
eGMT-Fuzz: Format-Aware Deep Fuzzing of
Cryptographic Protocols

Angel Lomeli
Aalto University

Espoo, Finland

angel.lomeli5@proton.me

Arto Niemi
Huawei Technologies Oy

Helsinki, Finland

arto.niemi@huawei.com

Abstract—Fuzzing has established itself as an everyday tool in
the toolbox of the security-minded software developer. Fuzzers
have proven especially effective in discovering vulnerabilities
that are rarely triggered during regular program execution.
Interactive cryptographic protocols, however, are challenging
to fuzz. Messages in such protocols must pass cryptographic
validation such as integrity and freshness checks, before execution
can reach deeper portions of the protocol implementation code.

In this paper, we present a black box mutation-based fuzzer
for deep fuzzing of interactive cryptographic protocols. To create
messages that mostly conform to the protocol syntax but are
syntactically or semantically unexpected, we use syntax tree
mutation. Our architecture includes a pluggable component that
allows mutated inputs to pass protocol-specific cryptographic
checks. We evaluate the efficacy of our fuzzer on an embed-
ded Transport Layer Security (TLS) implementation, where we
deeply fuzz both TLS handshake messages and X.509 public-key
certificates, discovering several hard-to-reach vulnerabilities.

I. INTRODUCTION

Fuzzing is a form of software testing where syntactically

or semantically incompliant input messages are generated

randomly, either by mutating valid seed messages or by

applying grammar-based production rules. The messages are

then fed to the program under test, which is monitored for

unexpected behaviour such as crashing or buffer overflows.

Fuzzing is mainly used in security testing, where tools such

as American Fuzzy Lop (AFL) have proven to be extremely

efficient in discovering vulnerabilities in programs that parse

input files, while network-oriented fuzzers such as AFLNet

allow implementations of interactive protocols to be fuzzed

more efficiently.

However, fuzzing implementations of interactive crypto-
graphic protocols, such as Transport Layer Security (TLS) [1],

present a special challenge that is not sufficiently addressed

by existing methods and tools. Such protocols contain lengthy

message flows (handshakes) where messages are required

to pass cryptographic checks such as signature verifications

and MACs before being processed further. Traditional fuzzers

often perform poorly in such situations—they tend to generate

inputs that cause the protocol run to fail too early. An integrity-

protected octet has only one legal value, so a random mutation

in the octet results in the message being discarded – often even

before parsing – and in the termination of the handshake.

Format-aware fuzzers, based on e.g. syntax tree mutation,

can be more efficient in finding parsing errors, but they

also suffer from the failure to pass cryptographic checks.

Therefore, a format-aware fuzzer with a protocol termination
capability, that can apply mutations before encryption and do

cryptographic operations, such as key derivation and re-signing

to pass cryptographic checks, seems to be the best approach

for deep fuzzing of such protocols.

In this paper, we develop such a mutation-based, format-

aware and crypto-capable fuzzer for interactive cryptographic

protocols. Our starting point is the Generic Message Tree

(GMT) method of Walz and Sikora [2], which works by

dissecting protocol messages into a parse tree structure, sub-

jecting the nodes to fuzz operations, repairing the mutated

nodes’ ancestors to restore their format compliance, serializing

the tree back to the protocol encoding, and transmitting the

result as input to the program under test.

Our work improves the baseline of the Walz-Sikora fuzzer

in two directions. First, we add new GMT fuzz operators and

optimize existing ones. Second, we add protocol termination

capability in order to reach latter portions of the TLS hand-

shake. This allows us to fuzz the whole protocol and not just

the initial ClientHello message. We validate our design

with a fuzzing campaign against a development version of

a custom, presently closed-source, TLS library, from which

we were able to find multiple issues that would have been

difficult or impossible to discover using conventional fuzzers

with format-breaking random mutations. Our results are in line

with earlier work [3], which also noted the benefits of format-

aware fuzzing with the GMT in the security testing of TLS

implementations.

The rest of the paper is organized as follows. The back-

ground section introduces fuzzing, the TLS 1.3 protocol

and the format of messages transmitted in a typical TLS

handshake. Next, we introduce the enhanced GMT (eGMT)

data structure and novel fuzz operators that we apply to its

nodes. We describe our fuzzing architecture and the protocol

termination (“man-in-the-middle”) component and show how

the fuzzer can be applied to TLS handshakes and X.509

certificates. After this, we present our findings. Finally, we

provide conclusions and ideas for further work.

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 361 ----------------------------------------------------------------------------



II. BACKGROUND

A. Fuzzing

The term “fuzzer” was coined by Miller et al. in 1990 [4].

In their report, the authors discovered they could crash 25-

33% of the Unix utility programs they tested [5] by using

simple black-box testing with randomly generated inputs. The

method of randomly generated test inputs is much older,

however; the article of Duran et al. from 1981 is an important

example of such early work [6]. The introduction of American

Fuzzy Lop (AFL) in 2015 provided a significant stimulus to

research and industry efforts [7, p. 1201]. Today, fuzz testing

is routinely used in software engineering. For example, the

Microsoft Secure Development Lifecycle mandates that un-

trusted interfaces of all products must be subjected to fuzzing

[8], and the Android ecosystem includes an extensive fuzzing

infrastructure [9] for code submissions. The core ideas behind

fuzz testing are remarkably simple, yet extremely effective in

practice. (In a later paper, Miller revealed that the authors of

[4] initially had trouble finding a publisher, partly because

their work was regarded as “too simplistic”.) In the following,

we briefly survey the taxonomy of fuzzers and the challenges

one faces when attempting to apply them to cryptographic

protocols.

Color. Fuzzers are traditionally assigned a color [8] ac-

cording to the amount of knowledge they require of the

program under test (PUT). Blackbox fuzzers such as Miller’s

original fuzz tool only look at the input-output behaviour

of the PUT; they do not require binary instrumentation or

access to the source code. Whitebox fuzzers [10] use dynamic

symbolic execution to discover branch conditions and then

apply constraint solving to find inputs that allow reaching

untested branches. This allows whitebox fuzzers, in theory, to

systematically test all executions paths of the PUT, although

they are often very slow in practice [7]. Greybox fuzzers

such as AFL constitute the middle ground between black

and whitebox fuzzers. They typically rely on lightweight

code instrumentation that produces code coverage statistics

at runtime, and use coverage to guide input generation [7].

In contrast to whitebox fuzzers, greybox fuzzers cannot sys-

tematically cover all execution paths, but offer much better

performance.

Input generation. A fuzzer can also be classified according

to its input production method. Generation-based fuzzers

create the inputs from scratch, using a formal grammar or

a specification, such as the file format or protocol syntax.

A drawback of the generational fuzzers is that they either

require bespoke message generation code for target format or

a formal grammar, which is rarely available, especially for

cryptographic protocols. In contrast, mutation-based fuzzers

create inputs by iteratively applying random changes such as

bit flips to messages, starting from a valid seed message.

Format-awareness. Traditional mutation-based greybox

fuzzers, such as AFL, excel at fuzzing programs that process

inputs with little syntactic structure, for example images.

When applied to highly structured inputs, such as protocol

Fig. 1. A typical TLS 1.3 handshake with main message contents and
cryptographic integrity checks. The failure of any of the checks results in
immediate abortion of the handshake according to protocol specification. This
makes it difficult for fuzzers to reach latter parts of the handshake.

messages, these fuzzers produce inputs that are rejected in the

parsing stage without reaching later stages such as semantic

checking and application processing. To address this, several

format-aware or smart [11] fuzzers have been proposed. These

are able to direct mutations to specific syntactic elements,

minimizing or avoiding syntax violations. One way to achieve

format-awareness is to use dictionaries from which valid byte

sequences can be chosen and injected at random locations in

the mutated data [11]. However, dictionary construction is of-

ten complex and dictionary-based replacement fails to account

for context, such as dependencies between protocol messages.

Another approach is to parse the input into a syntax tree and

then apply mutations to the tree nodes [12]. Superion [13]

mutates the tree by replacing a random subtree with a subtree

from a tree that was constructed from earlier data. This suffers

from the same problem as dictionary-based replacement. The

Walz-Sikora fuzzer [2], described in Section II-D, goes beyond

subtree replacement and applies type-specific mutations to the

syntax tree nodes.

Challenges. While standard file processing tools and proto-

cols work in essentially three stages (syntax parsing, semantic

checking, application execution), a cryptographic protocol

such as TLS [1] (described in more detail below) adds

cryptographic operations such as decryption and integrity

validation. These are usually performed before syntax pars-

ing. For example, TLS uses authenticated encryption for all

protocol messages after the initial ClientHello and ServerHello

messages. Messages must be decrypted and checked against

the integrity checksum before parsing. A further challenge is

that the implementation under test should be monitored not

only for crashes, but also for protocol-incompliant behaviour,

such as failure to turn on encryption or to abort the handshake

upon reception of an unexpected message.

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 362 ----------------------------------------------------------------------------



B. TLS handshake

Transport Layer Security (TLS) is a secure channel protocol

[14, pp. 88-91] consisting of an authenticated key exchange

and subsequent transmission of encrypted and integrity-

protected data. TLS is used to protect a vast majority of

Internet, especially HTTP, traffic. Here, we focus on the

latest TLS 1.3 version [1]. As illustrated in Fig. 1, a typi-

cal TLS handshake, where only the server is authenticated,

consists of seven messages. The first two, ClientHello and

ServerHello, are used to negotiate an (EC)DHE shared secret

and to agree upon protocol parameters. The handshake is

integrity-protected in three ways. First, all messages after

the ClientHello and ServerHello are encrypted and integrity-

protected with an authenticated encryption (AE) cipher such

as AES-GCM, using handshake traffic protection keys derived

from the shared secret and a hash of the first two messages.

Second, the CertificateVerify message includes an asymmetric

(e.g. ECDSA) signature over a hash of the previous hand-

shake messages. Third, the Finished message provides a final

integrity protection by including a symmetric (e.g. HMAC)

signature over the preceding handshake messages. Thus, it is

clear that simple black-box mutation of intercepted messages

will result in a failure in one these three types of integrity

checks.

C. Format and encoding of TLS messages

The TLS protocol specifies the format and encoding of

its messages using the domain-specific TLS presentation lan-

guage (TPL) [1, Section 3]. With TPL, messages are defined

using a syntax that closely resembles how structs are defined

in the C programming language. TPL also specifies a sim-

ple encoding, with variable-size vectors prefixed with a Big

Endian encoding of their length. The following is a simple,

artificial example of a TPL-defined structure:

struct {
uint16_t id;
opaque data<1..2ˆ16-1>;

} InnerMessage

struct {
uint8_t version;
uint16_t id;
InnerMessage messages<1..2ˆ16-1>;

} TPLExampleMessage;

Here, data and messages are variable-length vectors, de-

fined to contain 1 to 216 − 1 bytes. The actual length is

appended to the encoding as a prefix.

Assuming that TPLExampleMessage has version:1,

id:51966 (0xcafe in hexadecimal), and that the messages

vector contains a single InnerMessage with id:2 and

data:0xfacafe, the whole TPLExampleMessage would

be encoded as 0x01cafe000700020003facafe. Here, 2 =
log2 2

16 − 1 Big Endian bytes (0003) are needed to encode the

length of the data vector in the inner message, since it is de-

fined to hold at most 216−1 octets. Furthermore, the messages

vector is prefixed with the byte-length of its contents in Big

Endian encoding. This is 0007 since the single InnerMessage

is encoded with the seven bytes 00020003facafe.

For the X.509 public-key certificates that are transmitted in

the TLS’ Certificate handshake messages, as well as for the

ECDSA signatures transmitted in the CertificateVerify mes-

sage as a proof-of-possession of the private authentication key,

another format, called Abstract Syntax Notation One (ASN.1)

[15], is typically used. ASN.1 actually has multiple possible

encodings, including XML- and JSON-based ones (XER and

JER, respectively), but in the security domain the strict, binary

Distinguished Encoding Rules (DER) are typically used, since

it minimizes the amount of encoder options. This is important

for signed data, the encoding of which should be unique. The

following is a real-world example: a typical encoding of an

ECDSA signature in TLS, with rarely used optional fields

removed [16, p. 114].

ECDSA-Signature ::= SEQUENCE {
r INTEGER,
s INTEGER,

}

An example DER-encoded ECDSA-Signature object is

shown in Fig. 2. The DER-encoding of ECDSA-Signature

starts with a tag (0x30) identifying the outer type (SE-

QUENCE). The tag value also includes a 1-bit indicating that

what follows is not a “leaf” item, but a constructed object

which itself consists of further items (two integers). Next

comes the length of the ECDSA-Signature value part. The two

integers are also both encoding using tag, length and value –

first the INTEGER tag 0x02, then a length octet and finally

the value (a coordinate on the elliptic curve).

For our purposes in the context of format format-

aware fuzzing, we make two important observations. First,

ASN.1/DER is a tag-length-value (TLV) encoding, where the

value part (V) can consist of further TLVs. Second, TPL

objects can similarly be nested: even though their encoding

does not include an explicit type (T), variable-length vectors

are encoded as an “LV” with a length indicator (L) prepended

to the value (V). Both formats are amenable to tree-like

representations.

D. Generic Message Trees

In 2020, Walz and Sikora [2] proposed a black-box,

mutation-based, format-aware fuzzer (later referred to as tls-
diff in [17]). Combined with differential testing, the fuzzer

allowed the authors to find vulnerabilities in several TLS

implementations. The format-aware component in the Walz-

Sikora fuzzer is a dynamic data structure called Generic
Message Tree (GMT) that supports a set of fuzz operators on

the tree nodes. Walz and Sikora proposed eight such operators,

using them to generate mostly-valid TLS 1.2 ClientHello

messages by first parsing a valid seed message into a GMT and

randomly applying fuzz operations to the nodes, and finally

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 363 ----------------------------------------------------------------------------



Fig. 2. GMT of a DER-encoded ECDSA-Signature

re-encoding the message. To detect erroneous behaviour such

as crashing or protocol violations, the authors compared the

responses of various TLS implementations to the fuzzed input.

Their GMT-based approach achieved better code coverage and

found more response discrepancies than AFL, TLS-Attacker

[18] and NEZHA [19]. Walz and Sikora only fuzzed the initial

ClientHello message in the TLS handshake, but saw their work

as the first step towards full interactive fuzzing of the protocol.

(In their conclusions, Walz and Sikora stated: “we see our

approach as presented herein only as the first step towards

fully interactive differential testing of black-box TLS protocol

implementations” [2, p. 289].) Later, Pan et al. [17] optimized

the differential testing mechanism in the Walz-Sikora fuzzer,

without changing the GMT operators or adding new ones.

Definition. A GMT is an ordered rooted tree with typed

nodes. Leaves represent atomic data such as integers or raw

unstructured octets. Internal nodes represent composite types

such as vectors. A protocol message can be translated into its

GMT representation via a protocol-specific dissection function

D. Converting a GMT to the on-the-wire representation can be

done by invoking a serialization function S that traverses the

tree in depth-first order and encodes each leaf node according

to its type.

Example. Fig. 2 shows a GMT dissected from an ECDSA

signature, encoded with Distinguished Encoding Rules (DER)

DER is a Tag-Length-Value (TLV) encoding [15]: the tag T

encodes the type of the value V, and L encodes the number of

octets in V. The value can also consist of another TLV. The

ECDSA signature is a sequence of two integers r and s. Each

T and L, as well as r and s are represented by leaves, while

the value of the sequence TLV is an internal node. Note while

the GMT concept is generic, the code by Walz and Sikora

only supported TLS ClientHello messages. Adding support for

ASN.1 and DER was done during our present work.

Benefits. The usefulness of the GMT for fuzzing comes

from the fact that each node can be mutated with or without

changing the node’s type or violating structural constraints. For

example, an integer node can be mutated into another integer

or into a string, vector elements can be removed or duplicated,

a subtree rooted at an internal node may be truncated, etc. Walz

and Sikora proposed eight such GMT operators, summarized

in Table I. Some of the operators can be applied on nodes

TABLE I. THE ORIGINAL GMT OPERATORS FROM 
[2, SECTION 5.1.1]

Operator Applies to Function
DelOp Vectors Deletes the node
VoidOp Vectors Deletes the node, adds a placeholder
DupOp Dynamic

length
elements

Adds a copy of the node as its sibling

TruncFuzzOp Dynamic
length
elements

Chooses a random smaller length, truncat-
ing node bytes up to this length

IntFuzzOp Leaves Replaces node with an integer N. Proxim-
ity mode: representation of N resembles
original. Full range mode: N is chosen
randomly from the original integer range.
The mode is chosen at random

DataFuzzOp Leaves Replaces the node with a random byte
array of the same length as the original

AppFuzzOp Dynamic
length
elements

Generates a new byte array of up to four
bytes and appends it as a sibling

GenFuzzOp CipherSuites
vector,
Extensions
vector,
or any
Extension
element

Replaces a node or subtree with semi-
random data that follows the same struc-
ture as the original

Fig. 3. eGMT-Fuzzer components

of a particular type, accomplished using filters that return

applicable nodes.

Operators. The Walz-Sikora fuzzer included eight fuzz

operators for GMT nodes and subtrees, shown in Table I. On

every iteration, the fuzzer first selects an operator and filters

out nodes whose type is compliant with the operator. From

the remaining nodes, the fuzzer selects a random node and

applies an operator to the node. Finally, the fuzzer chooses

whether to repair the length fields from the target node up to

the root node. At the end of each iteration, the fuzzer decides

at random whether to execute a new iteration or not with a

probability of 1/2.

III. ARCHITECTURE

The architecture of our fuzzer, which we call eGMT-Fuzz,

is shown in Fig. 3. Like the Walz-Sikora fuzzer, it is based on

GMTs, but, as described in Section IV, we add enhancements

such as new operators and cryptographic capabilities; we call

the result enhanced Generic Message Tree or eGMT.

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 364 ----------------------------------------------------------------------------



First, a valid handshake message that corresponds to the

message to fuzz (except for the CertificateVerify and

Finished messages, which are generated by the fuzzer auto-

matically) or a DER-encoded ASN.1 structure is used as seed.

This seed is sent to the correct dissection function (TPL Object
Constructor or ASN.1 Object Constructor) depending on the

object structure to be fuzzed. When both constructors need to

be used, such as for handshake messages that contain ASN.1

structures, the seed is first parsed by the TPL Constructor and

then, the specific fields containing the ASN.1 structure in the

TPL object are parsed by the ASN.1 constructor, replacing the

bytes they originally pointed to with a child ASN.1 eGMT.

The constructor is also the component responsible for telling

the fuzzer how to send the test cases to the PUT and how to

interpret the responses.

The parsed eGMT is then sent to the Test case generator,

where it is modified randomly as shown in Algorithm 1. The

fuzzer then executes the PUT (a TLS client or server when

the handshake is being fuzzed, or a binary that takes ASN.1

structures as input for parsing when the fuzz target is the

ASN.1 parser) as a subprocess and either sends the final test

case to the subprocess over the local network or instructs the

PUT to open the test case from a file. The Response monitor
keeps track of the responses sent by the PUT on the network

when applicable, while the Crash monitor checks the exit code

of the PUT after finishing the execution. The Response monitor
performs different checks based on the message being fuzzed

to decide on whether a test case was accepted or rejected by the

PUT. The Crash monitor saves any test cases that triggered an

exit code different than 0 (successful execution with no errors)

or 1 (failed execution caused by an expected error). Both of

these monitors then generate a list of the test cases that caused

interesting behaviors and need manual analysis.

IV. ENHANCED GENERIC MESSAGE TREES

The original GMT fuzzer by Walz and Sikora is able to

fuzz only the ClientHello message in a TLS handshake.

Furthermore, it works only for TLS version 1.2 and below,

excluding the latest version TLS 1.3, at the time of writing.

Using their work as a basis, we developed an extended version

of GMTs called Enhanced Generic Message Trees (eGMTs),

which we used to further fuzz the TLS protocol, including

more handshake messages. This was achieved by adding

key derivation capabilities in the fuzzer, allowing us to fuzz

messages before encryption, decrypt received responses, and

generate valid integrity codes. Currently, eGMT-Fuzz supports

TLS 1.3 and X.509 public-key certificates. It is able to fuzz

the following TLS 1.3 handshake messages: ClientHello,

ServerHello, EncryptedExtensions,

Certificate, CertificateVerify, and Finished.

For the parsing of handshake messages, we created a

collection of objects based on the TLS Presentation Language

(TPL) composed of Python dictionaries and lists that dictate

the tree-to-bytes correspondence. These objects tell the fuzzer

how many bytes to read for each field and how to interpret

the data, taking into account DER-encoded length fields and

children subtypes. As in the original GMT implementation, a

parsed message becomes a tree-like structure with nodes that

contain either additional children nodes or message bytes.

A. New and improved operators

The original GMT operators described by Walz and Sikora

were enough to generate several variations of the ingested

corpus. However, we noticed that they could be changed

to improve their mutation capability and to generate more

interesting test cases. In the Walz-Sikora fuzzer, the filter

function governs which operators can be applied to which

types of node. For example, the filter allows the duplication

operation to apply only to subtrees, but not to leaf nodes. We

found the filtering to be excessively restrictive; for example,

duplicating leaf nodes can also be useful. Consequently, a

major change we did was to make all but the Integer Fuzz

Operator applicable to any type of node or subtree. This

rendered most of the filters unnecessary, and ensuring that

potentially useful modifications are not prevented. The only

filters we kept were the Leaf Node Filter and the Vector

Element Filter.

In addition, we noticed that the behavior of some of the

operators could be improved. The Integer Fuzz Operator in

”full range mode” does exactly the same actions as the Content

Fuzz Operator, which is set to maintain the original length.

The Voiding and Deleting operators behave in the same way

with the exception of the place marker deletion. With these

remarks in mind, we implemented an ”enhanced” version for

each operator, as shown in Table II.

We also introduced three new operators, shown in Table

III. The ZeroOp operator, which zeroes bytes in the target

node, was based on the observation that zero often has

a special meaning: length indicator with value 0 indicates

(seemingly) missing data, and in public-key cryptography 0
often constitutes a special value. The rotation operator, loosely

inspired by the self-balancing AVL trees [20], changes the

order of two sibling nodes in the eGMT. In TLS, the order

in which the handshake messages must be sent is fixed, and

transmitting some messages (such as Finished) too early may

lead to cryptographic operations performed at the wrong time.

Finally, the simple BitFlip operator, which turned out to be

one of the most effective ones in our tests, simply flips up to

five randomly chosen bits in a node.

Given that these last three operators do not affect length,

the length repair decision is skipped for them (as well as for

the Integer Fuzz Operator).

B. Fuzzing X.509 certificates

The GMT fuzzing approach was originally intended to fuzz

TLS implementations. Our eGMT-Fuzz also focuses on TLS,

but we developed a module that uses the same principle

to mutate DER-encoded ASN.1 structures such as X.509

certificates, showing that it can be easily applied to other

similar hierarchical structures. Our module parses the ASN.1

objects in a ”dumb” way following the DER syntax without

looking at the context of each particular case. It simply looks

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 365 ----------------------------------------------------------------------------



TABLE II. ENHANCED GMT OPERATORS IN 
EGMT-FUZZ

Operator Applicable
nodes

Description

eVoidOp Any Deletes a node while keeping a place
marker

eDupOp Any Creates a copy of a node and adds it
as a sibling of the original

eTruncFuzzOp Any Chooses a new random length lower
than the original and truncates the
bytes in the node to match it. If the
node has children, they are also re-
moved or truncated iteratively

IntFuzzOp Leaf nodes In “proximity mode”, replaces the node
with a random integer that is close
to the integer representation of the
original value. In “full range” mode,
the new integer is chosen up to the
maximum value allowed for the byte
length. The mode to use is also chosen
at random.

eDataFuzzOp Any Replaces the node with a random byte
array of the same length as the original
or a new length of at most the double
of the original

eAppFuzzOp Any Generates a new byte array of up to
four bytes or a new element from a list
of valid data for the specific target node
and adds it as a sibling

eGenFuzzOp Any Replaces a node or subtree with semi-
random data that follows the same
structure as the original, if applicable.
If not, behaves just like the eContent-
FuzzOp

TABLE III. ADDITIONAL OPERATORS IN 
EGMT-FUZZ.

Operator Applicable
nodes

Description

ZeroOp Leaf nodes Replaces all bytes in the target node
with a 0x00 byte array

BitFlipOp Leaf nodes Flips up to five random bits in a node
RotOp Vector ele-

ments
Chooses a new random sibling of the
same type of the target node and
switches their positions

at the tag byte and checks whether the constructed/primitive

bit is set (indicating it has children, i.e., the Value field is

another TLV) or not (indicating it simply contains bytes), and

creates a tree-like structure made out of TLV subtrees. Every

tag and length field is a leaf in the tree, while the value field

can be either a leaf of bytes or another TLV object as a child.

After parsing, the ASN.1 eGMTs were able to work with the

same operators described earlier, with a couple exceptions for

which a custom operator was created:

• ASN.1 Appending Fuzz Operator. Creates a new sub-

tree to append as a sibling of the operand. In ASN.1

eGMTs, however, the new subtree must also be a TLV

object. The tag is randomly chosen to be either one of

the most common ASN.1 types used in TLS or a random

byte. The length is chosen at random as well and it

indicates how many bytes to generate for the value field.

• ASN.1 Synthesizing Fuzz Operator. Since our ASN.1

Fig. 4. Example application of random fuzz operators. First, the value of
the r TLV is truncated, and the lengths of the affected subtree are repaired.
Finally, the tag of s is removed without fixing lengths.

Fig. 5. Here, the duplication operation is applied to the SEQUENCE tag
of the top-level TLV. Next, the integer fuzz operator is applied to the length
octet of the r TLV. Finally, the ASN.1 synthesizing operator is applied to s,
fuzzing the tag, length and the value.

parser looks only at the DER encoding and does not care 
about object context, there are no lists of valid constant 
values to generate semi-valid data. This operator also 
generates a new TLV object in the same way as the 
previous operator, but uses it to replace the operand.

Furthermore, since the length bytes in TLV objects need

to comply with additional rules, the repairing algorithm was

modified to detect when the underlying object was a TLV

or TPL object. Once a length is repaired, the algorithm will

encode it according to the detected object before changing the

corresponding fields.

The ASN.1 module was used to generate and mutate eGMTs

using as seeds: ECDSA signatures, SubjectPublicKeyInfo ob-

jects, and X.509 certificates. The fuzzer would write each

mutated test case to a file which was read by a binary that

called functions from the a TLS library for, e.g., signature

verification or generation of ECDH shared secrets. With this

approach, the fuzzer found a set of bugs in the parsing

functions used by the library. The bugs allowed, for example,

to send an arbitrary amount of garbage bytes at the end of an

object or to crash the application altogether when the length

field was invalid.

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 366 ----------------------------------------------------------------------------



C. Deep fuzzing of the TLS 1.3 handshake

eGMT-Fuzz includes a set of modules for fuzzing each

of the handshake messages. The message flow is different

for each and the fuzzer needs to perform different checks

depending on the fuzzed message to decide whether a bug

exists or not. First, the target message is selected. This message

is the only one that will be mutated for a particular session.

A seed message is fed into the fuzzer, which generates a new

test case by randomly applying mutations on the seed. Then,

the fuzzer performs a handshake by simulating the actions of a

client or server, replacing the target message with its mutated

version. Finally, depending on the responses (or lack of them)

it gets, it categorizes the generated test case as accepted,

rejected, or crash. The fuzzing process works on the premise

that the applied mutations will generate invalid payloads, so

test cases considered rejected are the only ones that are not

saved to disk for later inspection, as this is considered to

be normal behavior. Fig. 6 shows the pseudo-code for the

generation of new test cases based on seed messages, while

the length repairing function is shown in Fig. 7.

Due to the complexity of the TLS protocol, looking for

crashes in the binaries is not enough. It is also important to

see if the handshake continues even after an invalid message

was sent or if the execution flow is stopped at a later state. If

the fuzzer determines that a fuzzed message was accepted, it

saves the message to a file for later examination and the hash

of the message in a list of hashes that is checked to avoid

duplicating test cases. The fuzzer also has the capability to

read the exit code of the client or server binaries. If it finds

an abnormal exit code, the generated test case and its hash are

saved in another location meant for potential crashes.

The mutations are generally applied to valid hand-

shake messages used as seeds. However, for both the

CertificateVerify and Finished messages this is not

the case. These messages contain signatures or HMACs that

are generated using information specific to each handshake,

e.g., the transcript hash of all exchanged messages. For this

reason, the corresponding fuzzing modules must first perform

the handshake up to the point where the target message will be

sent, generate a valid message, and then perform the mutations

on the generated message.

It is often the case that, given the random nature of the

algorithm, a specific mutation is reversed, resulting in a

generated test case that is identical to the original seed. This

happens when, e.g., a length field is fuzzed but the repairing

algorithm fixes it back to the original, or a recently appended

node is deleted by the eVoiding Operator. This results in

a false positive test case that is considered accepted but

does not indicate the potential existence of a bug. For most

messages, this false positive is written just once, since the

hash of the generated case is checked before writing. For the

CertificateVerify and Finished messages, however,

it becomes more problematic given that the messages are

different for each handshake, and thus the hashes are also

different. The amount of false positives that are written to files

as findings for these messages is significantly larger, making

manual inspection necessary.

The eGMT TPL and ASN.1 modules were combined as

well for an additional set of tests with messages that in-

cluded ASN.1 structures. This was particularly helpful for

the Certificate and CertificateVerify messages,

which can contain ECDSA signatures and X.509 certificates.

For these cases, the parser would first create a tree with

the TPL structure and then create subtrees for any ASN.1

structures as children. After this, the fuzzer is able to perform

mutations on nodes from both structure types, making changes

as required so the correct reparation or operators are used.

V. EVALUATION

We evaluated our fuzzer on a development version of htls, a

C-based embedded TLS 1.3 implementation – developed at the

Helsinki System Security Laboratory of Huawei Technologies

– that is designed especially for constrained environments such

as Trusted Execution Environments [21]. In our earlier work,

we have used htls to implement a trusted channel protocol [22]

and secure enclave migration [23]. The htls code is currently

in the process of being open sourced. We fuzzed both the TLS

handshake messages and the X.509 certificates transmitted as

part of the TLS handshake.

A. Results

In this section we briefly discuss the bugs that were found in

htls with eGMT-Fuzz. We identified a total of 11 distinct bugs

with varying severity, all of which were promptly fixed when

reported. Our fuzzing campaign thus contributed significantly

to the quality of htls, proving the efficacy of eGMT-Fuzz. A

summary of the bugs found and which operator was used to

find them is shown in Table IV. In the table, eGMT refers to

our basic TLS/TPL fuzzer and ASN.1 refers to its ASN.1/DER

extension.

a) Application crash with wrong TLV length.: We found

that when the ASN.1 parser in htls received a structure with an

invalid TLV length, the parser failed and aborted the execution,

causing an application crash. If left unfixed, this bug could

have potentially been abused by an attacker in Denial of

service (DoS) attacks. The fix consisted of checking the length

of the remaining bytes in memory for the received object

before attempting to read the bytes indicated by the TLV

length.

b) NULL pointer dereference in Certificate parse.: A

NULL pointer dereference was triggered when htls attempted

to read an inconsistent X.509 certificate. The invalid certificate

had an incorrect length field in the last BIT STRING of

the object. This value normally contains the signature of the

certificate that the application needs to verify in order to

validate that the peer does possess the corresponding private

key for the sent certificate. Before reading this value, htls
initializes a pointer to NULL, which will hold the address of

the signature after parsing. However, when trying to read the

invalid value, htls noticed that the lengths were inconsistent

and raised a buffer error in the parsing function, causing it to

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 367 ----------------------------------------------------------------------------



1: function EGMT-FUZZ(V ) � Fuzz the tree V
2: while RND({true, false}) do
3: o ← RND({OeV oid, OeDup, OZero, O

eTrunc
fuzz , OInt

fuzz, O
eData
fuzz , OeApp

fuzz , O
eGen
fuzz , O

BitF
fuzz , O

Rot
fuzz}) � Select a random operator

4: if o ∈ {OZero, O
Int
fuzz, O

BitF
fuzz , O

Rot
fuzz} then

5: v ← RND({v ∈ V |Fo(v) = 1}) � Select a suitable node v using filters
6: else
7: v ← RND({v ∈ V }) � Select any node v
8: end if
9: APPLYOPERATOR(()o, v) � Apply operator o to node v

10: if v /∈ {OZero, O
fuzz
Int , Ofuzz

BitF , O
fuzz
Rot } then

11: REPAIR(()v) � Call the REPAIR function
12: end if
13: end while
14: end function

Fig. 6. Randomized fuzzing function

1: function REPAIR(v)
2: fullRepair ← RND({true, false})
3: while v �=⊥ do � Repeat until root is reached
4: if fullRepair or RND({true, false}) then
5: if ISASN1OBJECT(v) then
6: REPAIRTLVLEN(v) � Repair DER length
7: else
8: REPAIRLOCAL(v) � Repair TPL length
9: end if

10: end if
11: v ← PARENTOF(v) � Go up one level
12: end while
13: end function

Fig. 7. Length repair function

fail. The problem was that the execution flow continued and

the application later tried to access the signature through this

NULL pointer in an address that did not exist, crashing the

application immediately. This bug could have also led to DoS

attacks if not fixed.

c) Buffer over-read in log print with invalid certificates.:
Another bug was found in the function responsible for parsing

X.509 certificates. This time, a buffer over-read error (when a

program that reads from a buffer runs over the buffer bound-

aries and attempts to read from adjacent memory) occurred

when logging was enabled and an invalid SubjectPublicKey-

Info (SPKI) length was set. It was found that htls performed

buffer checks for all fields in the certificate, with the exception

of the SPKI field specifically. htls obtained the length for the

SPKI from the invalid field, which was set to a very large

number, and if logging was enabled, it attempted to read as

many bytes as indicated by the length and print them to the

logs. If an attacker had read access to the application logs,

she could have abused this bug to dump large amounts of

memory and obtain sensitive information, such as private keys

or cookies. When logging was disabled, however, the error was

not triggered.

d) Garbage bytes after signature.: It was found that

htls was ignoring any additional bytes sent after an ECDSA

signature, as long as the relevant bytes were correct. This

behavior does not imply a high risk on itself but is still

recommended to avoid as it can potentially ease signature

malleability attacks.

e) Missing ECDH public key validation.: TLS appli-

cations using ECDH for key negotiation need to check the

public keys sent by their peers to prevent invalid curve attacks

[24], which have been shown to enable an attacker to obtain

the corresponding private key for the given public keys. htls
failed to perform this check and allowed any value to be

used as a public key. It was found that a Man-in-the-Middle

(MitM) attacker was able to modify the ClientHello
and ServerHello messages to contain public keys, e.g.,

belonging to other curves or comprised of zero bytes only.

Given that TLS 1.3 uses ephemeral keys only, the impact of

this bug is not high. However, it was still recommended to fix

this as there are scenarios in which public keys are reused.

f) Buffer over-read in log print with empty
messages: Another buffer over-read error in a

log printing function was found when sending an

empty message in one of either: ClientHello,

ServerHello, CertificateRequest, Certificate
or CertificateVerify. If logging was enabled, the

logging function would walk through all the bytes received

in the message and print them. The issue was that for reading

these bytes, the function received as a parameter the amount

of bytes to be read, which was calculated by subtracting a

pointer to the next byte to be read from a pointer to the

end of the buffer. When the message received was empty

(the Record header had an indicated length of zero and no

payload), the pointer to the next byte was one higher than

the pointer to the buffer end, and the subtraction resulted

in a value of -1. This value, however, was interpreted as

an unsigned integer inside the logging function, i.e., as the

value 0xffffffffffffffff in hex or 18446744073709551615 in

decimal for a 64-bit processor. The logging function would

then attempt to read and print this amount of bytes from

memory, eventually reaching a restricted memory space and

crashing the application. When logging was not enabled, the

application did not attempt to read the bytes in memory, but

still executed a loop until the number was reached (which

would require several years to finish), causing the application

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 368 ----------------------------------------------------------------------------



to stall indefinitely. Just like before, if an attacker had access

to the application logs, she could abuse this bug to dump

and read secrets from memory. In addition, for this particular

bug, even when logging is disabled, the bug can be abused

to cause DoS by leaving the application in an unresponsive

state.

g) NULL pointer dereference in Finished message: In

a similar way as for the previous bug, sending an empty

Finished message caused htls to crash. htls again initialized

a variable to NULL that would later hold the value of

the verification signature for the handshake, but since the

signature did not exist in the received message, the reading

function failed and the signature value remained as a NULL

pointer. The execution flow then continued and, later, htls tried

performing a memcpy operation with the variable to attempt

a signature validation, however, this operation failed since the

address in the pointer was invalid. Given that this also caused

an application crashed, it could have been abused in DoS

attacks just like previous bugs.

h) Non-zero compression method in ClientHello: TLS

1.3 does not support compression methods as was supported

in previous versions. However, it still includes this field in

the ClientHello and ServerHello messages for com-

patibility reasons. The RFC [1] states that any parties that are

negotiating a TLS 1.3 session must leave this field empty and

reject any messages that are not empty to prevent compression

attacks. It was found that htls accepted messages regardless of

whether this field was empty or not, which was considered to

be a minor bug.

i) More than one extension of the same type: Sim-

ilarly, the RFC indicates that any ClientHello and

ServerHello messages should not include more than one

extension of the same type, with the purpose of creating an

additional layer of protection against downgrade attacks. htls
accepted messages with more than one extension of the same

type and, even if this bug was not considered to cause any

security impact, it was still recommended to fix it.

j) Missing signature algorithms extension: Just like for

the previous bug, the RFC states that servers that re-

ceive a ClientHello message that does not include a

signature_algorithms extension when using certificate

authentication must abort the session. This extension indicates

which signature algorithms are supported for verifying certifi-

cates and if manipulation is possible, it could arguably help

to perform downgrade attacks. htls failed to abort the session

when this extension was missing.

k) EncryptedExtensions can be sent unencrypted: The

RFC specifies that after the ServerHello message has been

sent, all the following messages should be sent encrypted,

given that at this point both parties have enough information to

derive the cryptographic keys. It was found that htls received

and parsed an unencrypted EncryptedExtensions mes-

sage, failing to comply with the RFC.

TABLE IV. SUMMARY OF 
BUGS FOUND

Bug Found by Operator
Application crash with wrong TLV
length

eGMT+ASN.1 BitFlipOp

NULL pointer dereference in Certifi-
cate parse

eGMT BitFlipOp

Buffer over-read in log print with in-
valid certificates

eGMT BitFlipOp

Garbage bytes after signature eGMT+ASN.1 eDupOp
Missing ECDH public key validation eGMT ZeroOp
Buffer over-read in log print with
empty messages

eGMT eVoidOp

NULL pointer dereference in Finished
message

eGMT eTruncFuzzOp

Non-zero compression method in
ClientHello

eGMT eFuzzDataOp

More than one extension of the same
type

eGMT eDupOp

Missing signature algorithms extension eGMT eVoidOp
EncryptedExtensions can be sent unen-
crypted

eGMT eAppFuzzOp

VI. RELATED WORK

Our work is an extension of the Walz-Sikora fuzzer [2]. The

main advantage of our approach is the ability to deeply fuzz

the entire TLS handshake, including encrypted and integrity-

protected messages. Essentially, we introduce the “crypto

filter” proposed but not implemented by Walz and Sikora.

We improved and extended the original GMT operators and

showed how the GMT concept can be applied to non-TLS

use cases – demonstrated by fuzzing ASN.1 DER encoded

signatures and X.509 certificates. A big difference between

our work and the Walz-Sikora fuzzer is that we do not use

differential testing; our method requires only access to the

implementation under test and no further TLS libraries.

In addition to Walz and Sikora, format-aware fuzzing based

on syntax tree mutation has been proposed independently by

other researchers. One line of work (e.g. [25], [13]) focused on

fuzzing textual formats such as Javascript and XML, targeting

language parsers and interpreters. AFLSmart [11] also uses

format-aware tree-based fuzzing, but is more geared towards

hierarchically structured binary formats, such as WAV files. In

contrast, our methodology is designed for fuzzing the binary

on-the-wire format of interactive cryptographic protocols; in

our proof-of-concept, we targeted TLS implementations and

X.509 certificate processing code. Prior work for TLS mostly

uses greybox fuzzing, whereas our method is black box and

requires no access to the PUT’s source code.

Like us, Zhao et al. [26] include crypto capabilities in

their TLS fuzzer. Instead of a GMT-like tree structure, they

propose the concept of message tuples. The authors identify 12

message tuples and, based on analysis of prior vulnerabilities,

design domain-specific mutators for them. In contrast to our

work, Zhao et al. focus on the earlier TLS 1.2 protocol and,

like Walz and Sikora, rely on differential fuzzing to discover

issues.

Similar to us, Hu et al. [3] also use the Walz-Sikora fuzzer

as their starting point. However, they do not invent new GMT

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 369 ----------------------------------------------------------------------------



operators, but rely on the original ones described by Walz

and Sikora. As their main contribution, Hu et al. integrate the

format-aware GMT-based fuzzer into four open source fuzzing

frameworks: AFLNet, NSFuzz, StateAFL and AFLnwe. The

authors show that the GMT approach provides a significant

improvement over the baseline fuzzers. For example, the

proportion of interesting test cases generated with the GMT

fuzzer was on the average 7.65 percent higher. Although we

did not perform an explicit comparison with conventional

fuzzers, we believe our results are in line with these findings.

The authors focus on fuzzing the TLS server, while our eGMT

fuzzer works equally well for the TLS client too.

VII. CONCLUSIONS AND FURTHER WORK

Interactive protocols are difficult to fuzz due to lengthy mes-

sage sequences and dependencies between messages. Crypto-

graphic protocols are harder still, as they require the fuzzed

input to pass integrity validation and freshness checks to

achieve deep fuzzing. To address these challenges, we pre-

sented eGMT-Fuzz – a syntax-aware black box fuzzer. Our

approach is based on syntax tree mutation with a pluggable

protocol-specific component for cryptographic computations

such as TLS termination.

With eGMT-Fuzz, we discovered 11 distinct bugs in the

development version of htls, an embedded, C-based TLS 1.3

library. Most of these would have been difficult to detect

with traditional blackbox fuzzers based on format-breaking

random mutations. While direct comparison against other

format-aware fuzzers was left for further work, we believe

that our results demonstrate the validity of our approach.

Based on the results we obtained with eGMT-Fuzz and

further fuzz testing methodologies described in the related

Master’s thesis [27], we believe that embedded implementa-

tions written in C have high probabilities of including bugs that

can escalate to vulnerabilities. We recommended to perform

fuzz testing at different stages of the development process and

to follow secure coding practices such as CERT C [28] and

MISRA-C [29]. Examples of useful coding guidelines specific

to C include bounds checking when manipulating memory

buffers and making sure that pointers are valid before use.

In the future, we plan to continue developing new eGMT

operators, as we believe there is still much room for improve-

ment. New operators could be, for example, designed based

the ideas of Zhao et al. [26]. Furthermore, we intend to apply

eGMT-Fuzz to new domains such as confidential computing

and plan to fuzz more TLS implementations such as OpenSSL.

Fuzzing remote attestation protocols [30] would also be an

interesting test target, as this domain has not yet been subjected

to much fuzzing and, with some extra work, eGMT-Fuzz

should be well-suited to common attestation formats such as

COSE and CBOR [31]. Ideal would be if eGMT-Fuzz could

be developed into an open-source, developer-friendly tool

We conjecture that, despite the significant advances of

recent years, the quest for fuzzing cryptographic protocols has

only just begun – much remains to be discovered!

REFERENCES

[1] E. Rescorla, “The Transport Layer Security (TLS) Protocol version 1.3,”
RFC 8446, Aug. 2018.

[2] A. Walz and A. Sikora, “Exploiting dissent: Towards fuzzing-based dif-
ferential black-box testing of TLS implementations,” IEEE Transactions
on Dependable and Secure Computing, vol. 17, pp. 278–291, Mar. 2020.

[3] F. Hu, J. Ji, H. Shu, Z. Li, T. Liu, and C. Zhang, “Formatted stateful
greybox fuzzing of TLS server,” in 2024 IEEE Conference on Software
Testing, Verification and Validation (ICST). Los Alamitos, CA, USA:
IEEE Computer Society, May 2024, pp. 151–160.

[4] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Communications of the ACM, vol. 33,
no. 12, pp. 32–44, 1990.

[5] B. P. Miller, M. Zhang, and E. R. Heymann, “The relevance of classic
fuzz testing: Have we solved this one?” IEEE Transactions on Software
Engineering, pp. 1–1, Dec. 2020.

[6] J. W. Duran and S. Ntafos, “A report on random testing,” ICSE, vol. 81,
pp. 179–183, 1981.

[7] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of
the art,” IEEE Transactions on Reliability, vol. 67, pp. 1199–1218, Sep.
2018.

[8] P. Godefroid, “Fuzzing: Hack, art, and science,” Communications of the
ACM, vol. 63, pp. 70–76, Feb. 2020.

[9] H. Zawawy and J. Bottarini, “Android goes all-in on fuzzing,”
urlhttps://security.googleblog.com/2023/08/android-goes-all-in-on-
fuzzing.html, 2023.

[10] P. Godefroid, M. Levin, and D. Molnar, “Automated whitebox fuzz
testing,” in NDSS Symposium 2008. San Diego, USA: The Internet
Society, 2008.

[11] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Cǎciulescu, and A. Roy-
choudhury, “Smart greybox fuzzing,” IEEE Transactions on Software
Engineering, vol. 47, pp. 1980–1997, 2021.

[12] R. Guo, “MongoDB’s JavaScript fuzzer,” Communications of the ACM,
vol. 60, pp. 43–47, May 2017.

[13] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware
greybox fuzzing,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 724–735.

[14] C. Boyd, A. Mathuria, and D. Stebila, Protocols for Authentication and
Key Establishment, 2nd ed. Berlin, Germany: Springer Verlag GmbH,
2020.

[15] J. Larmouth, ASN.1 Complete. USA: Morgan Kaufmann Academic
Press, 2000.

[16] C. Research, “Sec 1: Elliptic curve cryptography, version 2.0,” May
2009.

[17] Y. Pan, W. Lin, Y. He, and Y. Zhu, “Coverage-guided differential testing
of TLS implementations based on syntax mutation,” PloS one, vol. 17,
no. 1, p. e0262176, 2022.

[18] J. Somorovsky, “Systematic fuzzing and testing of TLS libraries,”
in CCS’16: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, Oct. 2016, pp. 1492–
1504.

[19] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana, “NEZHA:
Efficient domain-independent differential testing,” in 2017 IEEE Sym-
posium on Security and Privacy (SP), 2017, pp. 615–632.

[20] D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching, 2nd ed. Reading, Mass.: Addison-Wesley, 1998.

[21] L. Gunn, N. Asokan, J.-E. Ekberg, H. Liljestrand, V. Nayani, and T. Ny-
man, “Hardware platform security for mobile devices,” Foundations and
Trends in Privacy and Security, vol. 3, pp. 214–394, Jun. 2022.

[22] A. Niemi, V. A. B. Bop, and J.-E. Ekberg, “Trusted Sockets Layer:
A TLS 1.3 based trusted channel protocol,” in Secure IT Systems:
26th Nordic Conference, NordSec 2021, ser. Lecture Notes in Computer
Science, N. Tuveri, Ed. Cham: Springer International Publishing, 2021,
pp. 175–191.

[23] V. A. B. Pop, A. Niemi, V. Manea, A. Rusanen, and J.-E. Ekberg,
“Towards securely migrating WebAssembly enclaves,” in EuroSec ’22:
Proceedings of the 15th European Workshop on Systems Security. New
York, USA: ACM, Apr. 2022, pp. 43–49.

[24] T. Jager, J. Schwenk, and J. Somorovsky, “Practical invalid curve attacks
on TLS-ECDH,” in Computer Security – ESORICS 2015. Springer
International Publishing, 2015, pp. 407–425.

[25] J. Gu, Z. Hua, Y. Xia, H. Chen, B. Zang, H. Guan, and J. Li, “Secure live
migration of SGX enclaves on untrusted cloud,” in Proceedings of the
2017 47th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, Jun. 2017, pp. 225–236.

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 370 ----------------------------------------------------------------------------



[26] Z. Zhao, X. Song, Q. Zhong, Y. Zeng, C. Hu, and S. Guo, “TLS-
DeepDiffer: message tuples-based deep differential fuzzing for TLS
protocol implementations,” in Proceedings of the 2024 IEEE Conference
on Software Analysis, Evolution and Reengineering (SANER). Los
Alamitos, CA, USA: IEEE, 2024, pp. 918–928.

[27] A. Lomeli, “Security testing of embedded TLS implementations,” Mas-
ter’s thesis, Aalto University, 2022.

[28] R. C. Seacord, Secure Coding in C and C++, 2nd ed. USA: Addison-
Wesley Professional, 2013.

[29] MIRA Ltd, MISRA-C:2004 Guidelines for the use of the C language
in Critical Systems, MIRA Std., Oct. 2004. [Online]. Available:
www.misra.org.uk

[30] A. Niemi, S. Sovio, and J.-E. Ekberg, “Towards interoperable enclave
attestation: Learnings from decades of academic work,” in 2022 31st
Conference of Open Innovations Association (FRUCT). IEEE, Apr.
2022, pp. 189–200.

[31] M. Moustafa, “Remote attestation for constrained relying parties,”
Master’s thesis, Aalto University, 2023.

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 371 ----------------------------------------------------------------------------




