
Verification of IDL Architecture Performance for 
Larger Datasets 

 

Filip Majerik 
University of Pardubice 

Pardubice, Czech Republic 
filip.majerik@upce.cz 

Monika Borkovcova 
University of Pardubice 

Pardubice, Czech Republic 
monika.borkovcova@upce.cz 

 
 

Abstract—Due to the ever increasing popularity of ORM 
frameworks, the IDL architecture was compiled by the authors as 
part of an earlier publication, Design of Data Access Architecture 
Using ORM Framework. This architecture allows to implement 
ORM frameworks with prediction of the required data. Given the 
size of datasets that can be managed in database systems, it was 
necessary to verify that this architecture is robust enough to 
handle similar problems. In the context of this paper, we focus on 
examining the performance of our defined architecture with 
larger datasets, which should help us determine whether such an 
architecture is suitable for common use. Along with the 
performance verification for larger datasets, performance tests 
were performed in case the database does not contain indexes for 
foreign keys. 

I. INTRODUCTION 

Nowadays, with an increasing number of computer 
applications using ORM frameworks, developers have been 
faced with a performance problem. As ORM frameworks 
attempt to be an abstraction for a variety of database needs, 
many software applications are reaching a state where their 
performance is limited by the particular ORM framework being 
used. [1], [10] 

Within the IDL architecture, we have tried to create an 
environment that allows the use of the ORM framework with 
all its advantages, but at the same time provides the developer 
with enough space to optimize the application. The IDL 
architecture has already been built and described within the 
previously published article [7]. 

A fundamental issue with most ORM frameworks is their 
general annotation of the entities and sessions they use. These 
annotations, by rule, do not allow for any configuration in the 
sense that this data is only retrieved if the user wants it or not. 
While it is possible to make use of the built-in Lazy Loading 
and Eager Loading, even this may not always be sufficient... In 
this paper we have thus focused on comparing the use of IDL 
and these built-in features for a larger dataset. [2], [3], [5] 

This dataset was selected to meet the requirements of 
multiple entity relationships, at least one subentity existed, and 
complex retrieval from the database was required. Also 
included for comparison are results from the variant where only 
a native SQL query was used. For comparison, the results were 
measured on the same dataset using MySQL 8.0.26 and 
PostgreSQL 16.1 databases. The ORM used as a test ORM was 

Doctrine 2 with the PHP framework Symfony 6.3 combined 
with PHP 8.1 as the FPM without any caching or optimization 
extensions. Symfony Profiler, which is part of the Symfony 
framework, was then used to record the results. The profiler 
was then used for parts such as Performance and Doctrine. 

The experiments were performed on the same hardware on 
which the IDL Architecture was built. It is a station with an 
Intel i7-7820X processor, 64 GB DDR4 2666MHz and 
equipped with a Samsung 970 EVO 500GB NVME disk. The 
operating system used was Ubuntu 23.10 in which the test 
experimental environment was virtualized using Docker. 

The configuration of each software used was in default 
settings with two exceptions. The first is the maximum memory 
that can be used by a PHP process. Here the maximum was set 
to 16GB. The second exception was set for Nginx, where it was 
necessary to raise the maximum timeout for a response from 
PHP-fpm. Here a value of 15 minutes was used. 

II. DATASET 

The experiments were performed using the experimental 
relational database model from the article [7].  

The relational database for the experiments contained the 
following data. This data was generated through the ORM 
Doctrine into MySQL and then converted into PostgreSQL 
using the Nmig tool. For information, we also show here the 
sizes that the MySQL and PostgreSQL databases displayed. 

TABLE I. DATA AND INDEX SIZES IN RELATIONAL DATABASES 

Table Nr. of 
lines 

Size 
MySQL PosgreSQL 

 IDX  IDX 
brand 36 0,016 0,032 0,064 0,048 

device_type 3 31 0,016 0,048 0,032 
device_profile 4 33 0,016 0,048 0,032 

operator 10 31 0,016 0,024 0,016 
subscriber 311847 29 5,783 38 9 

device 1480661 3138,04 96,66 220 78 

III. EXPERIMENTS 

A. Background of experiments 

To verify the behavior of IDL within a larger dataset, two 

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 475 ----------------------------------------------------------------------------



previously presented experiments were used. These 
experiments should sufficiently test the robustness and 
performance of IDL for larger datasets. Subsequently, all 
indexes were removed from the database. Since only indexes 
could not be removed for MySQL 8.0.26, the constraints on 
FK were also removed. These constraints were subsequently 
removed in PostgreSQL as well to make the results more 
comparable. [4] , [5] 

Both experiments were then performed in the following 
steps: 

1) ORM performance with native SQL query 

2) Using ORM with Lazy loading 

3) Using ORM with Eager loading 

4) Using ORM with IDL 

Since both of our experiments for IDL were built as worst-
case, i.e., so that all data is loaded from the database, they can 
be directly compared with the ORM variant with Eager 
loading. For the IDL experiments, all ORM sessions were then 
set to EXTRA_LAZY so that they would not affect the 
functioning of IDL, but at the same time, they would not be 
removed from the code completely. 

B. Brief description of experiments 

Experiments were set up based on real Use-Case 
commercial companies. These are the real-use requirements 
that the system can handle in reporting. Although the 
complexity of the queries is not great at first glance, the 
performance of the system using ORM is significantly worse 
than using a simple native SQL query. 

The previously tested queries Q1 and Q2 from the previous 
article were used for testing to maintain continuity to validate 
the results. [7]  

Q1 - Obtain a list of devices with device, operator and 
subscriber information 

The output combines information from the device, 
device_profile, device_type, brand, subscriber and operator 
tables. This information is then converted to JSON and 
returned to the user, the previously tested queries from the 
previous article were used for testing to maintain continuity to 
validate the results. [7] 

 

Native SQL query: 

 

SELECT  
    d.id AS device_id,  
    d.name AS device_name,  
    d.mac_address,  
    dp.name AS device_profile_name,  
    dt.name AS device_type_name,  
   

 d.last_start,  
    br.name AS brand_name,  
    CONCAT_WS(' ', s.name, s.surname) AS subscriber_name,  
    o.name AS operator_name  
FROM  
    device d  
LEFT JOIN  
    device_profile dp ON d.device_profile_id = dp.id  

LEFT JOIN  
    device_type dt ON d.device_type_id = dt.id  
LEFT JOIN  
    brand br ON br.id = d.brand_id  
LEFT JOIN  
    subscriber s ON d.subscriber_id = s.id  
LEFT JOIN  
    operator o ON s.operator_id = o.id; 
 

Q2 - Obtaining a list of equipment for brandy operators 

The output combines information from the brand, operator, 
subscriber, device, device_type and device_profile tables. As 
in the previous case, the output is formatted into JSON and 
then returned to the user. 

 

Native SQL query:  

 

SELECT  
    o.name AS operator_name,  
    b.name AS brand_name,  
    b.code AS brand_code,  
    CONCAT_WS(' ', s.name, s.surname) AS subscriber_name,  
    d.name AS device_name,  
    d.mac_address AS device_mac,  
    last_start device_last_start,  
    dp.name AS device_profile_name,  
    dt.name AS device_type_name  
FROM  
    brand b  
LEFT JOIN  
    operator o ON b.operator_id = o.id  
LEFT JOIN  
    subscriber s ON o.id = s.operator_id  
LEFT JOIN  
    device d ON d.subscriber_id = s.id  
LEFT JOIN  
    device_type dt ON dt.id = d.device_type_id  
LEFT JOIN  
    device_profile dp ON dp.id = d.device_profile_id  
WHERE  
    d.brand_id = b.id; 
 

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 476 ----------------------------------------------------------------------------



C. Results of experiments 

The following tables record the results of the testing, where 
the labels of the columns are:  

 ET – Execution Time [ms] 

 SI – Symfony Initialization [ms] 

 MP – Memory Peak [MB] 

 DM - Doctrine Memory [MB] 

 Q – Number of DB Queries 

 DQ – Number of Different Queries 

 QT – Query Time [ms] 

TABLE II. RESULTS FOR Q1 EXPERIMENT – MYSQL WITH INDEXES 

ET SI MP DM Q DQ QT QT/ET 
Native Query 

13470 32 1952,01 218,6 1 1 5205,83 38,65 
Lazy Loading 

106956 32 7143,88 6378 311901 6 28076,67 26,25 
Eager Loading 

161228 36 6336,01 4492 2 2 73061,52 45,32 
IDL 

48775 31 6386,04 4240 6 6 3389,21 6,95 

TABLE III. RESULTS FOR Q1 EXPERIMENT – MYSQL WITHOUT 
INDEXES 

ET SI MP DM Q DQ QT QT/ET 
Native Query 

8844 42 2156,01 438,6 1 1 3296,22 37,27 
Lazy Loading 

124663 32 7143,88 6378 311901 6 28372,86 22,76 
Eager Loading 

71860 36 6414,01 4464 2 2 3892,99 5,42 
IDL 

68217 36 6386,04 4242 6 6 3492,98 5,12 

TABLE IV. RESULTS FOR Q1 EXPERIMENT – POSTGRESQL WITH 
INDEXES 

ET SI MP DM Q DQ QT QT/ET 
Native Query 

5660 38 2262,01 656 1 1 2837,32 50,13 
Lazy Loading 

154063 34 7173,87 6384 311901 6 49348,95 32,03 
Eager Loading 

64395 33 6356,02 4096 2 2 4798,48 7,45 
IDL (CHUNK 1000) 

67314 38 6368,02 4204 317 7 3175,5 4,72 

TABLE V. RESULTS FOR Q1 EXPERIMENT – POSTGRESQL WITHOUT 
INDEXES 

ET SI MP DM Q DQ QT QT/ET 
Native Query 

6485 36 2261,01 12 1 1 3188,32 49,16 
Lazy Loading 

133142 39 7163,87 6384 311901 6 40985,21 30,78 
Eager Loading 

65403 35 6112,01 4106 2 2 5524,86 8,45 
IDL 

64960 35 6366,02 4204 317 7 2771,61 4,27 

TABLE VI. RESULTS FOR Q2 EXPERIMENT – MYSQL WITH INDEXES 

ET SI MP DM Q DQ QT QT/ET 
Native Query 

23277 39 2442,01 1104,6 1 1 20428,85 87,76 
Lazy Loading 

108028 34 7229,11 6376,1 311901 6 38184,36 35,35 
Eager Loading 

Ungettable results 
IDL (Chunk 1000) 

69191 33 6478,53 4236,5 317 7 3019,1 4,36 
IDL (OR 1000) 

74388 39 6524,54 3947,9 6 6 3559,33 4,78 

TABLE VII. RESULTS FOR Q2 EXPERIMENT – MYSQL WITHOUT 
INDEXES 

ET SI MP DM Q DQ QT QT/ET 
Native Query 

7051 38 2570,01 680,6 1 1 4157,32 58,96 
Lazy Loading 

135674 36 7251,11 6833,1 311901 6 43032,98 31,72 
Eager Loading 

Ungettable results 
IDL (Chunk 1000) 

57358 32 6478,53 4236,5 317 7 2513,24 4,38 
IDL (OR 1000) 

78102 38 6526,54 3947,9 6 6 3855,89 4,94 

TABLE VIII. RESULTS FOR Q2 EXPERIMENT – POSTGRESQL WITH 
INDEXES 

ET SI MP DM Q DQ QT QT/ET 
Native Query 

5108 35 2388,01 282 1 1 2017,67 39,50 
Lazy Loading 

132233 34 7241,11 6372,1 311901 6 44040,22 33,31 
Eager Loading 

Ungettable results 
IDL (Chunk 1000) 

56294 35 6508,52 4258,5 317 7 3092,27 5,49 

TABLE IX. RESULTS FOR Q2 EXPERIMENT – POSTGRESQL WITH 
INDEXES 

ET SI MP DM Q DQ QT QT/ET 
Native Query 

4801 35 2388,01 200 1 1 1689,48 35,19 
Lazy Loading 

119262 41 7236,08 6372,1 311901 6 39591,66 33,20 
Eager Loading 

Ungettable results 
IDL (Chunk 1000) 

63128 34 6506,52 4258,5 317 7 2811,95 4,45 

 

In the tables, the best values for each measured parameter, 
outside of Symfony initialization, have been highlighted.  

Description of monitored parameters in tables: 

 Execution time [ms] - the total time it took to execute a 
complete query on the server side.  

 Symfony initialization [ms] - represents the time it took 
to initialize the Symfony framework. This time includes 
re-parsing the source files, building the Symfony Cache 
and then connecting to the databases. It is mainly of 
informative value. 

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 477 ----------------------------------------------------------------------------



 Memory peak [MB] - the maximum measured memory 
size on the PHP-fpm side. 

 Doctrine Memory [MB] - the maximum measured size 
of memory occupied only by the Doctrine framework 
and its data. 

 DB Queries - the total number of queries that  
have been executed on the database through Doctrine 
ORM. 

 Different Queries - the number of unique queries that 
have been executed on the database through Doctrine 
ORM. For example, identical queries with different 
parameters in the predicates are considered to be unique 
queries. 

 Query time [ms] - measured time that was needed to 
execute all database queries. 

 DB QT/EXT [%] - the percentage of time that was 
required from the total http request time for processing 
queries by the database system. The rest of the time was 
used by the application layer request. 

IV. DISCUSSION OF RESULTS 

From the above results, it can be seen that there has been a 
relatively substantial reduction in the time required to process 
the presented experiments. This is the case for both the total 
processing time and the query time itself. For experiment Q2, 
unfortunately, we were unable to obtain results in a 
meaningful amount of time, and after 15 minutes of data 
processing on the PHP side, it was decided that these results 
would no longer be of any telling value. Experiment Q2 is thus 
unfeasible from our point of view using ORM with Eager 
loading. 

If we look at the results through the lens of index usage, 
there was an interesting paradox where the processing time 
was reduced for both the native query for Q1 and the native 
query for Q2. For Q2, this happened even for both relational 
databases. Similar behavior can be observed for Q1 when 
using eager loading for Q2 and even for lazy loading. 

Looking at the graphs we can also see that the required 
query time for Q1 processing over MySQL with indexes was 
44% lower than in the case of PostgreSQL. However, the 
expected results were the opposite, i.e. in favor of 
PostgreSQL.  

 

 

 

 

Fig. 1. Visualization of results for experiment Q1 

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 478 ----------------------------------------------------------------------------



 

Fig. 2. Visualization of results for experiment Q2 

As a general summary of the results, we can say that IDL 
was quite successful in testing a larger dataset in both variants 
of the approach and using both databases. In all cases, the use 
of the IDL architecture achieved the best query time, 
outperforming even the native query itself in some cases (e.g., 
Q1 MySQL + indexes). 

In the case of comparing access through IDL and eager 
loading, we only have data for Q1. For Q2, unfortunately, we 
were not able to get any meaningful results even after 15 
minutes of query running. These results were automatically 
marked as irrelevant and the experiment was deemed 
unavailable using Doctrine + Eager loading. However, in the 
case of Q1, it can be said that selecting a more appropriate 
solution is more difficult. Apart from using MySQL with 
indexes, the results are almost comparable. However, IDL still 
allows to define specific loaded data, which is not easily 
possible when using Eager loading. [5], [6] 

V. TROUBLESHOOTING 

In the course of the experiments, it was necessary to 
address various differences in the use of MySQL and 
PostgreSQL that were not addressed in the design of the IDL 
architecture. The first problematic part was data migration, 
where MySQL cannot easily export data for direct use in 
PostgreSQL. Thus, it was necessary to select a suitable tool 
that allowed us to convert data from MySQL database to 
PostgreSQL. [8], [9] 

Furthermore, during the experimentation, a problem with 
nginx 504 Gateway timeout appeared, which was caused by 
long data processing on the PHP side. It was necessary to 
modify the server configuration so that nginx would not 
terminate the connection after 60 seconds. When the 
connection was retried, any results were not passed and php-
fpm also received repeated requests and ran the experiments 
again every minute. The timeout value was set to 15 minutes. 
However, even with this increased timeout, we were unable to 
obtain the results of experiment Q2 for ORM with Eager 
loading. 

The last experiment processing problem occurred when 
running experiments against a PostgreSQL database. Here we 
encountered a problem with the PostgreSQL driver, which did 
not allow to insert more than 65535 values into a parameter. 
Thus, it was necessary to modify the experiments and query 
the database repeatedly for a smaller number of values. Due to 
a previously known limitation from OracleDB, we chose a 
value of 1000 values in order to be able to use this 
modification directly with OracleDB in future tests. 

VII. CONCLUSION 

During the experiments, it was shown that the IDL 
architecture is sufficiently powerful even when used with 
larger databases and keeping the advantages of using ORM. 
Even without the use of indexes, it achieves interesting results, 
so it can partially eliminate the ignorance or errors of the 
developer who would like to implement it.  

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 479 ----------------------------------------------------------------------------



However, the results show that, like the conventional ORM 
approach, it requires many times more memory than the native 
query. This is mainly due to the fact that the native query does 
not use any additional complex mapping to application objects 
and thus accesses the actual data directly. The results also 
show that the vast majority of the time (>94%) in the case of 
IDL is used to process data in the application layer outside the 
database. Thus, even here there is still a lot of room for 
optimization of IDL on the application layer side. 

ACKNOWLEDGMENT 

It was supported by the Erasmus+ project: Project number: 
2022-1-SK01-KA220-HED-000089149, Project title: 
Including EVERyone in GREEN Data Analysis 
(EVERGREEN) funded by the European Union. Views and 
opinions expressed are however those of the author(s) only 
and do not necessarily reflect those of the European Union or 
the Slovak Academic Association for International 
Cooperation (SAAIC). Neither the European Union nor 
SAAIC can be held responsible for them. 

 

REFERENCES 
[1] Arzamasova, Natalia, Martin Schäler, a Klemens Böhm. 2017. 

„Cleaning Antipatterns in an SQL Query Log.“ IEEE Transactions 

on Knowledge and Data Engineering. IEEE. 421-434. 
doi:10.1109/TKDE.2017.2772252. 

[2] Z. Dong et al. 2023. "Database Deadlock Diagnosis for Large-Scale 
ORM-Based Web Applications," 2023 IEEE 39th International 
Conference on Data Engineering (ICDE).  Anaheim, CA, USA. 
2864-2877. doi: 10.1109/ICDE55515.2023.00219. 

[3] C. Pitt, Pro PHP 8 MVC: „Model View Controller Architecture-
Driven Application Development“, 2nd edition, Apress, 2021. ISBN: 
978-1484269565. 

[4] Loli, Samuel & Teixeira, Leopoldo & Cartaxo, Bruno. (2020). „A 
Catalog of Object-Relational Mapping Code Smells for Java“. 82-91. 
10.1145/3422392.3422432.  

[5] M. Kvet, "Database Index Balancing Strategy," 2021 29th 
Conference of Open Innovations Association (FRUCT), Tampere, 
Finland, 2021, 214-221. doi: 10.23919/FRUCT52173.2021.9435452 

[6] M. Kvet and J. Papan, "The Complexity of the Data Retrieval Process 
Using the Proposed Index Extension," in IEEE Access, vol. 10, 
46187-46213, 2022. doi: 10.1109/ACCESS.2022.3170711 

[7] F. Majerik and M. Borkovcova, "Design of Data Access Architecture 
Using ORM Framework," 2023 34th Conference of Open Innovations 
Association (FRUCT), Riga, Latvia, 2023, 93-99. doi: 
10.23919/FRUCT60429.2023.10328151. 

[8] G. Vial, "Lessons in Persisting Object Data Using Object-Relational 
Mapping," in IEEE Software, vol. 36, no. 6, 43-52. Nov.-Dec. 2019, 
doi: 10.1109/MS.2018.227105428. 

[9] Z. Xu, J. Zhu, a L. Yang, "Mining the Relationship between Object-
Relational Mapping Performance Anti-patterns and Code Clones," 
Proceedings of the 35th International Conference on Software 
Engineering, San Francisco, 2023, 136-141. doi: 
10.18293/SEKE2023-161. 

[10] Yan, Cong, Alvin Cheung, Junwen Yang, a Shan Lu. 2017. 
„Understanding Database Performance Inefficiencies in Real-world 
Web Applications.“ ACM Conference on Information and Knowledge 
Management. New York: Association for Computing Machinery. 
1299-1308. doi:10.1145/3132847.3132954. 

 

 

 

 

 

 

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 480 ----------------------------------------------------------------------------




