
Applying Retrieval-Augmented Generation for
Academic Discipline Development: Insights from

Zero-Shot to Tree-of-Thought Prompting

Polina Shnaider, Anastasiia Chernysheva, Anton Govorov, Maksim Khlopotov, Anna Nikiforova
ITMO University

Saint Petersburg, Russia
polina.in.tech@gmail.com

Abstract— This study assesses the efficiency of large language

models (LLMs) in generating university course structures,
comparing traditional methods with Retrieval-Augmented
Generation (RAG). It involves a comparative analysis across
twelve courses using four LLMs: starling-lm-7b-alpha,
openchat_3.5, saiga2_13b, and gpt-3.5-turbo, with four distinct
prompting approaches. Findings indicate that advanced
prompting techniques significantly influence model performance
and response variability. The study underscores the importance
of selecting appropriate LLMs and prompting strategies to
optimize educational outcomes, highlighting RAG's role in
enhancing data retrieval accuracy in educational technology.

I. INTRODUCTION

Large language models (LLMs) significantly impact
natural language processing and machine learning, offering
capabilities that range from writing coherent articles to
engaging in complex dialogues. In education, LLMs enhance
learning by supporting personalized and multilingual
education, thereby increasing accessibility and inclusivity.
They adapt content to diverse learning styles and needs,
effectively bridging knowledge gaps and enriching learner
engagement [1]

Additionally, LLMs help automate educational content
creation, aligning with curricular goals and reducing educators'
workloads, thereby boosting efficiency in educational
administration [2, 3]. Recent progress in generative AI and
large language models has propelled numerous innovations in
educational technology aimed at automating the tedious tasks
of creating and analyzing text-based content, such as
formulating open-ended questions and evaluating responses
from student feedback surveys [4], [5].

According to recent studies, such LLMs as BERT, GPT-2,
GPT-3, OpenAI's Codex, and T5 were used in automating
various educational tasks [1]. BERT variants are extensively
utilized for tasks like content profiling and labeling, while
GPT models excel in content generation, such as creating math
problems or evaluating student responses [6]. Despite their
capabilities, the adoption of newer models like GPT-3 is
limited due to the high costs associated with their commercial
use, reflecting a broader trend in educational technology
where the potential of LLMs to support teaching, learning, and
administrative processes is balanced against the challenges of
implementation and the need for model fine-tuning [7].

The present paper explores the transformative potential of
large language models in designing university course
structures. This study employs the Retrieval-Augmented
Generation (RAG) technique, utilizing a university courses
database to provide relevant course context through keyword-
specific searches. The research encompasses an experimental
comparison of four prompting approaches (zero-shot, few-
shot, chain-of-thought, and tree-of-thought) across 12
university courses executed on four large language models:
starling-lm-7b-alpha, openchat_3.5, saiga2_13b, and gpt-3.5-
turbo. Starling-7b and OpenChat-3.5 were taken as the most
successful ones in the previous study [8]. The experiment also
checks the amount of topics proposed for various levels of
education and evaluates them using embeddings measuring
number of subject areas covered and proximity to the existing
courses in the university.

II. METHODS

A. Prompt Engineering

Large language models (LLMs) demonstrate significant
efficacy in content generation due to their sophisticated
design, which mimics human’s creative processes. However,
to achieve specific outcomes, it's crucial to guide these models
accurately. One effective method for directing LLMs is
through prompt engineering, which involves strategic
formulation of queries that precisely influence the model's
output, ensuring that the content produced adheres to specific
requirements and relevancy for the intended tasks. It might
include selecting specific words, phrases, amplifiers and
contextual cues that enhance the AI's understanding of the
query.

In the conducted experiment, four prompting techniques
were employed: zero-shot, few-shot, chain-of-thought, and
tree-of-thought. Each method offers a distinct manner of
presenting information to the large language model.

In the zero-shot approach, a large language model receives
a task without additional examples and attempts to solve it
using its prior experience. An example prompt might be:

"Describe the structure of a course on Web programming"
— without any preliminary examples or explanations.

In the few-shot approach, the model is provided with

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 741 --

several examples which aid LLM to understand the context
and the desired response format. This approach is effective
when it is necessary to guide the model towards a specific
response style or when the model needs to understand the
specific context of the task.

Below is an example of a prompt for an LLM that could be
used for generating a web development course program using
a few-shot approach. The examples provided are based on
topics from previously developed similar courses at the
university. From these examples, the LLM is expected to
understand the desired level of detail for topics in the course,
as well as the balance between depth and breadth of the
material.

"You are a teaching assistant. Develop a course structure
for the 'Web Programming' discipline for undergraduate
students with an emphasis on the practical aspects. The course
should include the study of Django and Vue.js frameworks and
cover topics such as working with sockets, the OSI network
model, Apache vs Nginx, OOP, and design patterns including
MVC. To better understand the structure, include the
following examples in your request:

Example 1: Basics of Web Programming Introduction to
HTML, CSS, and JavaScript Web page structure, Basics of
styling, Basics of programming in JavaScript

Example 2: Advanced Web Programming Using Django
and Vue.js frameworks Django architecture, Basics of Vue.js,
Data binding and component-based approach"

The chain-of-thought approach encourages models to
sequentially explain their thought process. This technique is
particularly valuable for tasks requiring deep logical analysis,
such as in mathematics and when dealing with abstract
concepts. In the context of curriculum development, it helps
form logical connections between sections and topics of a
course. It also ensures structured learning for students,
ensuring that each subsequent module builds on the
knowledge acquired in previous sections. Below is an example
of a request using this technique.

"You are a teaching assistant. Develop a course structure
for the discipline “Web programming”. Start by analyzing
what knowledge, skills and abilities students already have
before starting the course. Then, for each section of the
course, explain why you chose those topics and subtopics and
how they relate to students' prior knowledge. Include
reflection on how each topic prepares students for subsequent
topics, justifying why you believe that after studying one topic,
students are ready to move on to the next. Provide examples of
assignments or projects that will help consolidate acquired
knowledge and skills. Summarize by explaining how the entire
course structure contributes to the educational goals of the
discipline"

The tree-of-thought approach can be seen as an extension
of the chain-of-thought concept. It allows the model to
simultaneously consider multiple reasoning pathways, similar
to a tree structure. This method is used for highly complex
problems that have multiple possible solutions or require a
comprehensive analysis of different aspects of the issue.

Below is an example prompt incorporating elements of tree-
of-thought, where the model simulates a competitive
discussion aimed at achieving a consensus on the themes to be
included in the course structure.

"You are a teaching assistant. Develop a course structure
for the discipline “Web programming”. Simulate a situation
where 100 experts create a course in a discipline. Each expert
includes from 5 to 7 topics in his course. Your task is to create
a list of the main topics that must be mastered. Start by
identifying topics that appear in at least 5 programs. Consider
why these topics are often chosen by experts: perhaps they are
critical to understanding the discipline. Then analyze how
these popular topics are interconnected and how the exclusion
of less popular topics might affect the overall understanding of
the discipline. Based on the results of the analysis, propose a
final list of topics, explaining how each of them contributes to
the achievement of the educational goals of the course."

B. Large Language Models Used

There was conducted an experiment within which were
generated 12 academic course programs from various subject
areas, including Computer Networks, Information Security
Management, Foreign Language in Professional Activity, Web
Programming, Fundamentals of Economics, Technological
Foresight, Mathematical Linguistics, UML Analysis and
Design, Agile Management, Laser Physics, Art, Science and
Technology, and Biometrics and Neurotechnology.

Then, for every course, four distinct prompts were devised
utilizing established prompt-engineering techniques. For the
few-shot method, examples from current university courses
crafted by faculty were incorporated. This collection of
prompts was then presented to four LLMs. Before text was
proposed to each LLM, it underwent several preprocessing
steps:

1) Language Detection: The langdetect library identified
whether the text was in Russian or English.

2) Stopword Removal: Based on the detected language,
NLTK’s predefined stopword lists were applied.
Additionally, an IDF-based method identified high-
frequency, low-informative words specific to the
dataset, which were added to the stopword list.

3) Punctuation Removal: All punctuation marks were
removed for cleaner tokenization.

4) Lemmatization: For Russian text, pymorphy2 was
used to convert words to their base forms.

5) Tokenization: NLTK was employed to split the text
into tokens.

These steps ensured clean, relevant inputs tailored to the
language and context, optimizing the model's performance.

Given the constraints on computational resources, the
LLMs used in the experiment were either optimized for
quicker response times, such as GPT-3.5 Turbo from OpenAI,
or were quantized models like starling-lm-7b-alpha,
openchat_3.5, and saiga2_13b.

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 742 --

In the realm of large language models, quantization
involves adjusting model weights to a lower precision format,
such as converting to 8-bit integers from 32-bit or 16-bit
floating points. This process reduces memory usage and boosts
processing speed, vital for deployment in environments with
limited resources. Although quantization can marginally lower
the quality of the model outputs, the decrease in precision is
often insignificant compared to the advantages of reduced size
and increased speed [9].

In the context of our specific task—automating the
generation of course programs using large language models
(LLMs) enhanced by Retrieval-Augmented Generation
(RAG)—we selected four models based on their ability to
address domain-specific content requirements while balancing
computational efficiency. Furthermore, the selection was
influenced by findings from a previous study, which
demonstrated these models' effectiveness in similar
educational content generation tasks. The model's ability to
effectively integrate retrieved educational content (via RAG)
with generative capabilities makes it especially valuable for
creating domain-specific curricula. In our prior research,
OpenChat_3.5 consistently performed well, especially in
content generation tasks where it was required to align
educational content with specific university guidelines.

Many quantized large language models, despite their
smaller size, demonstrate impressive results. OpenChat 3.5 7B
is noted for its excellent natural language processing
performance. This model employs the 'Q5_K_M' quantization
method, allowing for efficient 5-bit quantization while
maintaining a compact footprint—7 billion parameters and a
size of 5.13 GB, requiring up to 7.63 GB of RAM for
operation [10].

Similarly, Starling LM 7B Alpha, developed by the
Berkeley-Nest team, leverages the berkeley-nest/Nectar
training dataset and the Advantage-Induced Policy Alignment
(APA) policy optimization method. It also uses 'Q5_K_M'
quantization, resulting in significant performance with
minimal quality loss. The Starling LM 7B Alpha has achieved
notable scores, surpassing many models except GPT-4 and
GPT-4 Turbo in the MT-Bench evaluations, showcasing its
capability for extensive tasks without substantial quality
degradation [11]. The model is particularly effective in
scenarios where speed and scalability are essential, such as
when dealing with large sets of educational materials across
multiple subjects. In our previous research, Starling-lm-7b-
alpha achieved high performance across a range of educational
tasks, generating content that closely matched predefined
curricula based on cosine similarity metrics (Fig. 1 from the
study). This further validates its suitability for our current
project.

The experiment also included Saiga2_13b, a model tailored
for the Russian language, enhancing its proficiency in
processing and generating Russian text. Although previously
conducted experiments [8] indicated it as one of the lower-
performing models, its inclusion in this research aimed to
explore its capabilities in a Retrieval-Augmented Generation
(RAG) context, assessing its utility in a new application
framework.

The study also involves ChatGPT-3.5 Turbo. As the only
commercial LLM used, its performance was crucial,
particularly following the previously superior results of
ChatGPT-4 [8]. This research aimed to determine if quantized
LLMs could perform comparably to more resource-intensive
models using RAG and prompt-engineering. Results indicated
that less resource-intensive models could deliver similar
outcomes in specific contexts, validating the practicality of
employing more accessible models [12].

While not the most resource-efficient model, GPT-3.5
Turbo provides the highest content quality and is often used to
validate and compare the outputs of more efficient, quantized
models. In scenarios where educational program generation
requires precision and depth, GPT-3.5 Turbo serves as the
gold standard for comparison.

The selection of these models reflects a balance between
performance, resource efficiency, and domain-specific
capabilities. Table Ⅰ presents a comparative analysis of all four
models.

TABLE Ⅰ. COMPARATIVE ANALYSIS OF THE SELECTED MODELS

Model Parameters
Pre-

training
Focus

Key
Strengths

Limitations

Starling-
lm-7b-
alpha

7 billion

Open-
domain,
policy

alignment

High
performance

with low
resource use
(quantized)

Limited pre-
training on
education-

specific data

OpenChat
_3.5

3.5 billion
Dialogue

and
generation

Efficient
natural

language
generation

and quantized
for faster

performance

Slightly
weaker in
domain-
specific

adaptation

Saiga2
_13b

13 billion
Russian-
language
content

Excellent
handling of

Russian
educational

content

High
resource

requirements

GPT-3.5
Turbo

175 billion
General-
purpose

text

Superior
language

understanding
and complex
generation

Very
resource-
intensive

The quantized models (Starling-lm-7b-alpha and
OpenChat_3.5) excel in resource-constrained environments,
making them highly practical for scalable educational program
generation. Saiga2_13b was chosen for its language-specific
focus, while GPT-3.5 Turbo serves as a baseline for
understanding the upper limits of performance at the cost of
higher computational requirements. Each model brings its own
advantages and trade-offs, enabling a comprehensive
comparison and further development of the RAG methodology
in educational content generation.

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 743 --

The dataset used in the experimental design possessed the
following characteristics:

1) Average Size of Reference Texts: The average length
of the reference texts in the dataset is approximately
139 words and 1272 characters. Additionally, the
median text length is 82 words and 736.5 characters.
The difference between the median and the average
indicates the presence of some longer texts in the
dataset, which skew the average upward, while most
texts are shorter, as indicated by the median. This
suggests that the dataset contains a diverse range of
text lengths, from concise summaries to more detailed
descriptions.

2) Text Generation Limitations: The generated text by
the models was limited by a maximum token count
parameter, typically set to 1024 tokens, during
generation. This token limit was chosen to ensure that
the models provided sufficiently detailed responses
while remaining concise and coherent. Additionally,
the temperature parameter was set to 0.7 to balance
creativity and precision, avoiding overly deterministic
outputs while maintaining relevance. Top-p was set to
1, allowing for the full range of possible tokens, which
ensured diversity in the generation while keeping the
generated text aligned with the context.

These generation parameters helped to ensure that the
model outputs were well-structured, contextually relevant, and
limited to a manageable size, aligning with the diverse range
of reference texts in the dataset. For all four models
hyperparameters remain the same, with the primary variation
being the prompt wrapping technique. For instance, while
Saiga uses the [INST] ... [/INST] format, Starling and
OpenChat implement a dialogue-based wrapper like GPT3.5
User: ... <|end_of_turn|> GPT3.5 Assistant:. These wrappers
ensure compatibility with each model's expected input format,
maximizing the effectiveness of the same core parameters.

C. RAG

Retrieval-Augmented Generation (RAG) combines the
capabilities of large language models (LLMs) with information
retrieval from external databases to enhance content generation.
This approach utilizes pre-trained models' vast knowledge while
incorporating precise, context-specific data from external
sources, thus significantly enhancing response accuracy and
relevance in complex tasks [13].

Studies show RAG's effectiveness in various domains,
including a custom Singlish-speaking chatbot, Professor Leodar,
which improved student engagement at Nanyang Technological
University [14]. Another application involved domain-specific
question answering, where the "RAG-end2end" model
demonstrated notable performance enhancements by integrating
domain-specific knowledge into the retrieval process [15]

The present study employs Retrieval-Augmented Generation
(RAG) to facilitate the creation of academic course structures,
leveraging approved educational programs available within the
university's database. To enable efficient access to relevant data,

a system for indexing and retrieving information from these
programs was developed, utilizing Elasticsearch alongside
morphological analysis techniques.

This system transforms educational program data into a
format suitable for analysis by conducting data cleansing, text
normalization, noise reduction, tokenization, and lemmatization.
It improves the alignment of user queries with the actual course
content through the use of lemmatized text versions and the
application of filters such as stop-word removal and text
conversion to lowercase. Additionally, the system identifies and
removes specific stop-words that are commonly found in course
descriptions but do not contribute to understanding the specific
subject area.

The retrieval system efficiently indexes course-related fields
like titles, descriptions, sections, and topics, facilitating precise
search capabilities. These fields are weighted according to their
relevance, with titles receiving the highest due to their direct
reflection of course content. Utilizing a multi-match query
approach enhances the ability to search across these fields,
improving result accuracy and relevance. This setup ensures
users can locate the most appropriate courses, further enriched by
allowing users to input keywords that reflect the educational
competencies to be included in the course.

The structure for requesting data retrieval is outlined as
follows

{

 "title": "Web-development",

 "keywords": "HTML, CSS, JavaScript"

}

Below is represented example of retrieved database content

{

"retrieved_data": "Development of Backend services,
Development of SSI services, Development of Frontend
services. OSI network model. TCP vs UDP, Templates,
Design patterns, Working with data models, Django REST
Framework, APiView, CVB, OOP principles, Apach vs.
Nginx, Angular vs. React, Django settings, migrations,
superuser, SPA, Working with sockets, JWT, Djoser",

}

As observed, the output often includes more information than
initially requested because it pulls the entire structure from the
most relevant course program. It's essential to recognize that
while this additional context can provide valuable insights, it
may also mislead the language model (LLM). Inaccurate or
irrelevant data can significantly reduce the quality of the
response.

Additionally, if the retrieval system doesn't capture all user-
provided keywords—perhaps reflecting only some needed
skills—it's crucial for the LLM to prioritize covering the
specified topics regardless of the provided context. In such cases,
employing a zero-shot approach within the RAG framework
might look like:

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 744 --

"You are a teaching assistant. Using information about the
courses available at the university: [retrieved_data], Develop
a course structure for the discipline "Web programming". The
teacher asked to include the following topics: HTML, CSS,
JavaScript”

In other techniques such as few-shot, chain-of-thought, and
tree-of-thoughts, the prompts were constructed similarly: the
language model was provided with context and specifically
instructed to incorporate the topics explicitly specified by the
user. This approach ensures that the LLM remains focused on the
relevant content while integrating the necessary details into the
structured output.

III. EXPERIMENT

During the experiment, a total of 384 text fragments
describing course structures were generated. This included 12
disciplines across 4 prompting approaches, 4 large language
models, and 2 methodologies (RAG and non-RAG). In
addition to human expert evaluations, an embedding
generation algorithm was utilized to assess the quality of the
LLM outputs.

The construction of a discipline's embedding is performed
through a graph of educational entities, representing the set of
prerequisites and learning outcomes—skills possessed by
students before and after the course. A link exists between two
vertices if the corresponding entities appear in the description
of a discipline. The embedding is formed in several stages (see
Table Ⅱ):

1) A graph of subject areas is created by clustering the
graph of educational entities. A cluster containing more than
10 educational entities is considered a subject area.

2) Educational entities from smaller clusters (up to 10
entities) are distributed among the formed subject areas based
on contextual proximity of tokens from the educational entity
to tokens from the subject area, calculated using embeddings
from a Word2Vec model trained on data from 8699 disciplines
implemented at ITMO University from 2018 to 2023.

3) The number n of communities in the resulting subject
area graph is counted, and a zero vector Dj is formed, where j
= 0,...,n.

4) The number of educational entities from each subject
area included in the description of each discipline Ci is
calculated, where i=0,...,m, and m is a total number of
disciplines. The general form of the embedding set for the
disciplines is tabulated.

TABLE Ⅱ. EXAMPLE OF EMBEDDING CREATION

 D0 D1 D2 … Dn

C0 2 6 0 … 3

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

Cm 1 9 0 … 0

5) Finally, the discipline embedding is normalized.

Such an approach to constructing embeddings allows for
capturing and assessing the overall subject orientation of a
course without delving into the details of terminology. This is
particularly important when comparing extensive texts that
may use different concepts to describe similar ideas. The
embedding formed from the generated text is compared to the
embedding of an existing discipline through cosine similarity;
the closer to one, the more similar the vectors are.

Fig. 1 and 2 illustrate the average cosine similarity of
embeddings compared to a reference discipline. As shown in
Fig. 1, the best result was achieved by the LLM chatgpt-3.5
turbo, while the worst performance was observed with
saiga2_13b.

Fig. 1. Average cosine similarity of generated content embeddings compared
to the reference for each model.

Fig. 2 displays the average cosine similarity of embeddings
compared to a standard reference across different prompting
methods. The few-shot approach demonstrated the highest
similarity scores, followed by the zero-shot method. The tree-
of-thoughts approach showed the lowest performance in terms
of similarity to the reference.

Fig. 2. Average cosine similarity of generated content embeddings compared
to the reference for each prompting method

Fig. 3 shows the performance results for each model using
different prompting methods. This comprehensive comparison
allows for an analysis of how well each combination of model
and method can generate content that aligns with the reference
standards set in the study.

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 745 --

Fig. 3. Summary diagram of embedding differences from the reference across
models and prompting methods

Fig. 3 illustrates how prediction success depends on the
prompting technique and the specific LLM used. The few-shot
method shows superior performance, partly because it
incorporates examples from the reference course into the
model's inputs. Notably, models like OpenChat and Starling
perform well across all prompting methods, sometimes even
surpassing ChatGPT-3.5 turbo. However, the Saiga model
struggles particularly with the tree-of-thoughts technique,
likely due to its more limited capacity for complex reasoning,
which stems from its training and focus.

The outcomes highlight that a model’s size and number of
parameters significantly impact its ability to process context
and perform logical reasoning, essential for chain-of-thought
and tree-of-thoughts techniques. Model effectiveness also
heavily depends on its training and fine-tuning. It’s important
to consider that prompts were not tailored to any specific
LLM, which suggests that more customized queries might
have yielded better results. Model performance might decrease
if not explicitly trained for tasks requiring intricate reasoning.
The specialization of a model like Saiga is critical, as its
unique setup and training determine its effectiveness in
applying specific techniques [16].

Moreover, embedding similarity should not be the sole
measure of the quality of generated course structures. A
minimal overlap of generated topics with those of an existing
course does not necessarily imply incorrectness. Courses with
the same title can cover different aspects, and academic course
development is largely a creative endeavor.

Fig. 4. Summary diagram of embedding differences from the reference across
models and prompting methods (RAG approach)

Fig. 4 illustrates the results of the same experiment
incorporating the Retrieval-Augmented Generation (RAG)
approach. When comparing Fig. 3 and 4, it is apparent that
RAG generally boosts the performance of all prompting
methods across various models.

 ChatGPT-3.5: Shows consistent improvements across
all prompting methods with RAG, maintaining a high
similarity in embeddings.

 OpenChat-3.5: Similar to ChatGPT-3.5, demonstrates
improved performance under RAG across all prompting
methods.

 Saiga2_13b: Rather than experiencing an improvement,
this model shows a performance decline. The additional
context proved too ambiguous and complex for it to
handle effectively.

 Starling-lm-7b-alpha: Benefits from RAG in all
prompting methods, with notable improvements in
embedding similarity.

This indicates that the additional context provided by RAG
is beneficial in creating content that closely mirrors the
reference, thereby enhancing the models’ understanding and
portrayal of the course material. Despite the potential for
imperfect relevance in data retrieved from university databases,
the results demonstrate that even a basic implementation of
RAG can positively influence LLM performance. Further, the
results highlight that quantized LLMs like Starling-lm-7b-alpha
and OpenChat-3.5, when supplemented with relevant context,
are capable of excelling in course generation tasks, negating the
need for more expensive commercial LLMs like ChatGPT-4
from OpenAI.

To delve deeper into the capabilities of LLMs and RAG,
additional experiments were performed, with results depicted in
Fig. 5. LLMs were tasked with creating course programs for
both bachelor and master's students, using hints tailored to their
educational level to guide the content generation. Unlike
previous assessments that relied on embedding differences, this
evaluation focused on the number of subject area entities
extractable from the LLMs' responses. This method aimed to
assess the relevance and richness of the content generated
relative to the specified educational level.

Fig. 5. Number of educational entities containing in academic course based on
educational level

For the RAG approach, the LLM prompt was adapted from
the previous experiment to include both the retrieved relevant
content and additional keywords relating to subject area
aspects specified by the teacher. Fig. 5 illustrates that the large
language models effectively interpret these cues, incorporating
more comprehensive material for master's level students

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 746 --

compared to bachelors. However, the RAG variant tends to include fewer topics overall. Analysis of LLM responses

indicated that the RAG model focuses intensely on the
provided keywords, leading to less creativity in generating
independent content ideas. This focus is advantageous when
the educator has a clear vision of the course scope and should
not be considered when seeking creative input from the model.

Across models and subjects, the average improvement in
cosine similarity was +0.08 (8% increase in relevance) when
RAG was employed. This demonstrates the importance of
integrating retrieval-augmented data for domain-specific
content. Without RAG models struggled to maintain high
relevance in complex, institution-specific queries. This
highlights the limitations of relying purely on LLM generative
capacities without incorporating domain-relevant data.

The combination of prompting techniques, RAG, and
LLMs improved the accuracy and relevance of generated
educational content by approximately 15-20% across subject
areas. The most significant improvements were seen when
using few-shot and chain-of-thought prompting with the RAG
approach.

VI. CONCLUSION AND FUTURE WORK

This study explored the influence of various prompting
methods and the Retrieval-Augmented Generation (RAG)
technique on the quality of educational content generated by
large language models (LLMs). The findings suggest that
integrating RAG enhances the consistency and predictability
of model outputs, thus increasing their reliability for
educational applications. Notably, the study also demonstrated
that quantized LLMs, which are resource-efficient, and can
deliver impressive results with proper prompting techniques.

While the chosen models show promise in automating the
generation of educational programs, several challenges
remain:

 Improved Adaptability to Specific Standards: One
challenge is ensuring that the generated programs fully
align with specific educational standards at ITMO
University or other institutions. While models like
Saiga2_13b handle language-specific requirements,
additional alignment methods (such as our proposed
methodology for aligning LLMs with institutional
data) will further enhance the models' relevance and
adaptability.

 Further RAG Enhancements: Our research has shown
that RAG significantly improves content retrieval for
educational purposes, but limitations remain,
particularly in retrieving highly domain-specific
content. Future work should focus on refining the
retrieval mechanisms to ensure that highly relevant
educational material is retrieved based on the unique
needs of each institution.

Future efforts will focus on refining the retrieval process to
fetch more relevant content, thus enhancing the precision and
utility of the generated materials. Plans also include
implementing this system within a university setting, offering
different generative modes to address diverse creative and

directive needs. Additionally, the development of advanced
evaluation metrics beyond cosine similarity of embeddings is
planned, aiming to provide a deeper insight into the models'
capability to capture and reproduce educational content
intricacies.

REFERENCES
[1] L. Yan, L. Sha, L. Zhao, Y. Li, R. Martinez-Maldonado, G. Chen, X.

Li, Y. Jin, and D. Gašević, “Practical and ethical challenges of large
language models in education: A systematic scoping review,” British
Journal of Educational Technology, vol. 55, pp. 90–112, 2024.

[2] A. Carroll, K. Forrest, E. Sanders-O'Connor, L. Flynn, J. M. Bower,
S. Fynes-Clinton, A. York, and M. Ziaei, “Teacher stress and burnout
in Australia: Examining the role of intrapersonal and environmental
factors,” Social Psychology of Education, vol. 25, pp. 441–469,
2022.

[3] D. Ramesh and S. K. Sanampudi, “An automated essay scoring
systems: A systematic literature review,” Artificial Intelligence
Review, vol. 55, pp. 2495–2527, 2022.

[4] E. Kasneci, K. Seßler, S. Küchemann, M. Bannert, D. Dementieva, F.
Fischer, U. Gasser, G. Groh, S. Günnemann, E. Hüllermeier, S.
Krusche, G. Kutyniok, T. Michaeli, C. Nerdel, J. Pfeffer, O. Poquet,
M. Sailer, A. Schmidt, T. Seidel, et al., “ChatGPT for good? On
opportunities and challenges of large language models for
education,” Learning and Individual Differences, vol. 103, 102274,
2023.

[5] S. Wollny, J. Schneider, D. Di Mitri, J. Weidlich, M. Rittberger, and
H. Drachsler, “Are we there yet?—A systematic literature review on
chatbots in education,” Frontiers in Artificial Intelligence, vol. 4,
654924, 2021.

[6] I. Drori, S. Zhang, R. Shuttleworth, L. Tang, A. Lu, E. Ke, K. Liu, L.
Chen, S. Tran, N. Cheng, R. Wang, N. Singh, T. L. Patti, J. Lynch, A.
Shporer, N. Verma, E. Wu, and G. Strang, “A neural network solves,
explains, and generates university math problems by program
synthesis and few-shot learning at human level,” Proceedings of the
National Academy of Sciences, vol. 119, e2123433119, 2022.

[7] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P.
Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S.
Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A.
Ramesh, D. M. Ziegler, J. Wu, C. Winter, et al., “Language models
are few-shot learners,” Advances in Neural Information Processing
Systems, vol. 33, pp. 1877–1901, 2020.

[8] P. Shnaider, A. Chernysheva, A. Nikiforova, A. Govorov, and M.
Khlopotov, “Exploring the effectiveness of prompt engineering and
quantized large language models in the development of academic
courses,” Computer Tools in Education, no. 1, pp. 32–44, May 2024.

[9] S. Li, X. Ning, H. Ke, T. Liu, L. Wang, X. Li, K. Zhong, G. Dai, H.
Yang, and Y. Wang, “LLM-MQ: Mixed-precision quantization for
efficient LLM deployment,” 2023.

[10] G. Wang, S. Cheng, X. Zhan, X. Li, S. Song, and Y. Liu, “OpenChat:
Advancing open-source language models with mixed-quality data,”
2023. Available: doi.org/10.48550/arXiv.2309.11235.

[11] B. Zhu, E. Frick, T. Wu, H. Zhu, and J. Jiao, “Starling-7B: Improving
LLM helpfulness & harmlessness with RLAIF,” 2023.

[12] C. Irugalbandara, A. Mahendra, R. Daynauth, T. Kasthuri
Arachchige, K. Flautner, L. Tang, Y. Kang, and J. Mars, “A trade-off
analysis of replacing proprietary LLMs with open source SLMs in
production,” 2024. Available: doi.org/10.48550/arXiv.2312.14972.

[13] J. Chen, H. Lin, X. Han, and L. Sun, “Benchmarking large language
models in retrieval-augmented generation,” 2024.

[14] M. Thway, J. Recatala-Gomez, F. S. Lim, K. Hippalgaonkar, and L.
W. T. Ng, “Battling Botpoop using GenAI for higher education: A
study of a retrieval augmented generation chatbots impact on
learning,” 2023.

[15] S. Siriwardhana, R. Weerasekera, E. Wen, T. Kaluarachchi, R. Rana,
and S. Nanayakkara, “Improving the domain adaptation of retrieval
augmented generation (RAG) models for open domain question
answering,” Transactions of the Association for Computational
Linguistics, vol. 11, pp. 1–17, 2023.

[16] M. Tikhomirov and D. Chernyshev, “Impact of tokenization on
LLaMa Russian adaptation,” 2023.

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 747 --

