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Abstract—This article is a kind of philosophical essay, a 
reflection on the difficulties that arise when looking at 
applications of artificial intelligence (AI) from traditional 
statistical data processing. In addition, it is associated with an 
unprecedented amount of Big Data, including the grandiose 
amount of software. In turn, it raises cyber security issues and 
requires a new approach to the new AI system auditability, 
requiring an answer on which statistical indicators to base AI 
auditability. When we discuss AI applications, it is important to 
distinguish between autonomy and automation, that is, whether a 
system is truly autonomous or merely automated. At first glance, 
it seems that the reason that causes of Big Data analysis failures is 
the difference in cultures between machine learning and 
statistical communities. But the reason is apparently deeper, as 
the statistical paradox in the Big Data example shows. At present, 
it is not clear whether it will be possible to invent parameters that 
will help meet the requirements of insurance companies for 
safety- and security-critical AI applications. It is possible that the 
two new concepts of Data Defect correlation and the Law of 
Large Populations discussed in the paper can serve as the starting 
point of the search for new measures for Big Data. We cannot 
remain silent about the cyber threat situation either, which 
makes Big Data analysis extremely difficult. The task of 
providing robustness of machine learning software, especially in 
safety- and security-critical areas, is currently beyond the 
competence of individual companies and even governments and is 
becoming a problem of international cooperation. 

I. INTRODUCTION 

This article is a kind of philosophical essay, a reflection on 
the difficulties that arise when looking at applications of 
artificial intelligence (AI) from traditional statistical data 
processing. In addition, it is associated with an unprecedented 
amount of Big Data, including the grandiose amount of 
software. In turn, it raises cyber security issues and requires a 
new approach to the new AI system auditability, requiring an 
answer on which statistical indicators to base AI auditability. 

The AI approach is largely about software and statistics. 
The rest of the paper is the following. In Section II, we discuss 
AI (machine learning) limitations. In Section III, we refer to the 
US Government Accounting Office (GAO) report on cyber 
threats (2018) and some attempts of the fighter F-35 to turn to 
AI. Section IV is devoted to the GAO approach how to 
estimate the status of AI for Weapon Systems. AI Auditability 
as a very hard task is considered in Section V. Sections VI and 
VII to discuss the robustness of machine learning software and 
the gap between machine learning and statistical communities. 

II.  ARTIFICIAL INTELLIGENCE FROM THE RAND’S 

VIEWPOINT  

Artificial Intelligence, as an academic discipline, appeared 
in the mid-1950s of the last century. AI refers to computer 
systems oriented to replicate some human functions and 
continually get better at their assigned tasks.  

Taking into an account the potential magnitude of 
Artificial Intelligence’s impact on the whole of society, and 
the urgency of this emerging technology international race, 
President Trump signed an executive order that was designed 
to ensure (secure) US leadership in artificial intelligence 
technologies [1]. This is the so-called American AI Initiative, 
aimed at maintaining American leadership in competition 
(economic, geopolitical, etc.) with China. This was 
immediately followed by the release of DoD’s first-ever AI 
strategy [2]. AI has recently become a focus of governments 
worldwide [3]. 

For more details on AI military applications, let's refer to 
the RAND paper [4]. When people want a task done, they 
either do it themselves or delegate it to another entity, which 
can be a human or a machine. By delegating, they relinquish 
some control over how it is done, and the unit performing the 
task has some autonomy. If a task is perfectly scripted with a 
defined and known set of rules, technologists say that the unit 
performing it has “low autonomy” and describe it as 
“automated”. When the unit performing the task is empowered 
to act without rules or boundaries, it is described as fully 
'autonomous'. Almost all tasks performed by machines fall 
somewhere between these two extremes, so it is useful to 
discuss AI applications in degrees or levels of autonomy, 
especially with regard to lethal autonomous weapons systems. 
It is useful to classify these technologies in a graphical 
taxonomy that illustrates their interrelationships. 

Figure 1 presents such a taxonomy at three levels. Early 
approaches to AI involved the development of automated 
systems with the ability to perform scripted tasks according to 
specific sets of rules. Such approaches are still used to some 
extent, but in the last couple of decades more sophisticated 
systems capable of machine learning (ML) have been 
developed. These systems can gradually improve their 
performance by recognizing patterns in large amounts of data 
and taking corrective actions to improve their ability to 
classify future patterns when they are not specifically 
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programmed to do so. An even more sophisticated class of ML 
systems demonstrates deep learning. They use multi-layered 
artificial neural networks to recognize patterns in data 
representations, such as labeled images, rather than using task-
specific algorithms as in basic ML systems. Recent advances 
in deep learning using deep neural networks have led to 
significant improvements in computer vision and image 
recognition systems. 

 

Fig. 1. Taxonomy of AI Technologies [4] 

This analysis of Artificial Intelligence relates to quite 
complicated military applications. Let us name two much 
simpler cases to illustrate AI Technologies (Fig. 1). 

Case 1. Automation: Recruiting. In [5], a matrix for 
auditing algorithmic decision-making systems is used in the 
field of recruitment. These screening technologies evaluate 
applicants in various ways by assessing their suitability for a 
role, playing online games, analyzing their speech and/or 
mannerisms to predict performance in the workplace, or 
analyzing “personality assessment” questionnaires. In this 
example, the role of AI is clear, because the computer 
facilitates the work of a part of the staff (perhaps it "weeds 
out" the talented ones) and the final decision is made by the 
staff. The next example is much more complicated. 

Case 2. Machine learning: plant disease detection. The 
main point of machine learning is data. To illustrate the 
amount of data and computer time of machine learning, we use 
a neural network approach to plant disease detection (Fig. 2). 
In [6], convolutional neural network (CNN) models were 
developed to perform plant disease detection and diagnosis 
using simple images of healthy and diseased plant leaves using 
deep learning methodologies. Model training was performed 
using an openly available database of 87,848 photographs. 
This data includes 25 plant species in 58 different classes of 
plant and disease combinations, including some healthy plants. 
The most successful model architecture, the VGG 
Convolutional Neural Network, achieved a 99.53% success 
rate in classifying 17,548 previously unseen model plant leaf 
images (test set). Each image is 256x256 = 65536 pixels. 
Based on such a high level of performance, it becomes clear 
that CNNs are very suitable for the automatic detection and 
diagnosis of plant diseases through the analysis of simple leaf 
images. 

 

Fig. 2. Leaf images [6] 

The total training time for this model was about 5.5 days 
(!). The learning algorithms were implemented on powerful 
computers using a parallel programming platform. The 
classification of a particular unknown image takes an average 
of about 2 ms. Note that it takes only 2 ms to detect a leaf 
disease, but before that, colossal highly skilled work was 
carried out to collect and classify 87,848 photos. 

This example raises a difficult question – how to teach 
botanists? It is enough for the laboratory technician to take a 
photo of the diseased leaves and identify the disease. But how 
to match the machine image of a leaf, consisting of 65,536 
pixels, with the botanist's representation of dozens or hundreds 
of macrofeatures of a diseased leaf? Machine learning is 
unlikely to detect the emergence of a new plant disease. How 
will an AI algorithm detect it? 

III. THE GAO ON CYBER THREATS (2018) AND FIGHTER  
F-35 TURN TO AI 

GAO on cyber threats. In October 2018, the US Government 
Accounting Office (GAO) sensationally reported [7] that all 
software-based weapons systems that were tested between 
2012 and 2017, including those created over the past ten years, 
have cyber vulnerabilities and can be hacked. Software 
updates and limited resources do not allow timely correction 
of deficiencies. As practice testing showed, programmers 
already knew about some of the vulnerabilities in  
weapons systems in advance, since they were identified during 
previous cybersecurity assessments. For example, one test 
report states that only 1 out of 20 cyber vulnerabilities 
identified in a previous test were patched [8]. Is the situation 
hopeless? 

Critics of the GAO [7] seem to have been referring to the 
Lockheed Martin F-35 Lightning II aircraft (Fig. 3). The F-35 
software, which is 8 million lines of software code built into 
the aircraft, controls most of its functions, including flight 
control, radar, communications, and weapon targeting. But a 
large amount of software inevitably has not only errors, but 
also unpatched vulnerabilities. In addition, the F-35 aircraft 
works in a network of other aviation and ground systems, 
which provides additional opportunities for hackers. Any of 
the connections can be used by enemy cyberwarriors to 
infiltrate and destroy or disable the aircraft. 
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Fig. 3. Embedded software and information technology systems in weapon 
systems (represented via fictitious weapon system for classification reasons) 
[7] 

The vulnerabilities identified by GAO experts are perceived as 
a national disaster, because despite more than 20 years and 
approximately $62.5 billion spent on research and 
development alone, the F-35 aircraft remains, in all practical 
and legal senses, nothing more than the very expensive 
prototype. This leads to the extremely important thought that 
the original concept of the Joint Strike Fighter was erroneous 
and went beyond practical technological reality. The U.S. 
Congress, during the fiscal year 2022 budget debate, refused to 
authorize additional new orders for the F-35 on top of the 
Pentagon's already approved requests [31]. What to do? 
Starting over from the scratch is unrealistic. And how to deal 
with the existing cyber threats? 

On fighter F-35 maintenance tasks. In June 2018, the Joint 
Artificial Intelligence Center (JAIC) was established. JAIC 
was a focal point of the DoD AI Strategy [2]. The emergency 
goal of JAIC was to produce solutions for Predictive 
Maintenance (the first wave of the DOD’s AI strategy, see Fig. 
5). The goal was to develop AI-based applications to predict 
maintenance needs on equipment, such as the E-3 Sentry 
(known as AWACS, Airborne Warning, and Control System), 
multirole fighter aircrafts F-16 Fighting Falcon and F-35 
Lightning II, as well as Bradley Fighting Vehicle. 

According to the recent news [9], the Joint Artificial 
Intelligence Center will cease to exist come June 1, 2022, as 
well as two other offices: Defense Digital Service, and Office 
of Advancing Analytics, or ADVANA. In all three cases, the 
offices are expected to remain as part of the Chief Digital and 
Artificial Intelligence Officer (CDAO). CDAO staff will be 
diffused with the office stovepipes removed. 

Relating to AI works, these facts show that the DOD offices 
are currently in the very beginning of an organizational phase. 
The AI research is currently in the Expert knowledge stage 
only, but not in Machine learning (as DOD’s experts are 
estimating), and nothing to talk about the Contextual 
adaptation stage (see Fig. 5). The DOD’s experts estimation of 
Artificial Intelligence status seems incorrect, a little over-
estimated [10]. 

As an example, we use the F-35 combat aircraft maintenance 
experience (Fig. 4). Lockheed Martin F-35 Lightning II 

aircraft is a family of amazing combat aircraft of the future: 
single-seat, single-engine, stealth, all-weather, multi-purpose, 
designed for both air supremacy and strike. The aircraft has 
been developed since 2001. It is assumed that the aircraft will 
be in service until 2070. 

 

Fig. 4. The F-35 testing by means of ALIS (Lockheed Martin)  

Autonomic Logistics Information System (ALIS) is intended 
to provide the logistics tools for the F-35 program. ALIS 
consists of several software applications designed to support a 
variety of squadron activities such as supply chain 
management, maintenance, training management, and mission 
planning. During the flight, the aircraft transmits status 
reporting codes to the ALIS ground station to ensure that 
maintenance personnel is ready to perform any necessary 
repairs when the aircraft lands. ALIS, in turn, feeds this data 
into various databases and engineering models located at 
Lockheed facilities. It is necessary to check not only the 
integrity of the data stream, but also the resistance to hacking, 
cyber espionage, malicious code, etc. The ALIS software 
contains more than 20 million lines of code. 

In 2020, program leaders abandoned efforts to complete the 
$16.7 billion ALIS system as testing found that no section of 
the F-35 program was cyber-proof. Pentagon officials have 
announced that ALIS will be replaced by a new cloud-based 
system called Operational Data Integrated Network (ODIN) 
[11]. However, plans have changed. As reported [12] in April 
2022, due to multiple factors, including budget cuts, lack of 
access to proprietary ALIS programming code, and continuous 
improvement of ALIS, the F-35 Joint Program Office decided 
to incrementally improve and modernize ALIS instead of 
replacing it with the new system. US Department of Defense 
officials renamed the system ODIN (probably to hide 
miscalculations in spending planning) [13]. 

Will AI save the F-35I? According to the DoD plans [14], in 
the near future, F-35 pilots will be able to use AI to control a 
small group of drones flying nearby from the aircraft's cockpit 
in the air, performing sensing, reconnaissance, and targeting 
functions. The F-35 maintenance system ALIS includes early 
applications of AI in which computers perform assessments, 
go through checklists, organize information, and make some 
decisions on their own – without human intervention. 

Already in 2012 [15], F-35 Program software contained 24 
million lines of code. Nowadays the total amount of F-35 
Program software is estimated above 80 million lines of code 
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[16], summing up F-35 onboard software, Joint Simulation 
Environment, ALIS maintenance tools, and much more – 
Common Analysis Toolset Data Manager (CATDM) software 
platform for Industry 4.0 manufacturers. How to get out of this 
dire situation? 

IV. HOW DOES GAO ESTIMATE THE STATUS OF AI FOR 

WEAPON SYSTEMS? 

For the purpose to overview Artificial Intelligence funds (in 
accordance with decisions [1] and [2]) the US Government 
Accounting Office prepared a methodical material [10]. Three 
waves (types) of AI are identified: Expert knowledge, 
Machine learning, and Contextual adaptation (Fig. 5). 

 

Fig. 5. Types of AI and DOD Examples [10] 

Expert knowledge. The first and oldest form of artificial 
intelligence in which a computer is programmed with detailed 
rules based on human knowledge or criteria and produces 
results consistent with its programming.  

 

Fig. 6. Example of AI on the Battlefield [10] 

An example of such rule-based DOD AI capabilities is 
aircraft maintenance software that requires users to input 
information according to predefined data formats and then 
process that data according to rules programmed by human 
experts (i.e., maintenance specialists) to diagnose the cause in 
case of malfunction (Fig. 6). 

Let's supplement Fig. 6 with considerations about what the 
battle process looks like, in which automatic artillery systems 

participate. Several UAVs are on duty over the battlefield. 
They carry out artillery reconnaissance, that is, they are 
engaged in target designation, and this is not new. What is new 
is that they are able to track the shots that come from the other 
side. They transmit the coordinates of a flying projectile to a 
calculator, which instantly determines the trajectory and looks 
at where the projectile will fall. If he sees that the place where 
the projectile fell is a threat to one of the artillery installations 
under the control of the cyber center, then the cyber center 
simply gives a signal there, and this installation quickly moves 
away from its place, while the projectile is still flying. The 
person is excluded from the decision-making process, from the 
process of controlling the fight. Entirely and completely the 
battle is conducted by pure automatics - according to clearly 
defined rules. If the enemy uses a new type of weapon, then 
without human intervention it is unlikely that defeat will be 
avoided. 

Machine learning. The second and current type of AI, 
according to GAO experts (see DOD’s label, Fig. 5), is the 
type in which the computer receives basic instructions and 
training data to learn how to predict specific outcomes, as in 
Case 2. AI systems drop a challenge to existing Department of 
Defense assessment strategies and ethical standards for 
capabilities, which can lead to hesitancy in their use. Figure 7 
provides a notional example of AI model complexity and the 
questions a user may need to be able to answer to trust the 
AI’s decision or recommendation. Ethical standards are a vast, 
as yet "unplowed" field of international efforts, especially in 
terms of lethal autonomous weapon systems. 

  

Fig. 7. Example of AI Model Complexity, including ethical issues [10] 

Contextual adaptation. A third and as yet unknown 
potential future type of AI, in which the computer is able to 
adapt to new situations without the need for retraining, and can 
also explain to users the reasons for its decisions or 
predictions. A potential example of a DOD is a fully 
autonomous ship that uses algorithms to maneuver in 
situations for which it was not specifically trained (such as 
inclement weather or contested waters) and is capable of 
planning, relaying, and carrying out military missions in a 
manner similar to a way a person would. The majority of such 
types of AI warfighting capabilities are still in development. 
These capabilities largely focus on analyzing intelligence, and 
enhancing weapon system platforms such as aircraft and ships 
that do not require human operators. 
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Fig. 8. Example of Labeled Imagery Data [10] 

The process of training an AI model is achieved by 
providing the AI algorithm with large datasets that define the 
desired outcome, while the AI developer checks if the model 
produces the desired results. For example, training an AI 
model to recognize a submarine from a video stream requires a 
large image dataset of various types of submarines that are 
identified as submarines. During training, images of 
submarines will be presented to the system, and personnel 
involved in the training will confirm when the AI model 
correctly identifies the submarine and when it does not. 

High-performance AI typically requires well-tagged 
historical data to train the system. Labeled data refers to raw 
data (images, text files, videos, etc.). Data has been labeled 
with some identifiers to provide context so that the AI 
algorithm can learn from it. For example, intelligence, 
surveillance, and reconnaissance AI capabilities trained using 
tagged data to identify tanks would require images of various 
tanks tagged as such. Figure 8 shows another example of such 
marking. The success of contextual adaptation is not yet clear 

V. AI AUDITABILITY – A VERY HARD TASK 

Autonomous vehicle. Let’s start the talk about the 
auditability of Artificial Intelligence solutions from the 
autonomous vehicle revolution: how insurance must adapt 
[17]. Transportation networks and associated companies are 
leading a revolutionary shift from individual ownership to new 
approaches to vehicle mobility and access, including increased 
use of autonomous vehicles, which Deloitte predicts will 
account for more than 80% of new vehicle sales in urban areas 
by 2040. Automotive companies will need to rethink how they 
manage risk.  

Manufacturers, component suppliers, and technology 
companies involved in building autonomous vehicles and the 
software that drives them bear a greater risk of liability. The 
limiting factor on how quickly this position will be adopted by 
insurers. There is a lack of significant precedents and claims 
data for autonomous vehicle incidents. What's more, access to 
the vast amounts of data collected by vehicles that can help 
determine conditions during collisions is a hard point for 
insurers. 

On the European AI act. While some AI applications are 
security critical, the use of AI systems creates new challenges 
regarding aspects such as IT security, safety, robustness, and 
reliability. Meeting these challenges requires a common 
framework for auditing AI systems throughout their lifecycle, 
including assessment strategies, tools, and standards. This is 
under development, but is only partially ready for practical use 
at the moment. 

In April 2021, the European Commission published a draft 
regulation on AI (the AI act, AIA) [3]. The goal is to ensure 
that AI systems in practice fulfill adequate requirements. The 
AIA takes a risk-based approach that completely bans some AI 
applications (such as social scoring schemes) and imposes 
comprehensive requirements on AI systems that are 
considered high-risk. According to the AIA, high-risk 
applications include, among others, the use of AI in security-
critical functions, as well as in healthcare and justice, and law 
enforcement. 

The AIA [3] proposes ultra-heavy fines of up to 
€30,000,000 or, if the offender is a company, up to 6% of its 
total annual worldwide turnover for the previous financial 
year, whichever is greater. These penalties are applied in cases 
of: 

(a) non-compliance with the prohibition of the artificial 
intelligence practices (e.g., the use of ‘real-time’ remote 
biometric identification systems in publicly accessible spaces 
for the purpose of law enforcement); 

(b) non-compliance of the AI system with the requirements 
of data governance for high-risk AI systems. 

Auditable AI Systems. The research on and application of 
artificial intelligence (AI) has triggered a wide scientific, 
economic, social, and political discussion. To implement the 
AIA directive, it is necessary to develop audit schemes, 
methods, and tools for all aspects mandated by the AIA across 
the relevant AI life cycle phases. Such type of research should 
be done within the next two to three years, when the AIA will 
start to apply. The status in this area was discussed during the 
2nd International Workshop “Towards Auditable AI Systems”, 
on October 26th, 2021, in Berlin, organized by the Federal 
Office for Information Security Germany, the TÜV-Verband, 
and the Fraunhofer HHI (see Whitepaper [18]). 

AI systems bring up new challenges for auditing as 
compared to classical software, namely,  

(1) the input and state spaces of AI systems for common 
tasks are enormous, making fool testing infeasible;  

(2) their behaviour strongly depends on the data used to 
train them, and any manipulations of these data can turn to 
grave consequences;  

(3) most AI systems nowadays used to have a complex 
inner structure that is not able to human interpretation.  

Therefore, a very hard task is to find malfunctions and 
attacks and mitigate them. These challenges are extremely 
important and to facilitate the AI application in secure, robust, 
and transparent conditions, especially in security and safety-
critical applications, it is necessary to have available strong 
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technical requirements for auditing AI systems. However, such 
material is largely missing so far.  

Document [18] focuses on connectionist AI systems, which 
e.g. are used in applications based on image processing. 
Connectionist AI systems use large data structures. Such 
structures contain millions of parameters. The currently most 
widespread examples are deep neural networks (DNNs), 
which consist of various layers of simple processing elements 
(neurons) that are highly interconnected (as in Case 2 on leaf 
diseases above).  

The document focuses on those requirements from the AIA 
that are related to IT security and safety. A two-dimensional 
“Certification Readiness Matrix” was proposed as a tool to 
monitor the progress of AI auditability (Fig. 9).  

 
Fig. 9. An example of a certification readiness matrix [18]. The auditability 
scoring scale shows color and point scales that correspond to a scale from 

non-existing auditability (red, 0) to full auditability (green, 10).  

The "Certification Readiness Matrix" presented here is 
meant as a conceptual heuristic covering the AI life cycle 
phases and the embedding of an AI system within 
organizational processes. There are seven aspects: 

 security (passive and active robustness of the AI 
system against attacks); 

 safety (protection against (physical) harm);  
 performance (with respect to relevant performance 

metrics);  
 robustness (against natural variations of situations, 

including those, that were not covered during 
training);  

 interpretability and explainability (the ability of 
humans to understand the decision process of the AI 
system);  

 the ability to monitor (track) the AI system at all its 
stages (at all steps of the machine learning pipeline). 
This includes monitoring design decisions, analyzing 
initial data (training sets), checking boundary 
conditions, monitoring system performance, etc.; 

 risk management (a minimization of risk probability 
and/or impact; includes strategic and operational 
measures). 

 At the moment, the requirements, audit methods, and audit 
tools are not sufficiently available, but the development in this 
area is very dynamic. Supposedly, statistics as an 
interdisciplinary scientific field can play a significant role both 
in the theoretical and practical understanding of AI, and for its 
future development. Statistics can even be considered the main 
element of AI [19]. How to achieve this? Is it possible to 
correct the situation by virtue of AIA? 

VI. ON THE ROBUSTNESS OF MACHINE LEARNING SOFTWARE  

We turn attention to the ML robustness as a key point 
relating to AI auditability, on our opinion. The problem of 
robustness prevents the widespread introduction of machine 
learning systems in critical areas (avionics, nuclear systems, 
autonomous driving, etc.). 

The definition of robustness (let's call it the Robustness 
Criterion) is borrowed from mathematics, and, approximately, 
corresponds to the following form. Given an input x and a 
model f, we want the model prediction to remain the same for 
all inputs x' in a neighborhood of x, where the neighborhood is 
defined by some distance function δ and some maximum 
distance Δ. That is, the results of the classifier, for example, 
would not change with a small change in the data. The 
fundamental basis of robustness research is quite clear. 
Basically, any model is trained on some subset of data, and 
then generalized to the entire population of data, which, in 
general, is unknown at the time of training. Therein lies the 
issue of robustness. If the data is changed in a special way, 
then this is called an attack on machine learning systems. 

It is around the Robustness Criterion that all research in the 
field of artificial intelligence is built. How to select minimally 
different data, which, nevertheless, is classified differently? 
Since in most cases, we are talking about images, we are 
talking about changes imperceptible to the human eye that lead 
to a change in classification. How important is the 
“invisibility” of changes, if in critical applications (avionics, 
etc.) we are dealing with automatic systems? 

It is assumed that the performance of the model, achieved at 
the stage of training, is preserved during its practical use. 
There is a complete parallel with traditional software 
implementation. During the testing phase, we checked the 
performance of the system, and we expect this performance to 
continue during the operational phase. Note that for critical 
applications, the software is also subject to certification. The 
meaning of this certification is precisely in comprehensive 
testing (proof of correct operation). According to the same 
principle, robustness is perceived. That is, robustness becomes 
synonymous with performance. 

ISSN 2305-7254________________________________________PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 399 ----------------------------------------------------------------------------



In addition, it is not enough to obtain a formal confirmation 
(verification) of the model operation [20], since the question 
of scaling arises. Note that in the classical approach to 
building mathematical models, complexity was never a virtue, 
the model had to be as simple as possible. In machine learning 
models, the number of parameters is already measured in 
billions and formal methods for checking models (by means of 
logical statements or solving a system of linear equations) are 
not acceptable. It turns out that in any case, we will be content 
with some estimates. And this, in turn, does not correlate well 
with the fact that software must be certified for critical 
applications [21], and classical approaches to such 
certification do not work with non-deterministic systems, 
which are machine learning applications. Certification of 
machine learning systems for critical applications is still an 
open area [22]. 

Testing of machine learning systems can be solved by 
means of adversarial attacks [23], which are applicable at all 
stages of the machine learning process. At this point in time, 
attacks seem to be ahead of defenses (attacks appear first, and 
only then appear defenses against them). In fact, it must be 
recognized that the success of machine learning (and, 
accordingly, artificial intelligence) today is associated with 
generative models. With discriminant models today, there is 
some dead end in terms of critical applications. Results can be 
obtained, but they cannot be guaranteed in the general case. As 
the results of many projects on robust machine learning 
systems [24] show, there are no clear achievements in this area 
yet. 

VII. THE GAP BETWEEN MACHINE LEARNING AND 

STATISTICAL COMMUNITIES 

Different cultures. There is a great difference between 
machine learning and statistical communities; they have 
different cultures and different scientific backgrounds [25]. 
The machine learning community has its roots in engineering, 
computer science, and especially in artificial intelligence as a 
kind of neuroscience. The ML community tends towards 
marketing, publishing, and trying to sell their ideas. This 
feature reflects in a desire to monetize algorithms in the near 
term, thus focusing on industry problems rather than scientific 
problems. The path to monetization in science is often much 
longer and less assured. A large (if not major) share of 
machine learning's success must be attributed to its very 
successful and aggressive marketing efforts. 

The statistics community is primarily made up of 
researchers who received an initial degree in mathematics and 
graduate training in statistics. Statisticians are not hurrying to 
publicize their research, and their training tends to differ 
dramatically from that of ML researchers. Statisticians usually 
have a strong background in mathematics that includes 
multivariate calculus, linear algebra, differential equations, 
and real analysis. They then require years of probability and 
statistics, namely, of asymptotic theory, statistical sampling 
theory, hypothesis testing, and experimental design. ML 
researchers have much less knowledge in many of these areas, 
but have a stronger background not in just programming, but 
also in signal processing and computing. Will it be possible to 

bridge the gap between machine learning and statistical 
communities? 

On neural networks and statistical tools. The paper [26] 
published in 1996 discusses neural networks and compares 
them to regression models. A comparison between regression 
analysis and neural networks in terms of notation and 
implementation is made to help the reader understand neural 
networks. This shows that neural networks act as a type of 
non-parametric regression model, allowing us to model 
complex functional forms. But these results have not received 
further work on machine learning. 25 years have passed since 
the publication of the article [26], and it has been cited more 
than 550 times, but the gap between machine learning and the 
statistical communities has only increased. For example, in the 
encyclopedia [27], statistical cases occur only in passing. 

The non-parametric nature of neural networks allows the 
development of models without any prior knowledge of the 
distribution of the data set or possible interaction effects 
between variables, as required by commonly used parametric 
statistical methods. For example, multiple regression requires 
that the error in the regression equation be distributed 
normally. Another statistical technique that is often used for 
categorization is discriminant analysis, but discriminant 
analysis requires the predictor variables to be multivariate with 
a normal distribution. Such type assumptions are removed 
from AI models. Encyclopedia [27] does not even pose the 
problem of convergence between machine learning and 
statistical communities. 

Will statistics help? The statistical methods are fundamental 
for finding structure in data and for obtaining deeper insight 
into data and having success in data analysis. Ignoring 
statistical data analytics may lead to avoidable fallacies [28]. 
This holds, in particular, for the analysis of big data, and the 
notion of distribution is the key point of statistics. Only the 
probability distributions allow us to predict error bands. The 
unfortunate thing is that in the field of AI data distributions are 
unknown. There remains hope for non-parametric statistics. 

Search for non-parametric statistics. Non-parametric (or 
distribution-free) statistical methods are mathematical 
approaches for statistical hypothesis testing which, unlike 
parametric statistics, make no assumptions about the 
probability distributions of the variables being assessed. The 
following are the most frequently used tests: 

 Anderson-Darling test: whether a sample is drawn 
from a given distribution; 

 Kolmogorov-Smirnov test: whether two samples are 
drawn from the same distribution; 

 Siegel-Tukey test: tests for differences in scale 
between two groups; 

 Sign test: whether pair samples are drawn from 
distributions with equal medians; 

 Spearman's rank correlation coefficient: measures 
statistical dependence between two variables using a 
monotonic function; 

 Squared ranks test: tests equality of variances in two 
or more samples. 
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Will the list of non-parametric statistics be supplemented 
with values from the ML area? This task is extremely difficult. 
But without this, it is unlikely that the AIA document will be 
put into effect. 

On statistical paradox in big data. The key mathematical 
tool for justifying statistical methods is large-sample 
asymptotics. There are two basic statistical notions: the Law of 
Large Numbers and Central Limit Theorem. Neither of them 
could be established without such asymptotics. When 
statisticians have the explosive growth of data size, they hope 
to get the large-sample asymptotic results out there. The 
reality appears to be the opposite. In [29], the author discusses 
a simple statistical quality control task: “Which one should we 
trust more, a 5% survey sample or an 80% administrative 
dataset?”  

A deeper study of this task led to the development of the 
new notion Data Defect Index and to shift from the traditional 
focus on probabilistic uncertainty in the familiar form  

of Standard Error ∝ σ/√n 

to the practice of systematic error in non-probabilistic Big 
Data in an unuseable form  

Relative Bias ∝ ρ √ N. 

Here “Relative Bias” is the bias in the sample mean relative 
to a standard error, σ and n are the standard deviation and 
sample size, and N is the population size. The unfamiliar term 
ρ is a Data Defect Correlation, defined in [29].  

As a big data statistical paradox case, there are estimates 
obtained from the Cooperative Congressional Election Study 
(CCES) of the 2016 US presidential election suggest a ρ ≈ 
−0.005 for self-reporting to vote for Donald Trump. Because 
of the Law of Large Populations [29], this seemingly 
insignificant data defect correlation implies that the simple 
sample proportion of the self-reported voting preference for 
Trump from 1% of the US eligible voters, that is, n ≈ 
2,300,000, has the same mean squared error as the 
corresponding sample proportion from a genuine simple 
random sample of size n ≈ 400, a 99.98% reduction of sample 
size (and hence our confidence). The CCES data demonstrate 
the power of LLP: on average, the larger the state’s voter 
populations, the further away the actual Trump vote shares 
from the usual 95% confidence intervals based on the sample 
proportions. This should remind us that, regardless of the 
quality of the data, population inferences from big data are 
subject to the Big Data paradox: the more data, the more we 
fool ourselves. 

It is possible that the two new concepts of Data Defect 
Correlation and the Law of Large Populations introduced by 
the author [17] can serve as the beginning of the search for 
new measures for Big Data. This relatively recent work has 
already been cited 170 times. Similar type of researches are 
collected in [30], and on their basis, it is proposed to develop a 
new formal methodology. Thus, the Big Data problem can 
serve as a basis for the fundamental scientific reform. 

VIII. CONCLUSIONS 

This is an insight into the difficulties that arise when 
looking at applications of artificial intelligence (AI) from 
traditional statistical data processing. In addition, it is 
associated with an unprecedented amount of Big Data, 
including the grandiose amount of software. At first glance, it 
seems that the reason that causes of Big Data analysis failures 
is the difference in cultures between machine learning and 
statistical communities. But the reason is apparently deeper, as 
the statistical paradox in the Big Data example above shows. 
At present, it is not clear whether it will be possible to invent 
parameters that will help meet the requirements of insurance 
companies for safety- and security-critical Artificial 
Intelligence (AI) applications. It is possible that the two new 
concepts of Data Defect correlation and the Law of Large 
Populations introduced by the author [29] can serve as the 
starting point of the search for new measures for Big Data. 
The analysis of AI studies showed that there are currently no 
indicators that can measure the security, safety, robustness, 
and trustworthiness of software used in AI applications. We 
cannot remain silent about the cyber threat situation either, 
which makes Big Data analysis extremely difficult. The task 
of providing robustness of machine learning software, 
especially in safety- and security-critical areas, is currently 
beyond the competence of individual companies and even 
governments and is becoming a problem of international 
cooperation. 
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