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Abstract—Attackers often exploit vulnerabilities in network-
facing processes to gain access to the rest of the system. To
combat this, modern operating systems such as Android, iOS and
major Linux distributions allow running vulnerable or untrusted
processes inside sandboxes – confined execution environments,
where access to resources is restricted according to an implicit or
configurable security policy. Major building blocks of sandbox
implementations include namespace virtualization, system call
interposition and kernel subsystem hooking. In this paper, we
survey the state-of-the-art in process sandboxing, focusing on
solutions that are widely deployed in consumer devices and cloud
servers.

I. INTRODUCTION

Sandboxing – also known as confinement, containment
or jailing – restricts the resources available to a process,

protecting sensitive data and reducing the attack surface of

the operating system (OS) and system services. Today, all

major commercial OSes use sandboxing, especially to contain

network-facing applications, such as web browsers, media

codecs and messagers [1]. The practical importance of sand-

boxing is exemplified by the high rewards offered for zero-day

exploits that escape or bypass the sandbox [2]. A properly

implemented and configured sandbox can prevent an attacker,

who manages to compromise a network-facing application,

from harming the rest of the system [3].

In this paper, we survey how process sandboxing is imple-

mented and used in commercial devices, such as smartphones,

PCs and cloud servers. In contrast to existing surveys that

cover sandboxing on a single OS [4], or lack significant detail

on individual sandboxes [5], [3], we aim for sufficiently deep

coverage of implementation and usability aspects to provide

practical aid to developers of system services and applications

looking to implement the principle of least privilege.

While historically operating systems have focused on re-

stricting actions of the human user – with the understanding

that a process is always a fully authorized agent of the user –

the common view today is that process containment is at least

as important [6, p. 19] and that processes should be regarded as

security principals of their own [7, p. 9]. Correspondingly, our

focus is on process sandboxing, i.e. containment of running

programs that are scheduled and managed by the OS directly.

We do not discuss in detail user sandboxing or system-wide

containment methods such as virtual machine machine based

isolation like the Windows Defender Application Guard [8, p.

10]. Neither do we cover sandboxes in the form of interpreted

and just-in-time compiled code, such as the Java Virtual

Machine (JVM) or the Android runtime (ART).

Within process sandboxing, we distinguish three main ap-

proaches: i) process self-containment, ii) process-wrapping

and iii) mandatory process containment. In these, the sandbox

is configured by the process itself, by a sandbox manager

application and by a privileged system administrator, respec-

tively. In the surveyed sandbox schemes, we note important

differences in how the restrictions are implemented, where

the access control decisions made, how policy is defined and

whether configuring the security policy requires administrator

privileges. An interesting development is the emergence of

unifying frameworks, such as minijail, that abstract multiple

process sandboxing technologies and provide a convenient

interface – potentially making sandboxing more approachable

to non-security experts.

The rest of the paper is organized as follows. After care-

fully defining sandboxing and highlighting its differences to

other isolation methods, we proceed by describing the basic

building blocks of a sandbox, such as virtualization, system

call interposition and access control, and then show how these

are combined in practice to construct process sandboxes. We

survey sandbox implementations on Linux, Android, macOS

and iOS and Windows, covering the main operating systems

used on consumer devices and servers today. We round off

the survey by describing the minijail library and command-

line tool, which unifies several sandbox schemes. For process

self-containment sandboxes, we provide example code, and for

other sandboxes we provide example policies. We conclude by

discussing the pros and cons of the surveyed sandboxes, based

on appraisals in the literature and our own experience of using

them. Finally, we discuss interesting research directions and

potential for further work.

II. WHAT IS A SANDBOX?

The Encyclopedia of Cryptography and Security defines

sandboxing as a technique for enforcing security policies
on untrusted guest applications in a secure environment to
eliminate risk to host system [9, pp. 1075–1078]. We dissect

this definition into three key components:

1) A sandbox enforces security policies: a sandbox aims

to guarantee well-defined security properties. The goal

is security, not just isolation or ease-of-use.

2) Sandboxed applications are untrusted: they are assumed

to be malicious by design, faulty, or to contain vulner-

abilities that allow untrusted entities to influence their

behavior.
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Fig. 1. Illustration of common isolation technologies. Red outline = process
sandbox. Black lines = virtual memory based isolation. Blue line = user/kernel
mode isolation. Green line = REE/TEE isolation.

3) A sandbox protects the host system from the sandboxed

application. The other direction – protecting the appli-

cation from host – is not a goal.

Sandboxing can be regarded as a special case of security
isolation [5], of which Bursell distinguishes three types:

1) workload-from-workload, 2) host-from-workload and 3)

workload-from-host isolation [10, pp. 202-209]. Bursell’s

workload has larger scope, but also covers our application.

While not explicitly stated in our above definition of sandbox-

ing, we assume “protecting the host” to also imply protecting

other applications. Thus, sandboxing provides isolation of type

1 and 2. Next, we highlight differences between sandboxing

and some common isolation technologies, illustrated in Fig 1.

Trusted execution environments (TEEs) provide hardware-

based type-3 isolation of trusted applications (TAs) from an

untrusted host platform, which in this context is called the

rich execution environment (REE). TEEs are usually imple-

mented as protected enclaves within main CPU. In TEE-based

isolation, both the direction of the protection and the trust

assumption are inverted compared to sandboxing. [11]

Virtual machines (VMs) can be defined as complete com-

pute environments with their own isolated processing ca-

pabilities, memory and communication channels [12, p. 4].

The comprehensive isolation provided by a VM effectively

constitutes a (large) sandbox, but with a different protection

boundary: a VM does not, on its own, protect the virtualized

system from applications running inside. Thus, sandboxes may

still be required within the VM.

Containers, such the docker toolkit, focus on easing ap-

plication deployment by virtualizing key platform resources,

while sharing the same kernel [12, p. 4]. An application

may be programmed to use a specific resources, such as

particular TCP port, which may not always be free on the

host. A container can then map the application’s preferred

resource name (such as a port number) to another resource

that is actually available. Containers do not generally attempt

to contain a malicious application; instead, containers focus on

preventing resource conflicts and ensuring the correct versions

of dependent libraries are available to the application [13].

Fig. 2. Common sandbox building blocks. a) Virtualization via multiplexing
allows a single physical resource to be accessed via multiple virtual resources.
b) Namespaces allow using the same name for multiple resources. c) The
chroot system call changes the meaning of the root directory for a particular
process, restricting the process’ view of the filesystem.

III. BUILDING BLOCKS OF A SANDBOX

A. Virtualization

Virtualization forces a resource to be accessed via an

abstraction layer. The layer exposes a virtual resource that

is – from the user’s perspective – identical to the underlying

physical resource. Virtualization can be implemented with

three basic techniques: multiplexing, where a single physical

resource is accessed via multiple virtual resources (Fig. 2a),

aggregation, where multiple physical resources are accessed

via a single virtual resource) and emulation. [12, pp. 1-3]

Virtual memory isolates processes by preventing them from

accessing each other’s memory. Other resources can also be

virtualized with sandboxing in mind; a well-known example

of this is the Unix namespace concept, which virtualizes, for

example, filesystems and network interfaces [14]. Namespaces

were pioneered by the Plan 9 operating system [14], which

the took the Unix concept of “everything is a file” to the

extreme. Resources such as devices, network interfaces, etc.

were represented as files in single-rooted file system hierar-

chies. There was no “global” filesystem, but processes could

assemble private views of the system by constructing a “name

space” file that connects the resources.

The mount namespace was added into Linux in 2002 and

followed later by UTS (hostname), process (PID), network

and cgroup namespaces. Namespaces, along with chroot and

cgroups, are the main technologies underlying popular con-

tainer frameworks such as docker [13]. A process is always

in exactly one namespace of every kind, and can only see

and use resources in its own namespace. [15] Having multiple

instances of a namespace allows having two resources with

the same name [16], as illustrated in Fig. 2b. By default, a

process inherits the namespaces of its parent, but a process

may choose to have its own unique namespaces. On Linux

this can be done with unshare system call.
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B. Access control

Sandboxes commonly make use of available access control

frameworks, including the original Unix scheme based on

user (instead of process) identity [17]. Access control methods

can be classified as discretionary or mandatory, depending on

whether the subjects (users, processes) are allowed to influence

policy.

A persistent issue with access control on Unix-like systems

is the prevalent usage of the all-powerful “root” account

privileges. A process with root privileges can override access

control decisions, execute any binary and even load kernel

modules – thus, a root-privileged process can execute arbitrary

code both in user and kernel space. Most network-facing

daemons are still running as root; a single vulnerability in

these can compromise the entire system [18].

Capabilities, defined in the POSIX.1e standard, are widely

used in Linux to break the omnipotent root user’s privileges

into more fine-grained components. There are currently over

30 capabilities in the Linux kernel [13, p. 19]. Examples

include CAP SYS BOOT, which allows rebooting the

system, CAP DAC OVERRIDE, which allows overriding

DAC access control checks, and the (unfortunately) quite

wide-ranging CAP SYS ADMIN which allows a multi-

tude of system administrator actions, such as looking up file

extended attributes or loading Berkeley Packet Filter (BPF)

programs (see Section VII-A2) into the kernel with the bpf

system call.

C. System call interposition

Except for some low-level embedded systems, a process

interacts with its environment almost exclusively via the OS.

Thus, the system call interface is a logical place to enforce

the sandbox’ security policy. In particular, system calls are

the only way a process can access resources outside of its

own virtual memory range. System call interposition refers to

a method where system calls are intercepted close to their

entry point. Execution is transferred, via hooks, to a policy

enforcement point (PEP) that decides whether to allow the call.

The PEP may be implemented either in kernel or userspace.

Despite its seeming simplicity, complexity of modern system

call interfaces make system call interposition is difficult to

implement securely. Examples of common issues include over-

looking indirect paths to resources, symbolic link or relative

path races – and even unexpected side-effects of denying

system calls [19]. System call interposition also suffers from

relatively low granularity [20] and may require duplication

of operating system functionality – for example, pathname

parsing may need to be reimplemented if pathname resolution

at the system call entry point is desired.

D. Kernel subsystem hooking

The full context and details of a system call are not always

known at its the entry point. For example, symbolic links are

resolved later. Reading from a resource given its file descriptor

(an opaque integer) is another example: whether the descriptor

refers to a standard storage file, a device or a socket, is

Fig. 3. Illustration of common sandbox implementation techniques on Linux:
system call interposition, discretionary access control and kernel subsystem
hooking. Each sandboxing mechanism checks whether the system call or
access to kernel object is allowed by policy. If not, an error code is returned
or the process is killed. The policy is either stored in the application binary
or configured by a privileged policy administrator. Adapted from [20].

not known at the start of the read system call. A popular

approach is therefore to insert hooks closer to the specific

action that the system call triggers. Well-known examples of

this approach include Linux security modules (LSM) [20] and

the TrustedBSD mandatory access control framework (MACF)

[21].

E. System call wrapping

In system call wrapping, the process is not allowed access

the OS directly, but must, instead, use a “wrapper” API

provided by the sandbox. For example, Java programs can

only call access the OS via the Java Virtual Machine. Sandbox

policy enforcement can then be done in the wrapper. This

approach is sometimes called process-level virtualization.

F. Process self-containment

A process can contain itself by voluntarily giving up priv-

ileges it does not need. In practice, the process does this by

invoking special self-containment system calls. For example,

a process may start with root privileges, and invoke the

capset system call to reduce privileges to the bare minimum

the process needs. It is implicitly assumed that the process

is trusted until the point where the privileges are dropped

and untrusted afterwards. The seccomp system call allows

the process to specify a filter that restricts its access to

further system calls. Landlock [22], a recent Linux Secu-

rity Module (LSM), provides three self-containment system

calls (landlock create ruleset, landlock add rule and

landlock restrict self). In contrast to most earlier self-

containment technologies, Landlock does not require the call-

ing process to be privileged in order to use the API.
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G. Process-wrapping

In process-wrapping, the sandboxed process is started and

its privileges are restricted by another process – a sandbox

manager. Examples of process wrappers include command-

line tools such as jailkit, firejail, minijail0, AppArmor’s aa-

exec the SELinux-based sandbox and macOS’ deprecated

sandbox-exec. In some setups, the init daemon functions

as a sandbox manager. We note that process-wrapping and

process self-containment are not always clearly delineated. For

example, a process can contain itself by dropping privileges

and then invoking the exec system call to start another process.

This corresponds to process-wrapping if the new process

inherits the restrictions that were configured by the parent.

H. Policy management

Policy management has often been the Achilles’ heel of

“post-DAC” sandboxes. While the UID-based DAC sandbox

is simple enough not to require a separate policy definition,

this is not the case for most more complex sandboxes – these

suffer from what Anderson calls dual coding of policy [4, p.

3]: first, the code describes that a program does, and then a

separate policy describes what the program is allowed to do.

Sandbox mechanisms that require a separate policy, such as

SELinux and AppArmor, are notorious for being difficult to

use in practice [23].

Many sandboxing schemes provide a domain-specific policy

language, often also allowing the policy to be compiled into

binary when performance is critical. Another approach is

to allow policy configuration at run-time via an API such

as system calls. Whether sandboxed processes are able to

influence the policy constitutes the classic distinction between

discretionary (DAC) and mandatory access control (MAC).

In DAC-based sandboxing, a process may be allowed, for

example, to configure the policy for its child processes or for

created files. In MAC-based sandboxing, subjects have no say

over policy configuration.

Some sandbox technologies require access-controlled re-

sources to be labeled, i.e. assigned an additional name by

which they can be referred to in the security policy. A policy

that operates on existing names, such as absolute pathnames

(such as /etc/passwd) does not require labeling.

IV. HISTORY OF SANDBOXING

Protection was a major design goal in early operating sys-

tems such as Multics. Important isolation primitives, such as

virtual memory and capability-based addressing were invented

during this period, ranging roughly from the 1960s to the mid-

1970s. According to Anderson [4, p. 1], however, this laudable

focus on security was lost in the transition to Unix dominance.

Unix [17] initially had few of these security features. Its

security model (DAC) accounted for malicious users, but not

for malicious (or vulnerable) processes started by a trusted

user. Since important processes such as network daemons and

remote login services ran with privileges of the all-powerful

root user, compromising one these was enough to compromise

the entire system.

Addition of the chroot system call into Unix Version 7 in

1982 [24, p. 11] can be regarded as the first step towards

modern process sandboxing. Invoking chroot permanently

changes the process’ root directory. This, in theory, restricts

the process to files below the new root. However, sandboxing

was not an original goal of chroot, and many practical bypass

techniques were found over time. The main problem is that

chroot only controls file access based on the pathnames. So,

for example, access by file descriptor is not controlled. [25]

FreeBSD’s jail utility was one of the earliest process-

wrapper sandboxes. In addition to improved chroot-like

filesystem restrictions, jail also restricted the jailed process’

visibility to other processes and network interfaces [24]. Janus

[26], [27], developed mostly in the late 1990s, was one of the

first system call interposition based sandboxes in the 1990s.

In an important later work [19], the authors reflected upon

difficulties they experienced trying to implement system call

interposition without loopholes. The work of Provos et al [28]

in 2003 was an early effort to provide a self-containment

sandbox on Unix like systems. Following the principle of

privilege separation, the authors proposed to split the SSH

daemon, which ran as root, into two processes: a monitor and

a slave. Only the monitor would retain root privileges. To serve

new connections, the monitor would fork off a slave process

under a unique UID. The slave would then invoke chroot to

restrict its access to the file system, and drop privileges. When

a privileged action was required, the slave would request this

as a service from the monitor via a well-defined interface.

Today, as we shall see in the rest of this paper, sandboxes are

widely deployed in commercial devices such as smartphones

and PCs.

V. FRAMEWORK

For each of the studied real-world process sandboxes, we

attempt to answer the following questions:

• Implementation. Who enables the sandbox, a sandbox

manager or the sandboxed process itself? Which tech-

nologies is the sandbox implemented with? At what point

in the kernel are the access permission checks done?

• Policy. Does the sandboxing scheme provide its own pol-

icy language? Does the sandbox require access-controlled

object to be labeled separately?

• Privileges. Does configuring the policy and enabling the

sandbox require administrator privileges?

• Coverage. What operations can be restricted by the

sandbox? Does it allow filesystem-based and network

interface restrictions?

VI. PROCESS SANDBOXING IN MOBILE DEVICES

A. Apple

The Apple sandbox, originally called Seatbelt, first appeared

in the OS X 10.5 in 2007 [29, Chapter 5] and became

significantly easier use to when the developer-friendly App
Sandbox interface was introduced in OS X 10.7 in 2011 [30,

p. 151]. Today, sandboxing is used on all Apple devices [31],

[32].
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Over time, Apple has incrementally tightened the sandbox,

partly in response to high-profile vulnerabilities, such as the

jailbreakme.com attack, where users could gain root privileges

on an iPhone by simply visiting a website with the Safari

browser [33, p. 3]. For example, between 2019 and 2022,

Apple expanded the sandbox with e.g. ability to filter Unix

and Mach system calls [32, pp. 11–12].

The inner workings of Apple’s sandbox are closed-source

and opaque, but reverse engineering efforts have shed some

light on it [34]. It is known to be based [35, p. 1] on the

TrustedBSD mandatory access control framework (MACF)

[21]. The MACF is implemented in the XNU kernel, providing

over 200 policy hooks [36] and kernel object tagging [37, p. 5],

with the ability to restrict access filesystem, system call, inter-

process communication (IPC) and network interfaces, among

others. The sandbox policy is enforced in the Sandbox.kext

kernel extension [37, p. 14]. A userspace library, libsandbox,

provides a policy compiler and process self-containment APIs.

The sandboxd daemon is used for logging and tracing.

There are two ways to configure the sandbox policy on

Apple devices: Sandbox Profile Language (SBPL) and entitle-

ments. iOS allows both, but macOS only supports entitlements.

During application loading, the policy is extracted, compiled

into binary and then stored in the kernel.

SBPL is a Scheme-like language. It was originally the

only way to configure the sandbox before the App Sandbox

framework. It is still supported and used extensively by

Apple’s own applications and system daemons. The following

example, paraphrased from [35], allows reading files in the

/usr directory, except for one particular file. It also allows

connecting to the TLS port of a particular server. The first

line makes this a whitelist policy; all other actions are denied.

(deny default)
(deny file-read* (literal "/usr/forbidden_file"))
(allow file-read* (regex #"/usr/*"))
(allow network-outbound (remote tcp "server.com

:443"))

In earlier iOS versions, the compiled SBPL policies were

stored in a separate location (/usr/libexec/sandboxd). Since

iOS 9, all compiled policies are stored in single binary blob in

the sandbox kernel extension (com.apple.security.sandbox)

[35, p. 6] in read-only memory [31, p. 2]. The format of the

blob is closed-source, but it has been reverse-engineered by

researchers (e.g. [35]). The default sandbox policy, called con-
tainer, has also been reverse-engineered back to the human-

readable SBPL format [38].

Entitlements are a more developer-friendly way to configure

the sandbox. They are key-value pairs the developer can write

either in XML or via a GUI in the Xcode IDE. Entitlements

are stored in the application’s executable file, and covered by

its signature, protecting them against tampering. The entitle-

ment keys all start with the prefix com.apple.security. For

example, com.apple.security.network.server.client allows

the application to connect to a server over TCP/IP, and

com.apple.security.device.camera allows the app to use the

camera. [39]

In iOS, the default container system-wide sandbox policy

is applied to all applications, but it is possible to define a

complementary per-process policy [31, p. 13]. On macOS,

sandboxing is mandatory for applications distributed via the

official app store, but optional for others. To enable the

sandbox for a macOS application, the developer can either

include the com.apple.security.app-sandbox entitlement in

the binary, or invoke the sandbox by calling the sandbox init

API offered by libsandbox, with the SBPL policy as a pa-

rameter. Thus, the Apple Sandbox provides mandatory process

containment for iOS apps, but for macOS apps, also a self-

containment option is provided. In addition, Apple provides

the (now deprecated) sandbox-exec process wrapper. [30]

B. Android

From the start, Android has sandboxed apps and system

services using an approach based on traditional Unix DAC [4,

pp. 2–3]. Each app is assigned a separate UID and a directory

owned by the app [40]. A limited set of UID sandboxes are

used for system services. For example, media frameworks run

under a single UID called the AID MEDIA. UIDs are still

the primary application sandboxing mechanism in Android,

but they have recently been complemented with seccomp and

SELinux. Since Android 8, all applications run with a seccomp

filter, and Android 9 added a per-app SELinux sandbox [7,

pp. 17-31]. Android 12 added Private Compute Core (PCC)

for sandboxing the processing of private data, such as sensor

readings, within an application [7, p. 25]. SDK sandboxing

became possible in Android 13 with the ads SDK runtime,

which allows apps to load code from third-party libraries such

that loaded code runs in a sandbox that is separate from the

app sandbox [7, p. 22]. This allows SDKs to be distributed and

updated separately from apps, and protects against SDK abuse

(e.g. programmatic clicks in advertising SDKs). Users can also

give an app permission to access their location, without giving

the SDK the same permission.

C. Windows

In Windows, processes are restricted using security tokens.

These contain security identifiers (SIDs) that uniquely identify

the process and its owner. Windows 8 added the AppContainer
sandbox, originally codenamed LowBox. All Universal Win-

dows Platform (UWP) apps are sandboxed with AppContainer,

and regular desktop applications can also be configured to

use it [41]. In particular, the Edge browser relies heavily on

AppContainer sandboxing [8]. The internals of AppContainer

are closed-source and largely undocumented, although some

information can be found in [42, p. 684–709] and Microsoft’s

online documentation, e.g. [43].

The sandboxed process receives a SID that combines the

identity of the user and the application. This means, for

example, that the process no longer gets the same level

of access as the user who started it. An AppContainer-

sandboxed process receives its own private, restricted view

(i.e. a namespace) of the filesystem, the registry and kernel

objects. For example, based on the string representation of
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its SID (x) a sandboxed process receives private directory

Sessions\x\AppContainerNamedObjects, listing the ker-

nel objects it can access. [42]

AppContainer adds the notion of capability into security

tokens, allowing more fine-grained sandbox policies. For ex-

ample, the internetClient capability allows outgoing Internet

connections. The application’s capabilities are declared in its

package manifest. Enabling any capability in a sensitive subset

called restricted capabilities, requires approval from Microsoft

before the app can be accepted into the App Store. These

include, for example, inputObservation, which the app to

observe various forms of raw input, such as keyboard events

and mouse movements and locationHistory, which allows

the app to access location history of the devices. [44]

VII. PROCESS SANDBOXING ON LINUX PCS AND SERVERS

A. Seccomp

Secure computing mode (seccomp) is a process self-

containment feature in the Linux kernel, implemented with

system call interposition. Seccomp policies are configured and

enabled with the seccomp system call. [45]

1) seccomp-1: The first version of seccomp, often called

strict seccomp or seccomp-1, was added into the mainline

Linux kernel in 2005. When enabled at runtime, seccomp-

1 restricts the application to only four system calls: read,

write, exit and sigreturn. Since open is not among these, the

application needs to open the files it wishes to access before
enabling seccomp-1 mode. Unfortunately, modern versions

of the gcc compiler use exit group instead of exit. Such

programs will be killed at the end when seccomp denies the

exit group call.

2) seccomp-bpf: The successor of seccomp-1, called

seccomp-bpf or seccomp filter mode, was merged into the

mainline kernel in 2012. It is much more versatile than

its predecessor: instead of a simple “deny-list”, seccomp-

bpf makes access control decisions programmable, using the

classic Berkeley Packet Filter (cBPF) assembly-like language.

The cBPF code (a filter) is interpreted by the kernel on system

call entry. The result is either that the system call is allowed,

the process is killed, or a (possibly filter-defined) error code

is returned. seccomp-bpf makes it possible to deny a system

call conditionally, based on its arguments. For example, one

can prevent an application from writing to any other file except

standard output by requiring the fd argument to be 1. However,

pointers cannot be dereferenced in a cBPF filter, so inspecting

non-integer syscall arguments is difficult. For example, the first

argument to open is a C string – a pointer to char – so it is

not possible to use a cBPF filter to allow or forbid the process

to open a particular file.

3) seccomp-ebpf: Jia et al. [46] discuss several further

drawbacks of seccomp-bpf. Since cBPF filters are stateless, it

is not possible to use them to apply count-limiting to system

calls. For example, it is not possible to allow a container to

call exec only once or to limit the number of files a process

may open using the open system call. It is not possible to

invoke any Linux kernel functionality in the cBPF filter, which

prevents e.g. accessing a timer to check when the system

call was last invoked, so rate-limiting with cBPF is also not

possible. It also not possible to invoke other cBPF filters.

To address such issues, Jia et al. propose seccomp-ebpf, an

alternative implementation of seccomp that uses the extended

BPF language (eBPF) instead of cBPF. Although seccomp-2

also invokes eBPF under the hood, it is not possible to use

eBPF to specify filters.

4) seccomp notifier: Seccomp notifier is an earlier attempt

to solve similar issues as seccomp-ebpf. Seccomp notifier

introduces a userspace agent to complement cBPF filters.

The userspace agent can be stateful, but it introduces some

amount of overhead due to the frequent user-kernel space

context switches during seccomp evaluation. seccomp-notify

was added in Linux 5.0 in 2019.

5) The seccomp API: A seccomp filter is loaded using the

seccomp system call, whose C interface is:

int seccomp(
unsigned int operation,/* e.g.

SECCOMP_SET_MODE_FILTER */
unsigned int flags,
void *args // The BPF program to load

);

The filter is defined as a BPF program, consisting of a

sequence of statements with the following format:

struct sock_filter {
__u16 code; // Instruction code,

// e.g. "BPF_JMP | BPF_JEQ"
__u8 jt; // Distance of forward jump on ’true’
__u8 jf; // Distance of forward jump on ’false’
__u32 k; // Generic multiuse field

};

Each statement operates on a variable of the following type,

which represents the system call invocation to be filtered:

struct seccomp_data {
int nr; // System call number
__u32 arch;
__u64 instruction_pointer;
__u64 args[6]; // System call arguments

};

The following code installs a seccomp filter that allows

the system calls which a minimal C program needs to open

and write to a file. For simplicity, we assume the system call

number is always correct for the current architecture.

struct sock_filter filter[] = {
// Load syscall number from seccomp_data
// into accumulator
BPF_STMT(BPF_LD|BPF_W|BPF_ABS,

(offsetof(struct seccomp_data, nr))),
// Jump to allow if syscall number is
// 1 (write). 2 (open), 5 (fstat)
// 12 (brk) or 257 (openat)
BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, 1, 5, 0),
BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, 2, 4, 0),
BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, 5, 3, 0),
BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, 12, 2, 0),
BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, 257, 1, 0),
// Return and kill the process
BPF_STMT(BPF_RET|BPF_K,SECCOMP_RET_KILL),
// Return and allow the system call
BPF_STMT(BPF_RET|BPF_K,SECCOMP_RET_ALLOW)
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};
struct sock_fprog prog = {
.len = (unsigned short) \

(sizeof(filter)/sizeof(filter[0])),
.filter = filter

};
// Allow seccomp without CAP_SYS_ADMIN
prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
// Register the filter
rc = syscall(SYS_seccomp,

SECCOMP_SET_MODE_FILTER,
0, &prog);

libseccomp simplifies the specification of seccomp filters.

For example, the following creates a simple whitelist filter that

corresponds to seccomp-1, except that exit group is allowed

instead of exit:

# include <seccomp.h>
int main(int argc, char **argv) {
scmp_filter_ctx ctx = seccomp_init(

SCMP_ACT_KILL_PROCESS);
int rc = 0;
rc |= seccomp_rule_add(ctx,

SCMP_ACT_ALLOW,
SCMP_SYS(exit_group), 0);

rc |= seccomp_rule_add(ctx,
SCMP_ACT_ALLOW,
SCMP_SYS_(read), 0);

rc |= seccomp_rule_add(ctx,
SCMP_ACT_ALLOW,
SCMP_SYS_(write), 0);

rc |= seccomp_rule_add(ctx,
SCMP_ACT_ALLOW,
SCMP_SYS_(sigreturn), 0);

if (rc == 0) {
rc = seccomp_load(ctx);

}
if (rc == 0) {
// Rest of main()

}
}

B. SELinux

SELinux, developed by the National Security Agency

(NSA) together with other security research organizations,

is a MAC framework included in several widely-used Linux

distributions. It was released as open source in 2000 and

merged into the mainline Linux kernel in 2003. It is the default

MAC implementation on Red Hat Linux [47, Chapter 24],

Fedora and Android.

SELinux supports role-based access control (RBAC), type

enforcement (TE) and multi-level security (MLS), although

MLS is rarely used in consumer devices. TE is based on

labeling objects with types, assigning subjects to domains and

roles, and providing rules (policies) that allow certain domains

and roles to access certain types [47, p. 671]. SELinux policies

are written in terms of subjects, objects and actions. Subjects,

typically running processes, carry out actions on objects,

which a usually files or other processes.

SELinux requires each object to be labeled with a

security context, a colon-delimited string of the form

username:role:type:mls-range. Of these, type is most im-

portant in practice. Android, for example, sets mls-range

to a constant value s0, and role to either r (for processes)

or object r (for objects). Security context can be assigned

during filesystem initialization or implicitly when objects are

created: files and processes inherit the security context of their

parent directory or process, respectively. The policy can also

specify domain transition rules to configure the automatic

assignment of security contexts. On Linux-based systems,

security contexts are stored in the extended attributes of each

file. Extended attributes are essentially arbitrary, but length-

limited data that is not interpreted by the filesystem. The

ext4 filesystem allows extended attributes in the form of key-

value pairs; SELinux security context is stored under the key

security.selinux. The filesystem itself ignores the attributes,

but the kernel uses them for access control decisions. The

security context of a file can be retrieved with the lgetxattr

system call (use e.g. by the ls -Z command) and process’

security contexts via the a special file in the proc filesystem

(/proc/self/attr/current) [48, Chapter 12]

As one of the oldest and most popular MAC frameworks,

SELinux benefits from a rich set of supporting tools. These

include, for example, the sandbox process wrapper and

audit2allow, which automatically converts logged SELinux

denials into rules that would prevent the denials. A major

challenge with using SELinux is its difficulty. Labeling every

relevant resource, creating domains and roles, and especially

learning the policy language syntax and working with the

policy tools is widely regarded to have a deep learning curve

[47, p. 688].

C. TOMOYO

TOMOYO, short for Task Oriented Management Obviates
Your Onus on Linux, was added into the mainline Linux

kernel in 2009. The first version (1.0) was an independent

MAC implementation, but version 2.0 was reworked into an

LSM. In contrast to SELinux, TOMOYO does not require all

protection targets to be labeled. Instead of labels, the canonical

pathnames of files are used in policies. Thus, the administrator

need not separately label each file. In TOMOYO, every

process in the system belongs to a domain. The difference to

SELinux is that the process’ domain is determined based on

its execution history instead of manual assignment (labeling).

Key benefits of TOMOYO include a simple policy language

and automatic policy generation based on the observation of

a running process. [49]

The following policy grants a domain read access to all files

in /tmp/myprog, read-write access to a particular file, and

allows outgoing connections to the TLS port of the loopback

IP address:

file read /tmp/myprog/*.txt
file write /tmp/myprog/rwfile.txt
network inet stream connect 127.0.0.1 443

D. Landlock

Landlock [22] is a Linux security module (LSM) for process

self-containment. A major benefit is that Landlock does not

require any extra capabilities, so even a minimally-privileged
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process can use the Landlock syscalls to contain itself. Land-

lock currently supports mostly filesystem-based restrictions. A

recent patch added support for restricting access to TCP ports.

To restrict itself using Landlock, a process must first create a

ruleset using the landlock create ruleset system call. The

scope of the ruleset, i.e. which objects are to be subjected to

access control, is provided as an argument; Landlock’s default

action for all of these is deny. The call returns a handle to the

created ruleset. Next, the process calls landlock add rule

to add allow rules. There are two types of rules: filesystem

rules and network rules. Filesystem rules apply to a subtree

in the filesystem hierarchy, whose root is specified with file

descriptor. Network rules apply to sockets and TCP/UPD

port numbers. Finally, landlock restrict self enables the

enforcement of the ruleset on the process and its future

children permanently.

Landlock currently does not support restricting non-

filesystem based system calls. For example, execve calls

cannot be prevented with Landlock. Support for network-based

restrictions is also limited. Currently it is only possible to

prevent connecting or binding a socket to a particular port.

It is also important to note that Landlock rules are applied to

file descriptors, so a process must open the file or directory

first before adding allow rules.

The following minimal example allows a process to read

files from /usr/myprog. Opening files for writing is denied.

To keep the example code short, all error checking is omitted.

__u64 all_fs_rules =
LANDLOCK_ACCESS_FS_EXECUTE |
LANDLOCK_ACCESS_FS_WRITE_FILE |
LANDLOCK_ACCESS_FS_READ_FILE |
LANDLOCK_ACCESS_FS_READ_DIR |
LANDLOCK_ACCESS_FS_REMOVE_DIR |
LANDLOCK_ACCESS_FS_REMOVE_FILE |
LANDLOCK_ACCESS_FS_MAKE_CHAR |
LANDLOCK_ACCESS_FS_MAKE_DIR |
LANDLOCK_ACCESS_FS_MAKE_REG |
LANDLOCK_ACCESS_FS_MAKE_SOCK |
LANDLOCK_ACCESS_FS_MAKE_FIFO |
LANDLOCK_ACCESS_FS_MAKE_BLOCK |
LANDLOCK_ACCESS_FS_MAKE_SYM |
LANDLOCK_ACCESS_FS_REFER |
LANDLOCK_ACCESS_FS_TRUNCATE;

struct landlock_ruleset_attr rules =
{
.handled_access_fs = all_fs_rules,
.handled_access_net = 0,
};
__u64 allowed_fs_rules =

// Allow reading files and directories:
LANDLOCK_ACCESS_FS_READ_FILE |
LANDLOCK_ACCESS_FS_READ_DIR |
// Allow creating regular files:
LANDLOCK_ACCESS_FS_MAKE_REG;

struct landlock_path_beneath_attr path_beneath =
{
.allowed_access = allowed_fs_rules,
.parent_fd = 0,
};
int rc, fd, ruleset_fd;

// Specify sandbox scope
ruleset_fd = landlock_create_ruleset(
&rules, sizeof(rules), 0);

// Add allow rules. These will applied to the
// filesystem subtree rooted at "/usr/myprog"
// Access to other parts of the filesystem
// will be denied.
fd = open("/usr/myprog", O_PATH | O_CLOEXEC);
path_beneath.parent_fd = fd;
rc = landlock_add_rule(

ruleset_fd,
LANDLOCK_RULE_PATH_BENEATH,
&path_beneath, 0);

// As with seccomp, this is needed:
rc = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);

// Enable sandbox enforcement
rc = landlock_restrict_self(ruleset_fd, 0);

// Should succeed:
fd = open("readfile.txt", O_RDONLY | O_CREAT);
assert(fd != -1);

// Should fail:
fd = open("writefile.txt", O_WRONLY | O_CREAT);
assert(fd == -1);

E. AppArmor

AppArmor is an LSM-based mandatory access control

framework, developed by Novell and introduced into Linux

in 2007. Since 2009, the project has been supported by

Canonical. AppArmor is currently the default MAC framework

in Ubuntu distributions. [50]

AppArmor relies centralized policy configuration and stor-

age, like SELinux. Instead of labels, AppArmor, like Landlock,

uses pathnames, so the laborious labeling step is not needed.

AppArmor is based on type enforcement and does not provide

role-based access control or multi-level security. AppArmor’s

policy language is simpler than that of SELinux. Subjects (pro-

cesses) are identified by the pathname of their binaries. The

pathname is made unique by resolving links and constructing

a canonical pathname against the root mount namespace. [51]

AppArmor profiles are written in a custom language and

stored by default in /etc/apparmor.d. Before a policy can

be used, it must be compiled into binary and loaded into the

kernel using the apparmor parser tool. AppArmor provides

a rich set of command-line tools. For example aa-genprof

can, like SELinux’s audit2allow, automatically a profile for

a given program based on the denials logged by AppArmor

in system logs. For process-wrapping, AppArmor provides the

aa-exec utility [52].

The following example policy grants the process whose bi-

nary pathname is /usr/bin/myprog the read and write rights

to all files in /tmp/myprog, except for readonlyfile.txt, for

which only read permission is granted:

/usr/bin/myprog {
/usr/bin/myprog mr,

owner /tmp/myprog/*.txt rw,
deny /tmp/myprog/readonlyfile.txt w,

}

The profile can be enforced by saving it to /etc/ap-

parmor.d/usr.bin.myprog and invoking sudo aa-enforce

/usr/bin/myprog.
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VIII. MINIJAIL

The minijail open source project [53] provides a C library

(libminijail) and a command-line tool (minijail0) for pro-

cess sandboxing via self-containment and process-wrapping.

Minijail provides a unified abstraction layer on top of several

Linux kernel features, including namespaces, cgroups, rlimit,

chroot, POSIX capabilities, seccomp and Landlock.

For process-wrapping, the minijail project provides the

minijail0 tool [54], which supports a rich set of command-

line options for configuring sandbox restrictions on the started

process. Since not all capabilities are inherited by child pro-

cesses and because seccomp filters typically disallow execve,

some restrictions must be applied after the jailed process has

been started. This is done using a preload library (libmini-

jailpreload), which injects code into the process that runs

before the actual start function. Note that for restrictions based

on chroot, capabilities, etc., the minijail0 binary needs to

be started as root. Only seccomp-based restrictions can be

used without extra privileges, as long as the process has the

no new privs attribute, which can be set with prctl system

call.

For process self-containment, minijail provides a single

API that abstracts the underlying sandboxing primitives. For

seccomp, minijail also provides a simple policy language:

<syscall_name>:<ftrace filter policy>
<syscall_number>:<ftrace filter policy>
<empty line>

In the following example, we wish to sandbox a process,

so that it is not able to do anything else except to open and

read particular files. All other actions should be denied. The

example uses the following seccomp policy:

open: allow
openat: allow
close: allow
read: allow
write: allow
rt_sigreturn: allow
exit: allow
exit_group: allow
nanosleep: return EACCES

We compile the above policy into binary (/tmp/myprog/-

filter.bpf) using minijail’s compile seccomp policy.py

command-line tool. If the kernel has been compiled with

CONFIG FTRACE SYSCALLS, the “return EACCES”

policy causes nanosleep to return an error, otherwise, the

process is killed when tries to invoke nanosleep.

The following example demonstrates the use of chroot, sec-

comp and Landlock-based filesystem allow rules. For brevity,

all error code checking is omitted. The array bpf filter

contains the above seccomp policy in compiled form.

struct minijail *jail;
int rc;
unsigned char bpf_filter[] = {

0x20, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x15, 0x00, 0x01, 0x00, 0x3e, 0x00, 0x00, 0xc0,
0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x35, 0x00, 0x00, 0x04, 0x04, 0x00, 0x00, 0x00,

0x15, 0x00, 0x03, 0x00, 0x01, 0x01, 0x00, 0x00,
0x15, 0x00, 0x02, 0x00, 0xe7, 0x00, 0x00, 0x00,
0x15, 0x00, 0x01, 0x00, 0x3c, 0x00, 0x00, 0x00,
0x15, 0x00, 0x00, 0x01, 0x0f, 0x00, 0x00, 0x00,
0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0x7f,
0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

};
struct sock_fprog filter;
int fd;
struct timespec req = { 1, 0 };
struct timespec rem = { 0, 0 };

filter.len = sizeof(bpf_filter) / sizeof(struct
sock_filter);

filter.filter = (struct sock_filter*)bpf_filter;

jail = minijail_new();

// Restrict filesystem view
rc = minijail_enter_chroot(jail, "/tmp/myprog");

// Set Landlock-based restrictions
if (minijail_is_fs_restriction_available())
{

minijail_add_fs_restriction_rw(jail,
"rwfile.txt");

minijail_add_fs_restriction_ro(jail,
"readonlyfile.txt");

}

// Set seccomp filter
minijail_no_new_privs(jail);
minijail_set_seccomp_filters(jail, &filter);
minijail_use_seccomp_filter(jail);

// Self-contain
minijail_enter(jail);

# define try_open(file, flag) \
do { \

fd = open(file, flag); \
printf("open(" file "," #flag "):%s\n", \

fd < 0 ? strerror(errno) : "ok"); \
} while(0)

// Should succeed:
try_open("rwfile.txt", O_WRONLY);
try_open("readonlyfile.txt", O_RDONLY);

// Should fail:
try_open("readonlyfile.txt", O_WRONLY);
try_open("/tmp/forbidden_file", O_RDONLY);
rc = nanosleep(&req, &rem);
printf("nanosleep():%s\n",

rc == 0 ? "ok" : strerror(errno));

minijail_destroy(jail);

IX. COMPARISON

The results of our survey are summarized in Table I. We see

that mandatory process containment is a popular approach to

sandboxing. It allows an administrator or the OEM to define

a central security policy that restricts all processes. The main

drawback of this approach is the complexity of writing and

configuring the policies. Also, sandboxes based on SELinux

require labeling each resource in the system that is to be access

controlled, a major task on its own.

Process self-containment moves responsibility of sandbox

configuration to the developer. Its major benefit is that the
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TABLE I. COMPARISON OF THE SURVEYED SANDBOX SCHEMES

Implementation Policy
Name Type Based on Protected objects Policy enforcement point Storage Labels Privs

Android mand DAC, SELinux syscall, file, ipc DAC, LSM cent yes yes
AppArmor mand, wrap, self LSM syscall, file LSM cent no yes
AppContainer mand Windows kernel file, net unknown dist no no
Apple Sandbox mand, self, wrap TrustedBSD MACF syscall, file, net, ipc sandbox.kext dist no no
Landlock self LSM file, net LSM dist no no
libminijail self, wrap several (note 1) syscall, file LSMs, syscall entry dist no note 2
seccomp self BPF syscall syscall entry dist no no
SELinux mand, wrap LSM syscall, file, net, ipc LSM cent yes yes
TOMOYO mand LSM file, net LSM cent no yes

mand : mandatory process containment
self: process self-containment
wrap: process-wrapping
syscall: system call, fs: filesystem, net: network interface, ipc: inter-process communication
dist: distributed, cent : centralized
Labels: Requires objects to be labeled, Privs: Policy configuration requires privileges
note1: libminijail uses seccomp, DAC, Landlock, chroot, capabilities and namespaces
note2: minijail requires privileges to configure chroot, DAC, capabilities and namespaces

sandbox can be configured without administrator privileges.

For example, the Landlock LSM and seccomp work for unpriv-

ileged processes. This allows a distributed approach to policy

configuration, e.g. including the policy in the application

binary itself.

AppArmor, Apple Sandbox and libminijail also provide

a process-wrapper tool, which can be used to start another

process in a sandbox, with the policy configured on the com-

mand line. However, Apple’s process-wrapper tool (sandbox-

exec) is now deprecated. An SELinux-based process wrapper,

simply called sandbox, is also available. Process wrappers

are a useful way to start system daemons and educational for

learning, but are less useful for developers looking to deploy

their application on a remote platform.

Implementation-wise, the surveyed sandbox schemes rely

heavily on MAC frameworks such as LSM on Linux and

TrustedBSD MAC framework on iOS and macOS. Thus,

kernel subsystem hooking seems to be the dominant approach

to sandbox implementation. Android continues to use the

traditional DAC to sandbox processes by providing each

process a unique UID and working directory, complemented

with seccomp, which is based on system call interposition.

X. CONCLUSIONS AND FUTURE WORK

The main difficulty with all sandboxing approaches is

that significant expertise and time investment is needed to

deploy them. While none of the surveyed sandboxing tools

are particularly easy to learn, we found Landlock and minijail

to be relatively convenient from a developer perspective. In

general, process self-containment and process-wrapping seems

to be an order of magnitude easier to configure than MAC

policies. We find that although SELinux is most generic and

versatile sandbox technology, it is also the most complex one

to configure and use. Our experience is in line with previous

usability studies [23].

As one step towards making sandboxing more approach-

able, the minijail project attempts to unify various sand-

box technologies, providing a process-wrapper tool and a

self-containment API. Unfortunately, in our experiments we

found that the libminijail is currently not particularly well-

documented, and using the API requires studying the source

code and examples. A similar unifying approach has been

taken in academia by Abbadini et al., who proposed multi-

technology sandboxing frameworks for JavaScript and Type-

Script programs [55], [56]. One of the strengths of their work

is a simple JSON-based policy language that allows configur-

ing all aspects of the sandbox. In contrast, minijail currently

provides a text-based policy language only for configuring

seccomp. Still, we believe these steps towards unification

to be a promising development. Hopefully they will make

sandboxing usable even to developers who are not security

experts.

One interesting and neglected research direction is the

combination of sandboxing and remote attestation [57]. In

confidential computing [58], remote attestation is used to

verify that a a process running on a cloud server is sufficiently

well-protected so that attackers cannot, for example, extract

sensitive data from it. The process is assumed to be trustworthy

after its identity and the security of its platform have been

established. In contrast, sandboxing assumes the process will

– either by design or due to a compromise – try to harm the

system and other processes running on the system. At first

glance, it would seem that using remote attestation to verify

properties of a sandbox is not useful. But sandboxing can pre-

vent unpredictable attacks – such as unknown vulnerabilities

or backdoors. Thus including a proof of the sandboxing policy

and enforcement in attestation evidence would be a useful

future step. Sandboxing within a TEE is also thus a far mostly

unexplored area.
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