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Abstract—The proliferation of textual data, notably in the form
of database records, calls for innovative methods of analysis that
go beyond traditional numerical techniques. While least squares
regression has been a cornerstone in quantitative data analysis,
its applicability to textual data remains largely unexplored. This
study aims to bridge this gap by introducing a similarity-based
least squares method tailored for textual data. Drawing on the
principles of similarity measures in text, such as semantic and
syntactic closeness, we propose an extension to the conventional
least squares framework. Our approach incorporates word-
based similarity metrics into the least squares objective function,
enabling the analysis of textual data in a manner coherent with
its qualitative nature. The developed methodology is rigorously
evaluated using both synthetic and real-world database records,
demonstrating its efficacy in uncovering intricate relationships
within textual data. Our findings open new avenues for textual
data analysis, blending the precision of classical statistical meth-
ods with the subtleties of text similarity.

I. INTRODUCTION

In the vast realm of data analysis, the treatment and

understanding of textual data, particularly database records,

have become increasingly paramount. As the digital universe

grows exponentially, with an estimated 2.5 quintillion bytes of

data produced daily, a significant portion of this avalanche is

textual data [1]. These are the records that detail transactions,

logs, communications, and countless other human and machine

interactions. Understanding the patterns, structures, and rela-

tionships within this textual data offers profound opportunities

for knowledge discovery and decision support [2].

Traditional data analysis methodologies, prominently the

least squares regression, have been foundational in the domain

of quantitative data [3]. Rooted in the early 19th century and

attributed to Legendre [4] and Gauss [5], the least squares

method has been an invaluable tool in deducing relation-

ships within data, finding applications from astronomy to

economics. But can this time-tested method be adapted to the

nuanced realm of textual data?

Textual data, unlike quantitative data, primarily relies on

the notion of ’similarity’ rather than ’magnitude’ [6]. Two

words or phrases may not exhibit a quantifiable difference,

but they can show varying degrees of similarity based on

their semantics, usage, or context [7]. Because of this property

of textual data, there’s a need for an analysis method that

recognizes its qualitative aspect. This has led to the idea of

modifying the least squares method to work within a similarity

framework.

In this paper, we investigate the application of least squares

regression in the context of textual data similarity. We intro-

duce a method to adapt traditional regression techniques to

work in a similarity space, with a primary focus on word sim-

ilarities in database records. Our approach involves defining

an appropriate similarity metric, reshaping the problem space,

and ensuring results are both robust and interpretable [8].

With this research, we intend to enhance data analysis

techniques, bridging the gap between the quantitative precision

of traditional methods and the qualitative depth of textual data

[2].

The primary areas of focus in this paper are regression anal-

ysis and similarity spaces, as we aim to adapt the regression

analysis framework to function within similarity spaces.

II. RELATED WORK

In the field of computer science, linear regression remains a

fundamental technique for modeling the relationship between

variables. Over the years, various objective functions and

modifications have been proposed to enhance the performance

and versatility of linear regression models. In this section, we

provide an overview of the state-of-the-art objective functions

and their popular modifications.

Ordinary Least Squares (OLS)
The most widely used objective function for linear regres-

sion is Ordinary Least Squares (OLS). OLS aims to minimize

the sum of squared differences between predicted and actual

target values [4], [5].

A. Regularized Regression

In the pursuit of addressing overfitting and enhancing model

generalization, regularized linear regression methods have

gained substantial popularity. These methods augment the

traditional Ordinary Least Squares (OLS) objective function by

incorporating penalty terms that encourage specific properties

in the model. Here, we discuss three widely used regularized

linear regression techniques:

1) Ridge Regression (L2 Regularization): Ridge regression,

introduced by Tikhonov [9], extends the OLS framework by

adding an L2 regularization term to the objective function.
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This regularization term penalizes the magnitude of the coef-

ficients, thereby encouraging smaller coefficients. The Ridge

Regression objective function is defined as:

θ̂ = argmin
θ

JR(θ) = argmin
θ

n∑

i=1

(ŷi − yi)
2 + λ

n∑

j=1

θ2j (1)

Here, θ denotes the model parameters (coefficients), ŷi is the

predicted value, yi is the actual target value, n is the number

of features, and λ is the regularization parameter.

Ridge regression encourages smaller coefficient values, ef-

fectively reducing overfitting and improving model general-

ization.

2) Lasso Regression (L1 Regularization): Lasso regression,

introduced by Tibshirani [10], promotes sparsity within the

model by incorporating an L1 penalty term in the objective

function. The Lasso Regression objective function is defined

as:

θ̂ = argmin
θ

JL(θ) = argmin
θ

n∑

i=1

(ŷi − yi)
2 + λ

n∑

j=1

|θj | (2)

Similar to Ridge regression, the model parameters θ are ad-

justed during training, but Lasso encourages some coefficients

to be exactly zero, effectively performing feature selection.

3) Elastic Net Regression (L1 + L2 Regularization): Elastic

Net Regression, proposed by Zou and Hastie [11], strikes a

balance between Ridge and Lasso regression by combining

both L1 and L2 regularization terms. The Elastic Net objective

function is defined as:

θ̂ = argmin
θ

JEN(θ) (3)

= argmin
θ

n∑

i=1

(ŷi − yi)
2 + λ1

n∑

j=1

|θj |+ λ2

n∑

j=1

θ2j (4)

Here, λ1 and λ2 are regularization parameters that control

the strength of L1 and L2 regularization, respectively.

Elastic Net provides a versatile regularization approach,

allowing users to balance feature selection and regularization

according to their specific needs.

4) Dropout: Dropout is a regularization technique intro-

duced by Srivastava et al. [12] and is commonly used in neural

networks. It involves randomly setting a fraction of neuron

activations to zero during each training iteration, effectively

creating an ensemble of subnetworks. The dropout technique

helps prevent overfitting and encourages robustness in deep

learning models.

These regularized linear regression techniques extend the

classical OLS method by incorporating penalty terms that

encourage certain properties in the learned models. The choice

between these techniques depends on the data characteristics

and the desired characteristics of the regression model.

B. Robust Regression

In scenarios where the data may be contaminated with

outliers, robust regression techniques have been developed

to provide more resilient modeling. These methods aim to

minimize the impact of outliers on the model while still

capturing the underlying trends in the majority of the data.

One notable approach is Huber loss, introduced by Huber [13].

1) Huber Loss: Huber loss combines the benefits of both

mean squared error (MSE) and mean absolute error (MAE)

and is designed to handle data with outliers more effectively.

The Huber Loss objective function is defined as follows:

θ̂ = argmin
θ

JH(θ) = argmin
θ

n∑

i=1

Lδ(ŷi − yi) (5)

In this equation, n represents the number of data points, θ
denotes the model parameters (coefficients), ŷi is the predicted

value, and yi is the actual target value. The function Lδ is a

piecewise loss function that combines the properties of MSE

for small errors and MAE for large errors:

Lδ(z) =

{
1
2z

2, if |z| ≤ δ

δ(|z| − 1
2δ), if |z| > δ

Here, δ is a tuning parameter that controls the threshold for

switching between the quadratic and linear regions. For small

errors (|z| ≤ δ), the loss is quadratic, similar to MSE. For

large errors (|z| > δ), the loss is linear, similar to MAE.

Huber loss offers a robust alternative to traditional OLS

by providing a balanced approach to handle outliers while

still maintaining the benefits of squared loss for small errors.

It is widely used in regression tasks where data quality and

robustness to outliers are critical considerations.

III. SIMILARITY SPACE

Similarity and dissimilarity functions are fundamental in

several research areas, including information retrieval, ma-

chine learning, cluster analysis, and specific applications such

as database searching and protein sequence comparisons.

While dissimilarity functions are well-defined within metric

spaces, similarity functions often lack a universally accepted

definition, leading to potential ambiguities and inconsistencies.

In this study, we propose a structured framework for

defining similarity spaces as counterparts to metric spaces.

This framework provides a foundation for analyzing similarity

functions with a clear mathematical perspective, setting the

stage for future research and applications.

We start by investigating monotonically decreasing convex

mappings of metric spaces. Although these mappings form the

basis of our proposed similarity space, they do not preserve

the original metric. Instead, we present an axiomatic system

that defines the properties of this similarity space. Using

this system, similarity functions can be precisely defined and

examined. Additionally, a metric space can be derived by

mapping back from the similarity space. Importantly, our

research shows that certain measures, like the Jaccard index
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and Tanimoto coefficient, fit well within the defined similarity

space, a position they lacked as per [14].

While the theory of metric spaces has been established for

over a century, the concept of similarity spaces is a more recent

development [14]. Linking metric and similarity spaces is not

straightforward. The former arises from spatial definitions,

while the latter is derived from the comparison of shared and

distinct attributes.

Definition III.1 (Similarity Space [14]–[18]). A similarity on
nonempty set X is a function s : X ×X → R

+ such that for
all elements x, y, z ∈ X:
(S1) s(x, y) = s(y, x) (symmetry),
(S2) s(x, z)+s(y, y) ≥ s(x, y)+s(y, z) (triangle inequality),
(S3) s(x, x) = s(x, y) = s(y, y) ⇐⇒ x = y

(identity of indiscernibles),
(S4) s(x, y) ≥ 0 (non-negativity),
(S5) s(x, y) ≤ min{s(x, x), s(y, y)}

(bounded self-similarity).
A similarity space is an ordered pair (X, s) such that X is

nonempty set and s is similarity on X .

There are several points to clarify. The term ‘similarity

metric’ has been introduced earlier. When referring to it

as a ‘metric’, it pertains to the context of a monotonously

decreasing convex transformation of either a partial metric

or a distance metric. In this article, we’ll predominantly use

the term ‘similarity’ to sidestep potential ambiguities. It’s

noteworthy to mention that based on our definition, an item

can exhibit a positive self-similarity, s(x, x) > 0, and the self-

similarities among different items can vary, i.e., s(x, x) �=
s(y, y). However, if x is identical to y, s(x, y) might not be

zero. [14]

A basic example of similarity space is the ordered pair

(R+, s) defined as follows

x ∩ y = min{x, y} =
x+ y − |x− y|

2
(6)

for all x, y in R
+. Other examples of similarity spaces that

are interesting in terms of broad practical application such as

Jaccard index, Tanimoto coefficient, Generalized Rozinek sim-

ilarity, Levenshtein similarity, longest common subsequence

may be found in [14]. The similarity space has many other ap-

plications, notably in fixed-point theory and in the exploration

of the existence and uniqueness of solutions to differential

equations [19].

IV. METHODOLOGY

Regression analysis, traditionally applied to quantitative

data, is based on understanding relationships between vari-

ables. As data analysis techniques evolve, there arises a

need to adapt these methods to a more qualitative nature of

data, especially when the underlying relationship is based on

similarity rather than magnitude. [20]

Traditional regression techniques, such as the least squares

method, focus on minimizing the distance between data points

and the model’s predictions. Given a data set X and a model

prediction y, this objective can be formally expressed as:

argmin
y∈Y

∑

x∈X

d(x, y)2 (7)

The squared norm (or squared distance) is given by ‖x‖2
(or [d(x, y)2). In certain contexts, especially in optimization

problems and machine learning, using the squared distance

can simplify computations due to its differentiable properties.

However, it’s crucial to understand that the squared norm does

not, in general, define a metric, because it doesn’t satisfy the

triangle inequality.

Theorem IV.1 (Induced Elementary Metric). If s(x, y) is a
similarity on X , then the function ds : X×X → R

+ given by

ds(x, y) = s(x, x) + s(y, y)− 2s(x, y) (8)

is induced elementary metric on X .

Proof. Consider x, y ∈ X . Then ds(x, y) = s(x, x)+s(y, y)−
2s(x, y) is always non-negative by the bounded self-similarity

(S5) because s(x, y) ≤ min{s(x, x), s(y, y)} holds. Moreover,

if ds(x, y) = ds(y, x) = 0 we get x = y because s(x, x) =
s(x, y) = s(y, y). Furthermore, the triangular inequality holds

ds(x, y) = s(x, x) + s(y, y)− 2s(x, y)

≤ s(x, x) + s(y, y)− 2[s(x, z) + s(y, z)− s(z, z)]

= [s(x, x) + s(z, z)− 2s(x, z)]

+ [s(y, y) + s(z, z)− 2s(y, z))]

= ds(x, z) + ds(y, z).

Considering our definition of distance in terms of similarity,

we have d(x, y)2 = (s(x, x) + s(y, y)− 2s(x, y))2.

By substituting this expression, the objective becomes:

argmin
y∈Y

∑

x∈X

[s(x, x) + s(y, y)− 2s(x, y)]2 (9)

In the context of optimization, finding the argument x
which minimizes f(x) is equivalently expressed as finding

the argument that maximizes −f(x). This relationship can be

denoted as arg min f(x) = arg max (−f(x)).
In contrast, if our aim is to maximize similarity, the ob-

jective becomes centric to the mutual similarity s(x, y). The

objective to achieve this can be expressed as:

argmax
y∈Y

∑

x∈X

s(x, y)2 (10)

Using the elementary similarity as an objective function, we

obtain for simple linear regression model

argmax
θ0,θ1

∑

x∈X

(y ∩ ŷ)2 = argmax
θ0,θ1

∑

x∈X

min{y, ŷ}2 (11)

where the simple linear regression model has the form:

ŷi = θ0 + θ1xi + εi. (12)
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Here:

• ŷi is the predicted value of the dependent variable for the

ith observation.

• θ0 is the y-intercept, representing the predicted value of

y when x = 0.

• θ1 is the slope of the regression line, signifying the

change in y for a unit change in x.

• εi is the random error term for the ith observation,

capturing the unexplained variation in y.

In regression analysis, the primary goal is often to min-

imize the discrepancy between observed values and model

predictions. However, an alternative approach is to frame

this as a similarity maximization problem. When viewing the

task through the lens of similarity, we aim to maximize the

elementary similarity between observed and predicted values.

Given the data set X and the observed values y, the

elementary similarity objective function for a simple linear

regression model can be defined as:

J(θ0, θ1) =

n∑

i=1

(min{yi, ŷi})2 (13)

where ŷi denotes the predicted value of the ith observation.

The goal is then to find parameters θ0 and θ1 that maximize

this similarity:

argmax
θ0,θ1

J(θ0, θ1). (14)

The parameters θ0 and θ1 are estimated using the data

in such a way that they maximize the elementary similarity

between observed and predicted values.

To maximize the elementary similarity between observed

and predicted values, we must take the derivatives with respect

to θ0 and θ1 and set them equal to zero.

Given our objective function θ0, θ1 where ŷi = θ0 + θ1xi,

we need to determine when this function reaches its maximum.

Taking the partial derivative with respect to θ0:

∂J

∂θ0
=

n∑

i=1

2(min{yi, θ0 + θ1xi})(1) = 0 (15)

Similarly, the partial derivative with respect to θ1 is:

∂J

∂θ1
=

n∑

i=1

2(min{yi, θ0 + θ1xi})(xi) = 0 (16)

For the maximum similarity, we set the above partial

derivatives equal to zero. This gives us a system of nonlinear

equations, which can be solved using iterative methods or

optimization techniques.

It’s important to note that, unlike the traditional least squares

method, the elementary similarity approach doesn’t yield a

closed-form solution for θ0 and θ1 due to the non-linear nature

of the objective function. Advanced optimization techniques,

such as gradient ascent (since we are maximizing) or special-

ized algorithms, are necessary to determine the optimal values

of θ0 and θ1 that maximize our similarity measure.

The objective function J(θ0, θ1) is formulated based on

the elementary similarity between the observed and predicted

values. It aims to maximize the squared similarity.

For optimization purposes, and especially when using tech-

niques like gradient ascent or descent, derivatives come into

play. These derivatives, or gradients, indicate the rate of

change of the objective function with respect to the parameters.

To obtain the partial derivatives of the objective function J
with respect to θ0 and θ1, we will differentiate the function.

When we take the derivative of the minimum value, we must

consider two potential cases for each data point:

1) When yi is less than or equal to ŷi
2) When yi is greater than ŷi

However, the form of our derivatives suggests we only need

to consider the values for which yi is less than or equal to ŷi.
Let’s explore the partial derivatives more rigorously:

1) Partial Derivative with respect to θ0:
Given:

∂J

∂θ0
=

n∑

i=1

2(min{yi, θ0 + θ1xi})(1)

When yi ≤ ŷi, this simplifies to:

∂J

∂θ0
=

n∑

i=1

2yi

However, when yi > ŷi, the contribution to the sum is

0.

For maximization, this should be set to zero:

n∑

i=1

2yi = 0

But this equation is not informative in its current form.

2) Partial Derivative with respect to θ1:
Given:

∂J

∂θ1
=

n∑

i=1

2(min{yi, θ0 + θ1xi})(xi)

When yi ≤ ŷi, this becomes:

∂J

∂θ1
=

n∑

i=1

2yixi

However, when yi > ŷi, the contribution is again 0.

For maximization:
n∑

i=1

2yixi = 0

But this equation, too, is not immediately informative

for estimating θ1.

It is essential to note that the provided equations represent

the conditions under which the objective function is maxi-

mized with respect to θ0 and θ1. However, this does not mean

that solutions for θ0 and θ1 can be directly extracted from

them.
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The challenge is that, because of the use of the “min”

function, the equations are non-linear and may not have an

analytical solution. Therefore, numerical optimization meth-

ods, like the Newton-Raphson method, will likely be the best

approach to find the values of θ0 and θ1 that maximize J .

This similarity-based approach for simple linear regression

offers an alternative perspective to the conventional least

squares method. While it introduces complexities in terms

of parameter estimation, the focus on maximizing similarity

between actual and predicted values might provide unique

insights and potential applications in specific domains where

such a perspective is beneficial.

By redefining our objective in terms of similarity rather

than the traditional least squares method, we present a novel

perspective on regression analysis. This approach could offer

unique insights and potentially lead to alternative regression

techniques that emphasize maximizing agreement or overlap

between actual and predicted values.

A. Nonlinear Optimization: The Newton-Raphson Method

Given the non-linear nature of our objective function, tra-

ditional linear regression techniques do not provide a direct

solution. One of the most prominent techniques to find the

maximum of a function like ours is the Newton-Raphson

method.

The Newton-Raphson method is an iterative procedure used

to find successively better approximations to the roots (or

zeros) of a real-valued function. The method can be gener-

alized for multidimensional problems, making it apt for our

regression task.

Given a current estimate θ, the update equation for the

Newton-Raphson method is given by:

θ(new) = θ(old) − [H(old)]−1g(old) (17)

where g is the gradient vector (first derivative) and H is the

Hessian matrix (second derivative).

For our objective function:

J(θ0, θ1) =

n∑

i=1

(min{yi, ŷi})2 (18)

The gradient g will contain our earlier derived partial

derivatives with respect to θ0 and θ1. The Hessian matrix H
will be a 2x2 matrix, with entries being the second partial

derivatives of J with respect to θ0 and θ1.

The Newton-Raphson iterations continue until the change

in θ between successive steps is below a predetermined small

threshold or until a maximum number of iterations is reached.

While the Newton-Raphson method provides rapid conver-

gence, it’s worth noting that the method might converge to a

local maximum, saddle point, or even diverge if not initialized

properly. Therefore, careful initialization and possibly multiple

starting points might be necessary to ensure convergence to the

global maximum.

By redefining our objective in terms of similarity, we

present a novel approach to regression analysis. While the

computational complexity of estimating parameters increases

due to the non-linearity of the objective function, methods

like the Newton-Raphson provide efficient tools for such tasks.

Emphasizing similarity over the traditional error minimization

could open avenues to alternative regression techniques that

prioritize agreement or overlap between observed and pre-

dicted values in specific application areas.

B. Objective Formulation in Similarity Spaces

In the realm of similarity-based optimization, we often

seek to maximize mutual similarities while keeping into ac-

count self-similarities which can act as regularizations. This

paradigm gives rise to an objective function of the following

form:

argmax
y∈Y

∑

x∈X

[s(x, y)− αs(x, x)− θs(y, y)] (19)

Each term in this objective function has a distinct interpre-

tation:

• s(x, y): This term represents the mutual similarity be-

tween x and y. Intuitively, within the optimization pro-

cess, this term pushes for the selection of a y that exhibits

high similarity to each element x in the set X .

• −αs(x, x): This is a regularization term based on the

self-similarity of x. The coefficient α scales its impact.

An elevated value of α emphasizes scenarios where x’s

self-similarity is minimal, steering the optimization away

from entities that are too self-reliant or idiosyncratic.

• −θs(y, y): Analogous to the preceding term, this com-

ponent regularizes based on the self-similarity of y. A

large θ value prioritizes generalized solutions for y,

discouraging selections that are too narrowly tailored or

self-focused.

C. Balancing Mutual and Self-Similarity

The coefficients α and θ in the objective function offer a

nuanced control over the balance between mutual similarity

and self-similarity. While mutual similarity pushes for close-

ness between entities, self-similarity acts as a counterbalance,

ensuring that solutions don’t gravitate towards overly specific

or unique representations. The optimal balance, dictated by

the values of α and θ, would typically be grounded in

domain expertise or determined empirically based on specific

application goals.

D. Objective Function Using Dot Product

A vector space equipped with an inner product 〈·, ·〉 is

termed a Hilbert space if it is complete with respect to the

norm induced by that inner product, i.e., ‖x‖ =
√〈x, x〉.

Under certain conditions if we measure similarity based on

the Lebesgue measure we can see

〈x, y〉 = μ(x ∩ y) = s(x, y)

where μ denotes the Lebesgue measure. This measure satisfies

certain axioms as given in Definition III.1.

Given a dataset with observed values y and input values x,

our goal is to find parameters that maximize the projection of
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Algorithm 1 Optimization using Dot Product Maximization

with Regularization

1: Input: Data points (x1, y1), . . . , (xn, yn), Regularization

coefficient λ, Learning rate α, Tolerance ε, Maximum

iterations max iterations
2: Output: Parameters θ0, θ1
3: Initialize θ0, θ1 to some starting values

4: Initialize prev cost to a large value

5: iteration ← 0
6: while iteration < max iterations do
7: J ← ∑n

i=1 yi(θ0 + θ1xi)− λ
∑n

i=1(θ0 + θ1xi)
2

8: if |J − prev cost| < ε then break
9: prev cost ← J

10: gradient 0 ← ∑n
i=1 yi − 2λ(θ0 + θ1xi)

11: gradient 1 ← ∑n
i=1 yixi − 2λxi(θ0 + θ1xi)

12: θ0 ← θ0 + αgradient 0
13: θ1 ← θ1 + αgradient 1
14: iteration ← iteration+ 1

15: return θ0, θ1

y onto its predicted values ŷ = θ0+θ1x. This can be quantified

using the dot product of these vectors:

θ̂0, θ̂1 = argmax
θ0,θ1

{
n∑

i=1

yiŷi − λ

n∑

i=1

ŷi
2

}
(20)

= argmax
θ0,θ1

{
n∑

i=1

yi(θ0 + θ1xi)− λ

n∑

i=1

(θ0 + θ1xi)
2

}

(21)

where λ is a regularization coefficient that controls the

balance between maximizing the projection and minimizing

the magnitude of the parameters.

E. Deriving the Gradients

To find the values of θ0 and θ1 that maximize our objective

function, we compute the gradient and set it to zero.

For θ0:

∂J

∂θ0
=

n∑

i=1

yi − 2λ

n∑

i=1

(θ0 + θ1xi) (22)

= ny − 2λ(nθ0 + θ1x) (23)

where y is the mean of the observed values, and θ0 and θ1x
are the means of the predicted values.

For θ1:

∂J

∂θ1
=

n∑

i=1

yixi − 2λ

n∑

i=1

xi(θ0 + θ1xi) (24)

=
n∑

i=1

yixi − 2λ(
n∑

i=1

xiθ0 +
n∑

i=1

θ1x
2
i ) (25)

Setting these gradients to zero yields the conditions for the

optimal parameters θ0 and θ1. The gradient ascent updates for

the parameters at each iteration are given by:

θ0 ← θ0 + α
∂J

∂θ0
(26)

θ1 ← θ1 + α
∂J

∂θ1
(27)

where α is the learning rate, which controls the size of the

steps taken in the direction of the gradient. The optimization

continues until a maximum number of iterations is reached or

the change in the objective function value between successive

iterations is less than a specified tolerance ε. The detailed steps

are presented in Algorithm 1.

1) Robustness to Outliers: Consider two datasets: one with-

out outliers D and one with an outlier D′. Let the objective

values for these datasets be represented as J(D) and J(D′).
Without the regularization term, the difference in objectives

due to an outlier is:

ΔJno-reg = J(D′)− J(D) (28)

=
∑

i∈D′
yi(θ0 + θ1xi)−

∑

i∈D

yi(θ0 + θ1xi) (29)

Given the influence of an outlier, this difference could be

significantly large.

However, with the regularization term:

ΔJreg = J(D′)− J(D) (30)

=

[
∑

i∈D′
yi(θ0 + θ1xi)− λ

∑

i∈D′
(θ0 + θ1xi)

2

]
(31)

−
[
∑

i∈D

yi(θ0 + θ1xi)− λ
∑

i∈D

(θ0 + θ1xi)
2

]
(32)

The regularization term, −λ
∑

i(θ0+θ1xi)
2, penalizes large

values of the parameters, thereby limiting the magnitude of

predictions.

To examine the impact of an outlier on this regularized

objective, consider a single outlier point (xout, yout) such that

yout is much larger than other values.

The contribution of this outlier to the objective is:

ΔJoutlier = yout(θ0 + θ1xout)− λ(θ0 + θ1xout)
2 (33)

While the data term yout(θ0 + θ1xout) tries to fit the outlier

closely, the regularization term −λ(θ0 + θ1xout)
2 prevents the

model parameters from adapting too much to the outlier. Thus,

a suitable choice of λ can limit the outlier’s influence, ensuring

robustness.

2) Convergence to Linear Regression Model: To demon-

strate that the regularized objective function converges towards

a linear regression solution, we need to examine the properties

of the objective function and the gradient ascent update rules.

Given that we are maximizing our function, we need it to be

concave. This function is a dot product minus a sum of squared

parameters (a regularization term). Under certain conditions,

this function can be concave, especially if the dot product term

dominates the behavior. The negative sum of squares (regu-

larization term) is concave. For concave functions, gradient
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ascent with a suitable learning rate guarantees convergence to a

global maximum. And the potential concavity of our objective

function, these updates will iteratively increase the value of J
until it converges to its global maximum, fitting the model to

the given data.

The regularization term penalizes extreme values of θ̂. This

ensures that the algorithm doesn’t diverge, promoting stability

and convergence. Moreover, the regularization can be viewed

as a form of penalty that keeps the parameter values bounded,

ensuring that the gradient ascent does not lead to unbounded

growth of the parameters.

F. Potential Applications and Implications

The presented objective provides a flexible framework for

tasks that revolve around similarity considerations. By judi-

ciously setting the parameters, one can tailor the objective to

a variety of use cases, from information retrieval to cluster

analysis. Further research could delve into understanding the

impacts of different similarity metrics on this optimization

paradigm.

V. EXPERIMENTS

This article explores a novel approach to recommending

pairs of articles to readers based on the similarity of their

content. The central hypothesis is that the likelihood of a

reader clicking on a recommended article (B) can be modeled

using the similarity between the primary article (A) and the

recommended one.

We construct a regression model where:

• The independent variable x is the normalized word-

based similarity measure between all pairs of words from

sentences A and B.

• The dependent variable Y is the click-through rate (CTR)

for the recommended article B.

The normalized edit similarity between two sentences,

s(x, y), could be defined as:

s(x, y) =
|x|+ |y| − d(x, y)

|x|+ |y|+ d(x, y)

where |x| and |y| denote the lengths of sentences x and y
respectively, and d(x, y) is the Levenshtein distance between

them.

For two sentences A and B, their average normalized word

similarity can be calculated as [14]:

Average Word Similarity =
1

n×m

n∑

i=1

m∑

j=1

s(ai, bj)

where n is the number of words in sentence A, m is the

number of words in sentence B, ai is the ith word in sentence

A, and bj is the jth word in sentence B.

VI. DATASET

We present a demonstrative example that illustrates the

application of ordinary least squares (OLS) in a similarity

space. This is achieved by maximizing the dot product, com-

plemented with regularization. The resulting regression model

is given by:

CTR = θ0 + θ1 × Average Word Similarity

For the data presented in Table VI and as outlined in

Algorithm 1, the estimated regression coefficients are:

CTR = 43.91 + 61.89× Average Word Similarity.

VII. DISCUSSION

This methodology offers a unique take on regression by

focusing on maximizing the similarity between observed and

predicted values. The regularization term ensures model stabil-

ity and avoids overfitting. Further work is needed to compare

its efficacy to traditional regression techniques and to explore

other potential applications.

The proposed model offers a unique approach to understand-

ing user engagement based on content similarity. However,

several other factors, such as article length, topic, and writing

style, could influence the CTR. Future work could incorpo-

rate these aspects for a more comprehensive recommendation

system.

Given the potential concavity of our objective function and

the properties of gradient ascent, our approach guarantees

convergence to a solution that fits the model to the data while

also being robust due to regularization.

VIII. CONCLUSION

By redefining our objective in terms of similarity, we

present a novel approach to regression analysis. While the

computational complexity of estimating parameters increases

due to the non-linearity of the objective function, methods like

the Newton-Raphson provide efficient tools for such tasks.

Emphasizing similarity over the traditional error minimiza-

tion opens the door to alternative regression techniques that

prioritize agreement or overlap between observed and pre-

dicted values. One practical application of this can be seen

in content recommendation systems. By treating each article

as a vector of words or concepts and computing the similarity

between them, our regression-based similarity model can sug-

gest pairs of articles that align closely in terms of content. This

ensures that readers are not only provided with content tailored

TABLE I. DATASET OF SENTENCE PAIRS AND 
THEIR CTR

Sentence SM CTR
A:Machine learning methodologies are advancing rapidly.

0.75 90
B:AI has greatly impacted technological evolution.
A:Computers are essential for modern work.

0.65 85
B:Programming is a fundamental skill in the digital age.
A:Weather prediction relies on robust algorithms.

0.70 88
B:Good data analytics improves forecast accuracy.
A:Birds are adapted for aerial locomotion.

0.3 60
B:Fish have evolved to swim efficiently in water.
A:Digital marketing strategies are diversifying.

0.55 80
B:Online advertisements drive significant business revenue.

* SM = Similarity Measure
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to their interests but also with additional related articles,

enhancing their reading experience and engagement.

Furthermore, this approach could revolutionize the way

recommendation engines work, especially in the digital pub-

lishing realm. Instead of merely suggesting individual articles

based on users’ past reads or popular trends, platforms could

present pairs or clusters of articles that delve into similar

themes or topics. This not only facilitates deeper immersion

into a particular subject area but also encourages users to spend

more time on the platform, benefiting both the user and the

content provider.

Moving forward, more extensive studies can be conducted

to validate the efficiency and effectiveness of our pro-

posed method in real-world recommendation systems, further

bridging the gap between traditional regression analysis and

modern-day practical applications.
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