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Abstract—Software test cases is an important study issue that 
has piqued the interest of many academics who are attempting to 
create or suggest a heuristic strategy that might lessen the 
laborious manual effort that software engineers expend while 
classifying test cases. The goal is to ensure that all features and 
apps have been tested and verified. In order to achieve that, there 
must be a good framework that can suggest or match the feature 
labels with their test cases in a chronological way. Failing to do so 
will result in inaccurately labeled test cases. Therefore, the key 
objective of this paper is to propose a method that can do an 
automatic directory classification of test cases based on their test 
case description by applying the K-nearest neighbor classifier. 
Bag-of-word (Bow) and Term Frequency-Inverse Document 
Frequency were used as a vector representation and fitted the 
KNN classifier. The experimental result shows that using KNN-
BOW has a good score compared to KNN-TF-IDF as it 
outperformed and achieved 77% accuracy in comparison with the 
71% that KNN-TF-IDF achieved. Because of that, KNN-BOW is a 
good option for the directory classification based on test case 
descriptions. The proposed method has a contribution to the 
domain and makes sure that using machine learning algorithms 
can make easy directory classification of test case descriptions. 

I. INTRODUCTION 

    Software testing is the main component or principal element 
in developing software efficiently and making certain of its 
correctness regarding the operation that is expected to be carried 
out under distinctive input variables [1]. Numerous techniques 
or strategies exist for performing software testing. The most 
common ones are black box and white box testing. Other 
classifications of the software testing methods can be done by 
referring to how the testing is carried out. According to this, 
classification test cases can be either manual testing or 
automated testing [2]. 

   Manual testing is performed by preparing test cases manually 
and is more prone to human errors, whereas automatic testing is 
carried out by recording the various test cases on the basis of 
what actions the user has performed. This saves a lot of time in 
writing test cases manually and improves the efficiency. 
Besides that, manual testing is not suitable for intensive 
software, such as those companies that are manufacturing 
Android phones [4]. Because we know that Android is a broad 
software platform that consists of many different layers 
composed of applications, drivers, operating system, 

components, and kernel. It is clear that this software has its own 
complexity and Android manufacturers need comprehensive 
tests in order to make sure the system is working as it is 
expected to carry out and to fit the requirements of the 
organization in terms of hardware support and software [2]. 

   To address this issue, many researchers proposed several 
methods, such as using manual tags or manual assignment for 
feature labels, or even using an application lifecycle 
management system. Nevertheless, these proposed solutions are 
still leading to inaccurately labeled test cases. Therefore, the key 
objective of this paper is to propose a method that can do an 
automatic directory classification of test cases based on their 
test case description. The idea is to reduce the tedious manual 
effort that software developers currently spend classifying test 
cases. The goal is to ensure that all features and apps have been 
tested and verified. In order to achieve that, there must be a good 
framework that can suggest or match the feature labels with their 
test cases in a chronological way. Hence, the result of this 
proposed method will be the categorization of the directory 
structure of the test cases by determining for each test case 
which directory it must be or belongs to be in. The prediction 
will be based on the whole component that the test case belongs 
to, and this will ensure whether the test cases were classified 
correctly or not. 

   This paper is structured with five sections. The following 
section provides related work of topic classification test cases. 
The third section describes how it will look like the proposed 
methodology that is going to be implemented in third section. 
The fourth section presents the output of the proposed 
framework and analyzation. Finally, the fifth section presents 
conclusion and future work. 

II. BACKGROUND & RELATED WORK

   As classifying software test cases is an important research 
domain area, many researchers propose different methods, such 
as manual tagging, using application lifecycle management, and 
automatic topic classification. Each proposed method has its 
own pros and cons in terms of time- consuming tasks and 
inaccurately labeled task cases. For instance, tests are labelled 
manually at the studied Android smartphone vendor, and they 
have defined tags and feature labels. These features need to be 
categorized in an accurate way, unless the test cases are 
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unsuccessful, which will cause the developer to not know which 
features and apps were tested [1]. Meanwhile, application 
lifecycle management is another method that has been proposed 
to tackle this issue. ALM, in short form, is a way of managing a 
pre-defined process to facilitate software development from 
start to finish, such as product release or end product support. 
The predefined process is such as defect tracking, fixing, or 
testing, and it needs to be connected through a web interface or 
be its own dedicated window application form [1], [2]. 

   In a nutshell, it’s well-known that there is a great amount of 
research that has been published in the area of automatic test 
case generation methods in the past few years [2], [5]. Hence, 
we can classify test case generation into three main types: 
requirement-based, program-based, and random-based. 

A. Requirement based 

   Requirement-based test case generation can also be called 
specification test case generation [3], as the test case can be a 
semi- formal or formal specification of the required data or a 
function of the software under test [2]. The formal specification 
can be driven by different formalisms of software requirements 
such as logic programs, finite state machines, and first-order 
logic ones [6] and [7]. On the other hand, the semi-formal 
specification can also be driven by the diagram notation of 
software systems. In the dataflow diagram, it has defined the 
structure requirement as a hierarchy for the test case benchmark 
[8]. 

B. Random based 

   Random-based test cases are related to a certain class of 
probabilistic models that are generated during the execution 
time of software operations. Through a random sampling, it 
usually selects test cases over the input space of the software 
based on a certain probabilistic distribution [7]. By applying 
previous software operations at random, it can be recognized as 
a simple random testing method, whereas applying a stochastic 
model can be defined as a sophisticated one. And the 
sophisticated ones have been applied to various models such as 
Markov Chains and Bayesian Networks. In terms of fault 
detection, reliability testing, and functional validation and 
verification, the sophisticate [9]. 

C. Program based 

   Program-based test cases are based on analyzing the source 
code of the program under test without taking into consideration 
the execution of the program. And it doesn’t take into 
consideration the behavior of the program during the execution 
time as a dynamic mode. Because of that, it can be defined as a 
static test creation or generation method. It is also path-oriented 
because it always takes a certain path as an input during test case 
generation. It is also noteworthy to mention that some 
researchers define it as a goal-oriented method. Because it is 
able to determine which path causes the branch or the statement 
to be executed [8]. 

Feature labelling is also another way that researchers tackled 
this issue, but it has a challenge in coming up with appropriate 
features that each team should have. It has to be unique for each 
feature for each team, and it has to be labeled manually, which 
needs domain knowledge and investigation. This makes it 

similar to other tagging tasks which are time-consuming [1]. 

   The proposed methodology is based on the requirement to 
summarize test case descriptions. However, feature labels 
cannot be assigned manually as it can cause human error, and 
that is why we need to analyze the text of the test case 
description to assign each feature label under which category it 
belongs to. Meanwhile, text case description has gathered 
Android smartphone vendors' data, and the data that has 
gathered is the one we have to analyze and make the directory 
classification based on the text analysis. 

   However, the method presented in this work is inspired by the 
idea of an application lifecycle management system, which 
other researchers have improved and come up with the idea of 
topic classification. Because of that, we are continuing this work 
and trying to expand the areas that other researchers left in the 
feature label only to be applied in the test case descriptions. 

III. METHODOLOGY 

   The main focus of the work is towards developing a method 
that can do an automatic directory classification of test cases 
based on test case description, and therefore, we know that 
research methodologies are developed to achieve the work’s 
objectives. As it describes the guidance that can be given to 
achieve the system objective, we will explain the whole process 
in detail. 

A. Research Framework 

   In this framework, we are dealing with the test case 
descriptions as mentioned before. Because of this, we first split 
the raw data into two parts: training and testing. The ratio of each 
part is half of the raw data, which means 50% for training and 
50% for testing [1]. We tried to do looping for the data split. 
However, we found out that there is duplicate data when we are 
using a loop. Because of that, we followed the previous 
researchers who split the dataset into (50) training andtesting. 
After splitting the dataset, the next process is to find the best 
performing parameters by tuning parameters from the training 
dataset. The vectorizing of training text was the next step, which 
intends to covert text into a bag-of-words. As we have test case 
descriptions, we need to remove words that contain numeric 
characters and words that appear less than 5% of the time in 
each test case description. Not only bag-of-words, but we also 
did the same for converting text into TF-IDF, which stands for 
term frequency-Inverse Document Frequency. Here is the figure 
demonstrating the whole process.  

 

 Fig. 1 Proposed Framework   
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Fig. 1 shows what the proposed framework looks like and it also 
shows how they interconnect each step while also illustrating 
how the data can come from the training row dataset and testing 
row dataset. However, there are certain things that have to be 
done before fitting the model, and we would like to discuss 
those things before we train the model. Here is the list of certain 
things we have to do before we train the model: 

 Data Transformation.

 Data Cleaning

 Lemmatizing and Steaming.

 Vectorization.

1) Data Transformation

   The first step that we have done was data transformation. As 
probably formatted data improves the quality of the data, it was 
compulsory to do so. And this transformed data will make easier 
to fit the model. Here is the actual figure of the dataset before 
I’ve done data transformation. 

 Fig. 2 Actual dataset 

   Fig. 2 shows what the actual dataset looks like. We can see 
that the test case description is in different columns, which 
makes it complex to fit the training model. Because of that, we 
can see there is a high demand for data transformation in order 
to improve the structure of the data, which has a direct effect on 
the data quality. The upcoming figure will show us what the data 
looks like after we have done data transformation. 

   Fig. 3 demonstrates how data become after transformation 
and it is clean that is unlike in Fig. 2. The main reason that we 
did data transformation is to get each test case description in 
one row so that it can be easy for the model to categorize 
based on the word count in the training model. 

2) Data Cleaning

   The second step that was data cleaning by removing numbers, 
punctuations and capitalization from the test case descriptions. 
We know that as long as we have a cleaned data, we can have a 

successful project as it is the start point. And that makes me to 
take a proper care to clean the data by removing unnecessary 
information such as numerical words or alphanumerical. 

Fig. 3 Data transformed 

3) Lemmatizing and Steaming

   The idea of steaming is to find the core root of the word whereas 
the lemmatizing is to reduce the inflected words to ensure the 
root word where it belongs in the language. Before we vectored 
the words, we have to return every verb by it is base-form which 
means it is core root. The upcoming figure four shows how the 
original test case description was and the next figures will 
demonstrated how it changed after we have done the 
lemmatizing. 

 Fig. 4 Text case Description 

   Fig. 4 shows one of the test case descriptions that we have in 
our dataset. However, we have not done lemmatizing it yet, but 
we have done it only for data transformation and data cleaning 
which makes now easily to be readable. Nevertheless, the next 
upcoming figure will demonstrate how the same text case 
description will look like after lemmatizing. However, before 
lemmatizing we have to tokenize the words and then do the 
lemmatizing. 
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 Fig. 5 Text case Description Tokenized 

Fig. 5 shows how the same test case description looks like after 
we have done tokenization word by word that makes easy to be 
either lemmatized or steamed. We can see from the test case 
description that words are not the core root. For instance, the 
word ‘playing’ has not yet transformed to it is core root, but the 
next step is to do that action which lemmatizing or steaming. 

Fig. 6 Text case Description Lemmatized 

   Fig. 6 illustrates how the test case description looks like after 
we have done lemmatizing. It is clear that every word has turned 
back by it is core root. For instance, if we take a look the work 
‘play’ it was ‘playing’ before we have done the lemmatization. 
However, it can be seen now that every word has turned back by 
it is base form after used WordNet Lemmatized and Snowball 
Steamer from Corpus dictionary. And it makes easy to either  
create the bag-of –word or TFIDF as long as we have the core 
root of each word.  

B. Train a model with best parameters 

   We used K-nearest neighbor as our statistical model and fed 
the vectors which is the best parameters that come from either 
bag-of- words or TF-IDF. In our model construction, we used 
python scikit- learn library. In order to measure the distance of 
a concerned vector against other vectors in the training dataset 
in bag-of-words, we used minkowski metric to measure it. We 
know there in no need for cosine distance in bag-of- words 
because documents sizes are relatively similar and that is why 
there is no need for size normalization of cosine distance. On 
the other hand, in order to measure the distance of a concerned 
vector against other vectors in the training dataset in TF-IDF, 
we used cosine metric, because there is a need for size 

normalization when we are measuring the cosine distance. 
While training the model, we found out that the best performing 
K is 4 via tuning and thus we used in this model K equal to four. 

C. Vectorizing the testing dataset 

   It is not similar to the train dataset, during testing dataset; we 
are not supposed to check the word accuracy. Because we know 
that during the training it fitted the model only the words that 
does not appeared in the test dataset and word count vector are 
based on the corpus dictionary in the training part. 

D. Predict and Measurement 

   In order to make sure how our categorization has done 
correctly, we have to evaluate our model prediction result and 
make sure the measurements. As we said, K-nearest neighbor is 
our statistical model in order to categorize the most voted 
categories as predicted label. There could be certain points that 
the classifier cannot categories the labels and such output is 
unpredictable and it does not contribute or affect the 
performance of the model. In term of performance, we will 
discuss in the result section. 

IV. RESULT AND DISCUSSIONS 

   In the subsequent section, results and discussions are going to 
be discussed and we will present the accuracy that achieved by 
each model with several of metrics that we tried it. Knn- BOW 
has achieved the best accuracy with its minkowski metric while 
Knn-TF- IDF has also proved its aptitude in term of a achieving 
a good accuracy but not much as Knn-Bow. Here is the details 
of each of them. 

A. Dataset Description 

   The dataset that is used in this study was collected by two 
Android smartphone vendors who asked that we keep their 
names anonymous. The dataset consists of various test cases, but 
previous researchers had picked six test cases that came from 
six teams in the company out of 50. The reason they chose is that 
these test cases were managed in ALMS (the application 
lifecycle management system) [1]. The following table shows 
us the different domains that we have in the dataset. 

TABLE I. DATASET DESCRIPTION 

Team ID 
Test Domain Test Cases

0 Multimedia 2286 

1 Multimedia 2286 

2 Android OS & Linux Kernel 2286

3 Android OS & Linux Kernel 2286

4 Cellular & Connectivity 2286 

5 Cellular & Connectivity 2286 

Total test cases 13716 

B. Results and Discussions 

   The anticipated proposed methodology for classifying test 
cases based on categories applies to the K nearest neighbor 
classifier that uses different metrics to calculate the distance 
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between the real vectors by summing up their absolute 
differences. In this work, we used minskowsi and cosine metrics 
as the metric of the K nearest neighbor. 

   Here is the result that we found after we did data cleaning, 
lemmatizing, and steaming and applied it to the K-nearest 
neighbor with a bag of words. Although we tried different 
metrics for KNN- BOW, such as minskowski and cosine, we 
found that using minskowski is a good option as a metric. This 
means using Minkowski as a metric is outperformed by using 
cosine as a metric. Here are the two outputs. 

Fig. 7 Knn-Bow minkowski (Lem-Ste) 

In Fig. 7, it can be seen that using lemmatization is a good 
option in terms of the accuracy, which is outperformed by 
steaming by using Minkowski as a metric. However, as we can 
see, F1's results in both metrics are also most similar. This shows 
us how they are also close to each other. On the other hand, the 
upcoming figure will demonstrate how the result is after the 
cosine me tric is applied. 

Fig. 8 Knn-Bow cosine (Lem-Ste) 

 Moreover, Fig. 8 shows us that using steaming is a good choice 
in terms of accuracy and f1-score compared to the lemmatizing 
Nevertheless, the overall good accuracy is achieved by using 
lemmatization in a Minkowski metric. 

On the other hand, KNN-TF-IDF has applied the same data 
after cleaning, lemmatizing, and steaming by applying the 
cosine metric. We found out that using steam is also superior to 
using lemmatization in terms of accuracy and f1- score. As the 
upcoming figure illustrates. 
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  Fig. 9 Knn-TF-IDF cosine (Lem-Ste) 

Overall, we have two different vector representations to be 
fitted the K-nearest neighbor classifier, here the results based on 
the distance metric and word root which has proportional effect 
to the accuracy of the model. 

TABLE II. RESULT 

Model 
Results 

Distance 
Metric 

Word root Accuracy (%) F1-scores 

KNN- 
BoW 

minkows 
ki 

Steaming 76.55 77

KNN- 
BoW 

cosine Lemmatizing 71.18 71

KNN- 
BoW 

minkows 
ki 

Lemmatizing 76.66 77

KNN- 
BoW 

cosine Steaming 71.63 72

KNN-TF- 
IDF 

cosine Steaming 71.62 72

KNN-TF- 
IDF 

cosine Lemmatizing 71.12 71

The best accuracy is achieved with the Knn-Bow compared to 
the Knn-TF-IDF. Yet, using Minkowski as a distance metric 
with lemmatizing is a good option, which scored 76.66 as 
accuracy and 77 as f1-score. However, applying Knn-bow with 
cosine as a distance metric has achieved a low accuracy 
compared to applying Knn-TF- IDF using cosine as a distance 
metric has scored 71.62 as an accuracy, but both achieved the 
same f1-score, which is 72. 

C. Comparative analysis 

However, in comparing with previous researchers who have 
classified their performance results in terms of Name-LDA or 
Name- WC, we find that WC is better than LDA in their model, 
which makes B, C, E, and F have good performance in terms of 
F1 score, and we compared that result with the result that we 
achieved. As adopted from [1], their model has scored from 0.3 
to 0.88 for both WC and LD performance, yet the separation 
will be WC for F1 scores of 0.71 (B, C, E, F), whereas the rest 
will go through LD (A, D). 

On the other hand, our model has scored 76.66 as accuracy 
and 77 as f1-score, which outperformed the result of the WC 
performance that was adopted by [1] researchers. This shows us 
analyzing the text has achieved the best accuracy in terms of 
classifying different modules. 

V. CONCLUSION

Automatic directory classification based on machine 
learning is proposed for this methodology, which can play an 
essential role for test case classification that spends a lot of time 
for testers in order to make sure which feature or apps are 
working as they are expected to carry out. The K nearest 
neighbor is used to be the algorithm that has done the 
classification and fitted two different vector representations: 
bag-of-words and TF-IDF, which stands for term frequency- 
inverse document frequency. We found out that using KNN- 
BOW has a good result and outperformed using KNN-TF- IDF. 
Because of that, KNN- BOW is a good option for directory 
classification based on test case descriptions. Moreover, we 
found out how much such a system could be deployed by an 
Android smartphone vendor and how much work developers 
would have to invest in order to make a working system. 

VI. FUTURE WORK 

This proposed method can be further improved and applied 
to other fields such as reinforcement learning and online 
learning, or it can be applied to other machine learning 
algorithms in order to improve the result. 

Meanwhile, domain-specific specialization in the NLP and 
IR pipelines has the potential to increase both machine learning 
and run- time performance. Words like 802.11 and H264 should 
be considered domain knowledge and not separated by a naïve 
tokenizer. It is feasible that the feature label might be enhanced 
by collecting user suggestions and collaborating with the teams, 
albeit each team will have their own set of features. 
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