IDF-based method identified high-
frequency, low-informative words specific to the 
dataset, which were added to the stopword list.  

3) Punctuation Removal: All punctuation marks were 
removed for cleaner tokenization.  

4) Lemmatization: For Russian text, pymorphy2 was 
used to convert words to their base forms.  

5) Tokenization: NLTK was employed to split the text 
into tokens.  

These steps ensured clean, relevant inputs tailored to the 
language and context, optimizing the model's performance. 

Given the constraints on computational resources, the 
LLMs used in the experiment were either optimized for 
quicker response times, such as GPT-3.5 Turbo from OpenAI, 
or were quantized models like starling-lm-7b-alpha, 
openchat_3.5, and saiga2_13b.  
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In the realm of large language models, quantization 
involves adjusting model weights to a lower precision format, 
such as converting to 8-bit integers from 32-bit or 16-bit 
floating points. This process reduces memory usage and boosts 
processing speed, vital for deployment in environments with 
limited resources. Although quantization can marginally lower 
the quality of the model outputs, the decrease in precision is 
often insignificant compared to the advantages of reduced size 
and increased speed [9]. 

In the context of our specific task—automating the 
generation of course programs using large language models 
(LLMs) enhanced by Retrieval-Augmented Generation 
(RAG)—we selected four models based on their ability to 
address domain-specific content requirements while balancing 
computational efficiency. Furthermore, the selection was 
influenced by findings from a previous study, which 
demonstrated these models' effectiveness in similar 
educational content generation tasks. The model's ability to 
effectively integrate retrieved educational content (via RAG) 
with generative capabilities makes it especially valuable for 
creating domain-specific curricula. In our prior research, 
OpenChat_3.5 consistently performed well, especially in 
content generation tasks where it was required to align 
educational content with specific university guidelines. 

Many quantized large language models, despite their 
smaller size, demonstrate impressive results. OpenChat 3.5 7B 
is noted for its excellent natural language processing 
performance. This model employs the 'Q5_K_M' quantization 
method, allowing for efficient 5-bit quantization while 
maintaining a compact footprint—7 billion parameters and a 
size of 5.13 GB, requiring up to 7.63 GB of RAM for 
operation [10]. 

Similarly, Starling LM 7B Alpha, developed by the 
Berkeley-Nest team, leverages the berkeley-nest/Nectar 
training dataset and the Advantage-Induced Policy Alignment 
(APA) policy optimization method. It also uses 'Q5_K_M' 
quantization, resulting in significant performance with 
minimal quality loss. The Starling LM 7B Alpha has achieved 
notable scores, surpassing many models except GPT-4 and 
GPT-4 Turbo in the MT-Bench evaluations, showcasing its 
capability for extensive tasks without substantial quality 
degradation [11]. The model is particularly effective in 
scenarios where speed and scalability are essential, such as 
when dealing with large sets of educational materials across 
multiple subjects.  In our previous research, Starling-lm-7b-
alpha achieved high performance across a range of educational 
tasks, generating content that closely matched predefined 
curricula based on cosine similarity metrics (Fig. 1 from the 
study). This further validates its suitability for our current 
project. 

The experiment also included Saiga2_13b, a model tailored 
for the Russian language, enhancing its proficiency in 
processing and generating Russian text. Although previously 
conducted experiments [8] indicated it as one of the lower-
performing models, its inclusion in this research aimed to 
explore its capabilities in a Retrieval-Augmented Generation 
(RAG) context, assessing its utility in a new application 
framework. 

The study also involves ChatGPT-3.5 Turbo. As the only 
commercial LLM used, its performance was crucial, 
particularly following the previously superior results of 
ChatGPT-4 [8]. This research aimed to determine if quantized 
LLMs could perform comparably to more resource-intensive 
models using RAG and prompt-engineering. Results indicated 
that less resource-intensive models could deliver similar 
outcomes in specific contexts, validating the practicality of 
employing more accessible models [12].  

While not the most resource-efficient model, GPT-3.5 
Turbo provides the highest content quality and is often used to 
validate and compare the outputs of more efficient, quantized 
models. In scenarios where educational program generation 
requires precision and depth, GPT-3.5 Turbo serves as the 
gold standard for comparison.  

The selection of these models reflects a balance between 
performance, resource efficiency, and domain-specific 
capabilities. Table Ⅰ presents a comparative analysis of all four 
models. 

TABLE Ⅰ.  COMPARATIVE ANALYSIS OF THE SELECTED MODELS

Model Parameters 
Pre-

training 
Focus 

Key 
Strengths 

Limitations 

Starling-
lm-7b- 
alpha 

7 billion 

Open-
domain, 
policy 

alignment 

High 
performance 

with low 
resource use 
(quantized) 

Limited pre-
training on 
education-

specific data 

OpenChat
_3.5 

3.5 billion 
Dialogue 

and 
generation 

Efficient 
natural 

language 
generation 

and quantized 
for faster 

performance 

Slightly 
weaker in 
domain-
specific 

adaptation 

Saiga2 
_13b 

13 billion 
Russian-
language 
content 

Excellent 
handling of 

Russian 
educational 

content 

High 
resource 

requirements 

GPT-3.5 
Turbo 

175 billion 
General-
purpose 

text 

Superior 
language 

understanding 
and complex 
generation 

Very 
resource-
intensive 

The quantized models (Starling-lm-7b-alpha and 
OpenChat_3.5) excel in resource-constrained environments, 
making them highly practical for scalable educational program 
generation. Saiga2_13b was chosen for its language-specific 
focus, while GPT-3.5 Turbo serves as a baseline for 
understanding the upper limits of performance at the cost of 
higher computational requirements. Each model brings its own 
advantages and trade-offs, enabling a comprehensive 
comparison and further development of the RAG methodology 
in educational content generation. 
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The dataset used in the experimental design possessed the 
following characteristics: 

1) Average Size of Reference Texts: The average length 
of the reference texts in the dataset is approximately 
139 words and 1272 characters. Additionally, the 
median text length is 82 words and 736.5 characters. 
The difference between the median and the average 
indicates the presence of some longer texts in the 
dataset, which skew the average upward, while most 
texts are shorter, as indicated by the median. This 
suggests that the dataset contains a diverse range of 
text lengths, from concise summaries to more detailed 
descriptions.  

2) Text Generation Limitations: The generated text by 
the models was limited by a maximum token count 
parameter, typically set to 1024 tokens, during 
generation. This token limit was chosen to ensure that 
the models provided sufficiently detailed responses 
while remaining concise and coherent. Additionally, 
the temperature parameter was set to 0.7 to balance 
creativity and precision, avoiding overly deterministic 
outputs while maintaining relevance. Top-p was set to 
1, allowing for the full range of possible tokens, which 
ensured diversity in the generation while keeping the 
generated text aligned with the context. 

These generation parameters helped to ensure that the 
model outputs were well-structured, contextually relevant, and 
limited to a manageable size, aligning with the diverse range 
of reference texts in the dataset. For all four models 
hyperparameters remain the same, with the primary variation 
being the prompt wrapping technique. For instance, while 
Saiga uses the [INST] ... [/INST] format, Starling and 
OpenChat implement a dialogue-based wrapper like GPT3.5 
User: ... <|end_of_turn|> GPT3.5 Assistant:. These wrappers 
ensure compatibility with each model's expected input format, 
maximizing the effectiveness of the same core parameters. 

C. RAG 

Retrieval-Augmented Generation (RAG) combines the 
capabilities of large language models (LLMs) with information 
retrieval from external databases to enhance content generation. 
This approach utilizes pre-trained models' vast knowledge while 
incorporating precise, context-specific data from external 
sources, thus significantly enhancing response accuracy and 
relevance in complex tasks [13].  

Studies show RAG's effectiveness in various domains, 
including a custom Singlish-speaking chatbot, Professor Leodar, 
which improved student engagement at Nanyang Technological 
University [14]. Another application involved domain-specific 
question answering, where the "RAG-end2end" model 
demonstrated notable performance enhancements by integrating 
domain-specific knowledge into the retrieval process [15] 

The present study employs Retrieval-Augmented Generation 
(RAG) to facilitate the creation of academic course structures, 
leveraging approved educational programs available within the 
university's database. To enable efficient access to relevant data, 

a system for indexing and retrieving information from these 
programs was developed, utilizing Elasticsearch alongside 
morphological analysis techniques.  

This system transforms educational program data into a 
format suitable for analysis by conducting data cleansing, text 
normalization, noise reduction, tokenization, and lemmatization. 
It improves the alignment of user queries with the actual course 
content through the use of lemmatized text versions and the 
application of filters such as stop-word removal and text 
conversion to lowercase. Additionally, the system identifies and 
removes specific stop-words that are commonly found in course 
descriptions but do not contribute to understanding the specific 
subject area. 

The retrieval system efficiently indexes course-related fields 
like titles, descriptions, sections, and topics, facilitating precise 
search capabilities. These fields are weighted according to their 
relevance, with titles receiving the highest due to their direct 
reflection of course content. Utilizing a multi-match query 
approach enhances the ability to search across these fields, 
improving result accuracy and relevance. This setup ensures 
users can locate the most appropriate courses, further enriched by 
allowing users to input keywords that reflect the educational 
competencies to be included in the course. 

The structure for requesting data retrieval is outlined as 
follows 

{ 

    "title": "Web-development", 

    "keywords": "HTML, CSS, JavaScript" 

}  

Below is represented example of retrieved database content 

{ 

"retrieved_data": "Development of Backend services, 
Development of SSI services, Development of Frontend 
services. OSI network model. TCP vs UDP, Templates, 
Design patterns, Working with data models, Django REST 
Framework, APiView, CVB, OOP principles, Apach vs. 
Nginx, Angular vs. React, Django settings, migrations, 
superuser, SPA, Working with sockets, JWT, Djoser", 

}  

As observed, the output often includes more information than 
initially requested because it pulls the entire structure from the 
most relevant course program. It's essential to recognize that 
while this additional context can provide valuable insights, it 
may also mislead the language model (LLM). Inaccurate or 
irrelevant data can significantly reduce the quality of the 
response.  

Additionally, if the retrieval system doesn't capture all user-
provided keywords—perhaps reflecting only some needed 
skills—it's crucial for the LLM to prioritize covering the 
specified topics regardless of the provided context. In such cases, 
employing a zero-shot approach within the RAG framework 
might look like: 
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"You are a teaching assistant. Using information about the 
courses available at the university: [retrieved_data], Develop 
a course structure for the discipline "Web programming". The 
teacher asked to include the following topics: HTML, CSS, 
JavaScript” 

In other techniques such as few-shot, chain-of-thought, and 
tree-of-thoughts, the prompts were constructed similarly: the 
language model was provided with context and specifically 
instructed to incorporate the topics explicitly specified by the 
user. This approach ensures that the LLM remains focused on the 
relevant content while integrating the necessary details into the 
structured output.  

III. EXPERIMENT 

During the experiment, a total of 384 text fragments 
describing course structures were generated. This included 12 
disciplines across 4 prompting approaches, 4 large language 
models, and 2 methodologies (RAG and non-RAG). In 
addition to human expert evaluations, an embedding 
generation algorithm was utilized to assess the quality of the 
LLM outputs. 

The construction of a discipline's embedding is performed 
through a graph of educational entities, representing the set of 
prerequisites and learning outcomes—skills possessed by 
students before and after the course. A link exists between two 
vertices if the corresponding entities appear in the description 
of a discipline. The embedding is formed in several stages (see 
Table Ⅱ): 

1) A graph of subject areas is created by clustering the 
graph of educational entities. A cluster containing more than 
10 educational entities is considered a subject area. 

2) Educational entities from smaller clusters (up to 10 
entities) are distributed among the formed subject areas based 
on contextual proximity of tokens from the educational entity 
to tokens from the subject area, calculated using embeddings 
from a Word2Vec model trained on data from 8699 disciplines 
implemented at ITMO University from 2018 to 2023. 

3) The number n of communities in the resulting subject 
area graph is counted, and a zero vector Dj is formed, where  j 
= 0,...,n.  

4) The number of educational entities from each subject 
area included in the description of each discipline Ci is 
calculated, where i=0,...,m, and m is a total number of 
disciplines. The general form of the embedding set for the 
disciplines is tabulated. 

TABLE Ⅱ.  EXAMPLE OF EMBEDDING CREATION 

 D0 D1 D2 … Dn 

C0 2 6 0 … 3 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

Cm 1 9 0 … 0 

 

 

5) Finally, the discipline embedding is normalized. 

Such an approach to constructing embeddings allows for 
capturing and assessing the overall subject orientation of a 
course without delving into the details of terminology. This is 
particularly important when comparing extensive texts that 
may use different concepts to describe similar ideas. The 
embedding formed from the generated text is compared to the 
embedding of an existing discipline through cosine similarity; 
the closer to one, the more similar the vectors are. 

Fig. 1 and 2 illustrate the average cosine similarity of 
embeddings compared to a reference discipline. As shown in 
Fig. 1, the best result was achieved by the LLM chatgpt-3.5 
turbo, while the worst performance was observed with 
saiga2_13b. 

 

Fig. 1. Average cosine similarity of generated content embeddings compared 
to the reference for each model. 

Fig. 2 displays the average cosine similarity of embeddings 
compared to a standard reference across different prompting 
methods. The few-shot approach demonstrated the highest 
similarity scores, followed by the zero-shot method. The tree-
of-thoughts approach showed the lowest performance in terms 
of similarity to the reference. 

 

Fig. 2. Average cosine similarity of generated content embeddings compared 
to the reference for each prompting method 

Fig. 3 shows the performance results for each model using 
different prompting methods. This comprehensive comparison 
allows for an analysis of how well each combination of model 
and method can generate content that aligns with the reference 
standards set in the study.  
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Fig. 3. Summary diagram of embedding differences from the reference across 
models and prompting methods 

Fig. 3 illustrates how prediction success depends on the 
prompting technique and the specific LLM used. The few-shot 
method shows superior performance, partly because it 
incorporates examples from the reference course into the 
model's inputs. Notably, models like OpenChat and Starling 
perform well across all prompting methods, sometimes even 
surpassing ChatGPT-3.5 turbo. However, the Saiga model 
struggles particularly with the tree-of-thoughts technique, 
likely due to its more limited capacity for complex reasoning, 
which stems from its training and focus.  

The outcomes highlight that a model’s size and number of 
parameters significantly impact its ability to process context 
and perform logical reasoning, essential for chain-of-thought 
and tree-of-thoughts techniques. Model effectiveness also 
heavily depends on its training and fine-tuning. It’s important 
to consider that prompts were not tailored to any specific 
LLM, which suggests that more customized queries might 
have yielded better results. Model performance might decrease 
if not explicitly trained for tasks requiring intricate reasoning. 
The specialization of a model like Saiga is critical, as its 
unique setup and training determine its effectiveness in 
applying specific techniques [16]. 

Moreover, embedding similarity should not be the sole 
measure of the quality of generated course structures. A 
minimal overlap of generated topics with those of an existing 
course does not necessarily imply incorrectness. Courses with 
the same title can cover different aspects, and academic course 
development is largely a creative endeavor. 

 

Fig. 4. Summary diagram of embedding differences from the reference across 
models and prompting methods (RAG approach) 

Fig. 4 illustrates the results of the same experiment 
incorporating the Retrieval-Augmented Generation (RAG) 
approach. When comparing Fig. 3 and 4, it is apparent that 
RAG generally boosts the performance of all prompting 
methods across various models.  

 ChatGPT-3.5: Shows consistent improvements across 
all prompting methods with RAG, maintaining a high 
similarity in embeddings. 

 OpenChat-3.5: Similar to ChatGPT-3.5, demonstrates 
improved performance under RAG across all prompting 
methods. 

 Saiga2_13b: Rather than experiencing an improvement, 
this model shows a performance decline. The additional 
context proved too ambiguous and complex for it to 
handle effectively. 

 Starling-lm-7b-alpha: Benefits from RAG in all 
prompting methods, with notable improvements in 
embedding similarity. 
 

This indicates that the additional context provided by RAG 
is beneficial in creating content that closely mirrors the 
reference, thereby enhancing the models’ understanding and 
portrayal of the course material. Despite the potential for 
imperfect relevance in data retrieved from university databases, 
the results demonstrate that even a basic implementation of 
RAG can positively influence LLM performance. Further, the 
results highlight that quantized LLMs like Starling-lm-7b-alpha 
and OpenChat-3.5, when supplemented with relevant context, 
are capable of excelling in course generation tasks, negating the 
need for more expensive commercial LLMs like ChatGPT-4 
from OpenAI. 

To delve deeper into the capabilities of LLMs and RAG, 
additional experiments were performed, with results depicted in 
Fig. 5. LLMs were tasked with creating course programs for 
both bachelor and master's students, using hints tailored to their 
educational level to guide the content generation. Unlike 
previous assessments that relied on embedding differences, this 
evaluation focused on the number of subject area entities 
extractable from the LLMs' responses. This method aimed to 
assess the relevance and richness of the content generated 
relative to the specified educational level. 

 

Fig. 5. Number of educational entities containing in academic course based on 
educational level 

For the RAG approach, the LLM prompt was adapted from 
the previous experiment to include both the retrieved relevant 
content and additional keywords relating to subject area 
aspects specified by the teacher. Fig. 5 illustrates that the large 
language models effectively interpret these cues, incorporating 
more comprehensive material for master's level students 
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compared to bachelors. However, the RAG variant tends to include fewer topics overall. Analysis of LLM responses 

indicated that the RAG model focuses intensely on the 
provided keywords, leading to less creativity in generating 
independent content ideas. This focus is advantageous when 
the educator has a clear vision of the course scope and should 
not be considered when seeking creative input from the model. 

Across models and subjects, the average improvement in 
cosine similarity was +0.08 (8% increase in relevance) when 
RAG was employed. This demonstrates the importance of 
integrating retrieval-augmented data for domain-specific 
content. Without RAG models struggled to maintain high 
relevance in complex, institution-specific queries. This 
highlights the limitations of relying purely on LLM generative 
capacities without incorporating domain-relevant data.  

The combination of prompting techniques, RAG, and 
LLMs improved the accuracy and relevance of generated 
educational content by approximately 15-20% across subject 
areas. The most significant improvements were seen when 
using few-shot and chain-of-thought prompting with the RAG 
approach. 

VI. CONCLUSION AND FUTURE WORK

This study explored the influence of various prompting 
methods and the Retrieval-Augmented Generation (RAG) 
technique on the quality of educational content generated by 
large language models (LLMs). The findings suggest that 
integrating RAG enhances the consistency and predictability 
of model outputs, thus increasing their reliability for 
educational applications. Notably, the study also demonstrated 
that quantized LLMs, which are resource-efficient, and can 
deliver impressive results with proper prompting techniques.  

While the chosen models show promise in automating the 
generation of educational programs, several challenges 
remain:  

 Improved Adaptability to Specific Standards: One
challenge is ensuring that the generated programs fully
align with specific educational standards at ITMO
University or other institutions. While models like
Saiga2_13b handle language-specific requirements,
additional alignment methods (such as our proposed
methodology for aligning LLMs with institutional
data) will further enhance the models' relevance and
adaptability.

 Further RAG Enhancements: Our research has shown
that RAG significantly improves content retrieval for
educational purposes, but limitations remain,
particularly in retrieving highly domain-specific
content. Future work should focus on refining the
retrieval mechanisms to ensure that highly relevant
educational material is retrieved based on the unique
needs of each institution.

Future efforts will focus on refining the retrieval process to 
fetch more relevant content, thus enhancing the precision and 
utility of the generated materials. Plans also include 
implementing this system within a university setting, offering 
different generative modes to address diverse creative and 

directive needs. Additionally, the development of advanced 
evaluation metrics beyond cosine similarity of embeddings is 
planned, aiming to provide a deeper insight into the models' 
capability to capture and reproduce educational content 
intricacies.  
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