
Performance Verification of IDL Architecture for
Partitioned Database

Filip Majerik
University of Pardubice

Pardubice, Czech Republic
filip.majerik@upce.cz

Monika Borkovcova
University of Pardubice

Pardubice, Czech Republic
monika.borkovcova@upce.cz

Abstract—With the growing popularity of ORM Frameworks
and the need to efficiently manage large datasets, the deployment
of various optimizations of this approach is increasingly being
explored. In this paper, we focus on investigating the impact of
partitioning on IDL performance, which was introduced in a
previous study in the publication Design of Data Access
Architecture Using ORM Framework. This IDL enables the
implementation of ORM Frameworks with loaded data
prediction and overall improves and speeds up database data
access through ORM Frameworks. This paper extends this work
and focuses on further optimizing the IDL in the form of
partitioning database tables. At the same time, we have tried to
analyze the effect of partitioning on the behavior and
performance of IDL. Finally, it will be evaluated whether this
optimization technique is applicable in a practical environment
and whether an improvement in IDL performance has been
achieved.

I. INTRODUCTION

As part of our long-term research, we are trying to design a
solution that would allow developers to implement ORM
Frameworks efficiently. These Frameworks, as a rule, work
very inefficiently with database systems and thus cause
significant performance problems in computer applications. So
we focused on designing our own data access layer, which we
named IDL in our earlier work Design of Data Access
Architecture using ORM Framework. [8], [10]

We are now exploring how to optimize access through this
data layer as much as possible and take the most effective
advantage of the benefits provided by ORM Frameworks. For
example, maintaining the use of their own query languages,
automated mapping of database data to application entities,
automatic migration of database schemas, and more. [1], [2],
[4]

In the previous experiments we built a dataset that roughly
corresponds to a medium-sized database. This dataset was built
based on the requirements of a commercial company that
provided us with a database schema and example calls that are
challenging to process from their perspective. We used this
same dataset to measure the performance of IDL with database
partitioning in the context of this paper. [3], [5], [9]

The results were measured using MySQL 8.0.26 and
OracleDB 21c Express Edition 21.3.0 database for comparison.
ORM Doctrine 2 with PHP framework Symfony 6.3 combined
with PHP 8.1 as FPM without any caching and optimization
extensions was used as the test ORM. Symfony Profiler, which

is part of the Symfony framework, was then used to record the
results. The Performance and Doctrine parts of the profiler
were then used. [11], [12]

The experiments were performed on the same hardware on
which the IDL Architecture was built and the earlier index
experiments were performed. This is a workstation with an
Intel i7-7820X processor, 64GB of DDR4 2666MHz and
equipped with a Samsung 970 EVO 500GB NVME disk. The
operating system used was Ubuntu 23.10 in which the test
experimental environment was virtualized using Docker.

The configuration of each software used was in default
settings with two exceptions. The first is the maximum memory
that can be used by a PHP process. Here the maximum was set
to 16GB. The second exception was set for Nginx, where it was
necessary to raise the maximum timeout for a response from
PHP-fpm. Here a value of 15 minutes was used. OracleDB XE
was installed from a prebuilt docker image container-
registry.oracle.com/database/express:21.3.0-xe.

II. DATASET AND DESCRIPTION OF DATABASE SCHEMAS

The relational database model from the article Design of
Data Access Architecture using ORM Framework was used for
the experiments. [8]

The relational database for the experiments contained the
following data that had been used previously for the index
experiments. For the measurements in this paper, the data was
converted to OracleDB using mysqldump, then reformatted
using the Linux stream editor (sed) tool to match the inserts
required by OracleDB. For example, it was necessary to change
the formatting of the dates, where the MySQL export only
contained the notation "2024-07-01", but the OracleDB insert
requires the date to be converted to a date. For example, using
the TO_DATE("2024-07-01", "YYYY-MM-DD") command. It
was also necessary to remove all apostrophes that MySQL uses
to label tables and columns. [6]

After migrating the data from MySQL to OracleDB, we
converted the device and subscriber tables to new tables that
were partitioned. The device table was partitioned into 300
partitions and the subscriber table was partitioned into 60
partitions. For the other tables, due to their size, partitioning was
not performed. Since MySQL does not support all options and
types of partitioning, Hash partitioning was chosen because both
databases used support it. Furthermore, it was not possible to
create partitioning for foreign keys because the MySQL

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 469 --

database does not support foreign key partitioning when using
the InnoDB database engine. Thus, only partitioning by primary
key was used.

Example of the partitioned device table creation script. For
the purposes of this article, the foreign key constraint definitions
have been removed from the DDL statement.

CREATE TABLE device_partitioned (
id NUMBER generated BY DEFAULT AS identity PRIMARY
KEY,
brand_id NUMBER NOT NULL,
subscriber_id NUMBER NOT NULL,
device_type_id NUMBER NOT NULL,
device_profile_id NUMBER NOT NULL,
name VARCHAR2(255) NOT NULL,
mac_address VARCHAR2(255) NOT NULL,
last_start DATE NOT NULL,
date_created DATE NOT NULL
) PARTITION BY hash (id) partitions 300;

TABLE I. DATA SIZES AND FILE/EXTENT COUNTS

Table Nr. of lines Description of Databases
MySQL OracleDB

size
[MB]

Nr. of
data
files

size
[MB]

Nr. of
extents

brand 3 0,016 1 0,06 1
device_type 3 0,016 1 0,06 1

device_profile 4 0,016 1 0,06 1
operator 10 0,016 1 0,13 4

subscriber 311.847 28,89 1 26 41
Subscriber
partitioned

311.847 30,47 60 480 60

device 1.480.661 138,04 1 136 88
device

partitioned
1.480.661 147,45 300 2400 300

When retrieving this information, it was interesting to note
that InnoDB MySQL reported an inaccurate number of rows
within the database table statistics. For example, 310,632 rows
were reported for the subscriber table and 316,625 rows were
reported for the device_partitioned table. However, both tables
contained identical data. [7]

However, partitioning has also significantly increased index
sizes and increased the time for inserting data into partitioned
tables. In the following table, we show the observed size
through the system schema information_schema in MySQL and
for OracleDB from the system table dba_segments. According
to the values found, it can be assumed that OracleDB has
reserved space in advance to completely populate all the
partitions created. The reported data corresponds to a size of
8MB/extent, where one extent is also one partition. For both
databases, the index size is then calculated as the sum of all
index sizes in a given table. [5], [9]

TABLE II. COMPARISON OF DATA AND INDEX SIZES

Table Databases Size [MB] WITHOUT AND
WITH INDEX (IDX)

MySQL OracleDB
 IDX IDX

device 138,04 96,67 136 680
device_partiti

oned
147,45 115,97 2400 4800

subscriber 28,89 5,78 26 52
subscriber_pa

rtitioned
30,47 8,85 480 960

From the table above, it can be seen that the default table
sizes between the databases were not significantly different.
However, there are already significant differences in the size of
the indexes. Compared to MySQL, OracleDB has indexes that
are many times larger, so the data files take up significantly
more space on the physical storage.

Another difference is that by default, OracleDB databases did
not create new files for individual partitions, but created them as
additional segments in a single file. In contrast, the MySQL
database created a new file for each partition of the table. Unlike
OracleDB, MySQL did not allocate all free space in advance,
but data files were expanded only as data was incrementally
inserted.

III. EXPERIMENTS

A. Background of experiments

To verify the behavior of IDL with partitioning, two
previously presented experiments were used. These
experiments were also used to compare the performance of
IDL with and without indexes. Copies of the original device
and subscriber tables with partitioning were then created as
part of this work. Subsequently, the following experiments
were performed:

1.) ORM performance with native SQL query

2.) Using ORM with Lazy loading

3.) Using ORM with Eager loading

4.) Using ORM with IDL (CHUNK 1000)

5.) Using ORM with IDL (OR 1000)

Since both of our experiments for IDL were built as worst-
case, i.e., so that all data is loaded from the database, they can
be directly compared with the ORM variation with Eager
loading. For the IDL experiments, all ORM sessions were then
set to EXTRA_LAZY so that they would not affect the
functioning of IDL, but at the same time, they would not be
removed from the code completely.The original annotated
entities were retained in the experiments, only their source
table was replaced using the following annotation:

For a table without partitioning:
#[@ORM\Table(name="subscriber")

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 470 --

For a table with partitioning:
#[@ORM\Table(name="subscriber_partitioned")

B. Brief description of experiments

The experiments were taken from previously published
papers so that it can be better evaluated in the future whether
IDL is really effective enough. These experiments were
constructed based on real Use-Case commercial companies.
Thus, these are real-world usage requests that the system can
handle in the context of reporting. Although the complexity of
the queries is not great at first glance, the performance of the
system using ORM is significantly worse than using a simple
native SQL query. [8]

The previously tested queries Q1 and Q2 from the previous
article were used for testing to maintain continuity to validate
the results. [8]

Q1 - Obtain a list of devices with device, operator and
subscriber information

The output combines information from the device,
device_profile, device_type, brand, subscriber and operator
tables. This information is then converted to JSON and
returned to the user, the previously tested queries from the
previous article were used for testing to maintain continuity to
validate the results. [8]

Native SQL query:

SELECT
 d.id AS device_id,
 d.name AS device_name,
 d.mac_address,
 dp.name AS device_profile_name,
 dt.name AS device_type_name,
 d.last_start,
 br.name AS brand_name,
 CONCAT_WS(' ', s.name, s.surname) AS subscriber_name,
 o.name AS operator_name
FROM
 device d
LEFT JOIN
 device_profile dp ON d.device_profile_id = dp.id
LEFT JOIN
 device_type dt ON d.device_type_id = dt.id
LEFT JOIN
 brand br ON br.id = d.brand_id
LEFT JOIN
 subscriber s ON d.subscriber_id = s.id
LEFT JOIN
 operator o ON s.operator_id = o.id;

Q2 - Obtaining a list of equipment for brandy operators

The output combines information from the brand, operator,
subscriber, device, device_type and device_profile tables. As
in the previous case, the output is formatted into JSON and
then returned to the user. [8]

Native SQL query:

SELECT

 o.name AS operator_name,
 b.name AS brand_name,
 b.code AS brand_code,
 CONCAT_WS(' ', s.name, s.surname) AS subscriber_name,
 d.name AS device_name,
 d.mac_address AS device_mac,
 last_start device_last_start,
 dp.name AS device_profile_name,
 dt.name AS device_type_name
FROM
 brand b
LEFT JOIN
 operator o ON b.operator_id = o.id
LEFT JOIN
 subscriber s ON o.id = s.operator_id
LEFT JOIN
 device d ON d.subscriber_id = s.id
LEFT JOIN
 device_type dt ON dt.id = d.device_type_id
LEFT JOIN
 device_profile dp ON dp.id = d.device_profile_id
WHERE
 d.brand_id = b.id;

C. Results of experiments

The following data were obtained from the above
experiments. The results for MySQL without partitioning were
taken from the previously experiments, and supplemented with
the results of measurements with partitioned data retrieval by
1000 (Chunk 1000) and measurements with a single query and
an OR clause with 1000 values in each OR part of the predicate
(OR 1000). [8]

The following tables record the results of the testing, where
the labels of the columns are:

 ET – Execution Time [ms]
 SI – Symfony Initialization [ms]
 MP – Memory Peak [MB]
 DM - Doctrine Memory [MB]
 Q – Number of DB Queries
 DQ – Number of Different Queries
 QT – Query Time [ms]
 QT/ET – [%]

TABLE III. RESULTS FOR Q1 EXPERIMENT – MYSQL WITHOUT
PARTITIONING

ET SI MP DM Q DQ QT QT/ET
Native Query

13470 32 1952,01 218,6 1 1 5205,83 38,65
Lazy Loading

106956 32 7143,88 6378 311901 6 28076,67 26,25
Eager Loading

161228 36 6336,01 4492 2 2 73061,52 45,32
IDL

48775 31 6386,04 4240 6 6 3389,21 6,95
IDL (CHUNK 1000)

48632 48 6340,03 4168 317 7 2739,57 5,63
IDL (OR 1000)

67137 43 6386,04 4242 6 6 3450,72 5,14

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 471 --

TABLE IV. RESULTS FOR Q1 EXPERIMENT – MYSQL WITH
PARTITIONING

ET SI MP DM Q DQ QT QT/ET
Native Query

9691 33 2172,01 218,6 1 1 3667,77 37,85
Lazy Loading

124285 32 7175,87 6394 311901 6 29928,18 24,08
Eager Loading

74324 43 6336,01 4470 2 2 14420,75 19,40
IDL (CHUNK 1000)

69674 37 6366,02 4202 317 7 2755,97 3,96
IDL (OR 1000)

53473 33 6174,02 4268 6 6 5114,37 9,56

TABLE V. RESULTS FOR Q1 EXPERIMENT – ORACLEDB WITHOUT
PARTITIONING

ET SI MP DM Q DQ QT QT/ET
Native Query

10492 33 2908,01 648 1 1 7,98 0,08
Lazy Loading

115779 31 7173,87 6384 311901 6 22169,61 19,15
Eager Loading

103709 44 6336,01 4114 2 2 26,73 0,03
IDL (CHUNK 1000)

60626 32 6436,02 4198 317 7 369,36 0,61

TABLE VI. RESULTS FOR Q1 EXPERIMENT – ORACLEDB WITH
PARTITIONING

ET SI MP DM Q DQ QT QT/ET
Native Query

11203 34 2908,01 972 1 1 16,9 0,15
Lazy Loading

126514 32 7268,01 6404 311901 6 21637,01 17,10
Eager Loading

90458 34 6336,01 4108 2 2 28,73 0,03
IDL (CHUNK 1000)

87889 33 6420,02 4200 317 7 2132,87 2,43

TABLE VII. RESULTS FOR Q2 EXPERIMENT – MYSQL WITHOUT
PARTITIONING

ET SI MP DM Q DQ QT QT/ET
Native Query

23277 39 2442,01 1104,6 1 1 20428,85 87,76
Lazy Loading

108028 34 7229,11 6376,1 311901 6 38184,36 35,35
Eager Loading
Unearned results

IDL (CHUNK 1000)
69191 33 6478,53 4236,5 317 7 3019,1 4,36

IDL (OR 1000)
74388 39 6524,54 3947,9 6 6 3559,33 4,78

TABLE VIII. RESULTS FOR Q2 EXPERIMENT – MYSQL WITH
PARTITIONING

ET SI MP DM Q DQ QT QT/ET
Native Query

14467 29 2570,01 238,6 1 1 11496,89 79,47
Lazy Loading

114636 30 7229,11 6378,1 311901 6 37626,95 32,82
Eager Loading
Unearned results

IDL (CHUNK 1000)
78849 36 6506,52 4258,5 317 7 2944,59 3,73

IDL (OR 1000)
65759 43 6552,52 3971,9 6 6 5611,75 8,53

TABLE IX. RESULTS FOR Q2 EXPERIMENT – ORACLEDB WITHOUT
PARTITIONING

ET SI MP DM Q DQ QT QT/ET
Native Query

11042 30 2930,01 32 1 1 13,73 0,12
Lazy Loading

115038 31 7249,11 6380,1 311901 6 19780,87 17,20
Eager Loading
Unearned results

IDL (CHUNK 1000)
60294 31 6506,52 4256,5 317 7 370,32 0,61

TABLE X. RESULTS FOR Q2 EXPERIMENT – ORACLEDB WITH
PARTITIONING

ET SI MP DM Q DQ QT QT/ET
Native Query

11575 32 2930,01 14 1 1 11,42 0,10
Lazy Loading

122091 31 7249,11 6390,1 311901 6 23046,38 18,88
Eager Loading
Unearned results

IDL (CHUNK 1000)
108392 33 6506,52 4260,5 317 7 2428,86 2,24

In the tables, the best values for each measured parameter,
outside of Symfony initialization, have been highlighted.

Description of monitored parameters in tables:

 Execution time [ms] - the total time it took to execute a
complete query on the server side.

 Symfony initialization [ms] - represents the time it took
to initialize the Symfony framework. This time
includes re-parsing the source files, building the
Symfony Cache and then connecting to the databases.
It is mainly of informative value.

 Memory peak [MB] - the maximum measured memory
size on the PHP-fpm side.

 Doctrine Memory [MB] - the maximum measured size
of memory occupied only by the Doctrine framework
and its data.

 DB Queries - the total number of queries that have
been executed on the database through Doctrine ORM.

 Different Queries - the number of unique queries that
have been performed on the database through Doctrine
ORM. For example, identical queries with different
parameters in the predicates are considered as unique
queries.

 Query time [ms] - measured time that was needed to
execute all database queries.

 DB QT/ET [%] - the percentage of time that was
needed from the total http request time to process
queries by the database system. The rest of the time the
request spent at the application layer.

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 472 --

Fig. 1. Visualization of results for experiment Q1 – execution and query times

Fig. 2. Visualization of results for experiment Q1 – memory usage

Fig. 3. Visualization of results for experiment Q2 – execution and query times

Fig. 4. Visualization of results for experiment Q2 – memory usage

IV. DISCUSSION OF RESULTS

In the experiments, it was found that partitioning does not
have a completely positive effect on the final performance of
the tested experiments in all the situations we tested. In some
cases it can be clearly seen that partitioning was definitely a
beneficial form of optimization, however in others the
opposite can be seen. As an example, the very first experiment
over MySQL, where partitioning had a significant effect
essentially only on the execution of native query and eager
loading, where queries with multiple joins were executed. In
the other cases, performance either stagnated completely or
even deteriorated.

If we look at the results of experiment Q1 in terms of query
time, there was a deterioration of almost 50% when using IDL
with OR. On the other hand, there was a decrease of almost
30% for the native query and even 80.27% when using eager
loading. Thus, eager loading became even more efficient than
using Lazy loading, where query times were almost constant
(+6.6% in the case of partitioning).

One cannot help but notice that the results for OracleDB
were much worse for partitioning. Not only was there an
increase in overall processing time in almost all cases outside
of eager loading, but query times were also substantially
increased. For a simple native query, we can see a 111%
deterioration in query time, and an even greater deterioration
of 477% when using IDL. Thus, at first glance, IDL might
appear to be inefficient, but it still maintains relatively good
results when comparing query time with lazy loading,
however, with eager loading it is then comparable in overall
execution time and unfortunately it is many times slower for
query time.

For the Q2 experiment, we can then see a very similar
trend. Unfortunately, here again we cannot make comparisons
for eager loading, as we were not able to complete the
experiment. Even using OracleDB. Thus, from this
perspective, we can easily say that IDL is more efficient than
eager loading because it is able to complete the query.
Looking at the results tables, it is easy to see that essentially
the same evaluation as Q1 holds. For MySQL, again, only the
native query was optimized. In other cases, the results are
worse using partitioning.

For OracleDB, we can see again a significant deterioration
of query time for IDL use by 556%. Similarly, the total query
execution time has also increased substantially by 79%.
Fundamentally, the total execution time has thus approached
that of using Doctrine alone without any optimization.
Although still query time is 89.5% lower in comparison. For
the second experiment, we can then observe a 17% reduction
in query time with partitioning versus the variant without
partitioning.

One cannot help but notice an interesting phenomenon in
MySQL, where in all cases the CHUNK 1000 variant, i.e.,
query segmentation after queries with 1000 parameters,
required less query time than the alternative OR 1000 variant,
which performed significantly fewer queries. For OracleDB,
this comparison was not possible because OracleDB does not
support more than 1000 parameters in a single database query.

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 473 --

The Doctrine memory usage and the total peak memory
required are not evaluated here, as there was no significant
change due to partitioning. Minor differences can only be seen
for native queries, where in the case of Q2 the required
memory for Doctrine was reduced, while for Q1 it remained
the same for MySQL and for OracleDB the required memory
even increased. For the other parts of the experiments, the
memory is essentially comparable between the variants with
and without partitioning. The same is true for the MySQL and
OracleDB variants of the experiments. The only major
difference was system memory, with OracleDB requiring
almost 2GB of memory and MySQL making do with 430MB.

VII. CONCLUSION

From experimentation, measurement and subsequent
discussion of the results, it is clear that OracleDB without and
with partitioning is fundamentally more powerful than
MySQL. However, it cannot be clearly recommended that
using OracleDB is the solution to the ORM implementation
problem. As can be seen from the results, the overall
processing times are in many cases worse than the request
processing times with MySQL database. This could be due to,
for example, poorer OracleDB support in PHP, or an overall
poor implementation of the OCI8 driver in PHP. Thus, it can
be easily deduced that in terms of database load, OracleDB is
definitely preferable, with the entire request spending an
average of 13% of the time querying the database.
For MySQL, it was 25.24% of the time. On the other hand, in
terms of total execution time, it was an average time of
69802ms for MySQL and 73935ms for OracleDB. Thus, there
is a 6.6% disadvantage for OracleDB in this parameter.

In conclusion, the experiments did not show that
partitioning had a significant positive effect on the
experiments. And that it could be recommended as an
optimization technique for IDL, or in general as an
optimization technique for using an ORM framework.

ACKNOWLEDGMENT

It was supported by the Erasmus+ project: Project number:
2022-1-SK01-KA220-HED-000089149, Project title:
Including EVERyone in GREEN Data Analysis
(EVERGREEN) funded by the European Union. Views and
opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union or
the Slovak Academic Association for International

Cooperation (SAAIC). Neither the European Union nor
SAAIC can be held responsible for them.

REFERENCES
[1] M. Bandle, J. Giceva, T. Neumann. 2021. „To Partition, or Not to

Partition, That is the Join Question in a Real Systém“. International
Conference on Management of Data, SIGMOD 2021 168-180.
Online: Association for Computing Machinery.
doi:10.1145/3448016.3452831.

[2] Z. Dong et al. 2023. "Database Deadlock Diagnosis for Large-Scale
ORM-Based Web Applications," 2023 IEEE 39th International
Conference on Data Engineering (ICDE). Anaheim, CA, USA.
2864-2877. doi: 10.1109/ICDE55515.2023.00219.

[3] C. Pitt, Pro PHP 8 MVC: „Model View Controller Architecture-
Driven Application Development“, 2nd edition, Apress, 2021. ISBN:
978-1484269565.

[4] W. Khan, C. Zhang, B. Luo, T. Kumar, E. Ahmed. 2021. Robust
Partitioning Scheme for Accelerating SQL Database. IEEE
International Conference on Emergency Science and Information
Technology, ICESIT 2021. Chongqing: Institute of Electrical and
Electronics Engineers Inc. 369-376.
doi:10.1109/ICESIT53460.2021.9696761

[5] S. Kläbe, K. Sattler. 2023. Patched Multi-Key Partitioning for Robust
Query Performance. 26th International Conference on Extending
Database Technology, EDBT 2023. Ioannina: OpenProceedings.org.
324-336. doi:10.48786/edbt.2023.26

[6] M. Kvet, "Database Index Balancing Strategy," 2021 29th
Conference of Open Innovations Association (FRUCT), Tampere,
Finland, 2021, 214-221. doi: 10.23919/FRUCT52173.2021.9435452

[7] M. Kvet and J. Papan, "The Complexity of the Data Retrieval Process
Using the Proposed Index Extension," in IEEE Access, vol. 10,
46187-46213, 2022. doi: 10.1109/ACCESS.2022.3170711

[8] F. Majerik and M. Borkovcova, "Design of Data Access Architecture
Using ORM Framework," 2023 34th Conference of Open Innovations
Association (FRUCT), Riga, Latvia, 2023, 93-99. doi:
10.23919/FRUCT60429.2023.10328151.

[9] V. Salgova, K. Matiasko. 2021. The Effect of Partitioning and
Indexing on Data Access Time. 29th Conference of Open Innovations
Association FRUCT, FRUCT 2021. Tampere: IEEE Computer
Society. 301-306. doi:10.23919/FRUCT52173.2021.9435500

[10] G. Vial, "Lessons in Persisting Object Data Using Object-Relational
Mapping," in IEEE Software, vol. 36, no. 6, 43-52. Nov.-Dec. 2019,
doi: 10.1109/MS.2018.227105428.

[11] Z. Xu, J. Zhu, a L. Yang, "Mining the Relationship between Object-
Relational Mapping Performance Anti-patterns and Code Clones,"
Proceedings of the 35th International Conference on Software
Engineering, San Francisco, 2023, 136-141. doi:
10.18293/SEKE2023-161.

[12] Yan, Cong, Alvin Cheung, Junwen Yang, a Shan Lu. 2017.
„Understanding Database Performance Inefficiencies in Real-world
Web Applications.“ ACM Conference on Information and Knowledge
Management. New York: Association for Computing Machinery.
1299-1308. doi:10.1145/3132847.3132954.

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 474 --

