
Automatic Directory Classification of Test Cases
Based on Machine Learning Algorithms at an

Android Smartphone Vendor

Abdirahman Osman Hashi1
Istanbul Technical University

Istanbul, Turkey
Wadani12727@gmail.com

Octavio Ernesto Romo Rodrigue
Istanbul Technical University

Istanbul, Turkey
oct_romo@hotmail.com

Abstract—Software test cases is an important study issue that
has piqued the interest of many academics who are attempting to
create or suggest a heuristic strategy that might lessen the
laborious manual effort that software engineers expend while
classifying test cases. The goal is to ensure that all features and
apps have been tested and verified. In order to achieve that, there
must be a good framework that can suggest or match the feature
labels with their test cases in a chronological way. Failing to do so
will result in inaccurately labeled test cases. Therefore, the key
objective of this paper is to propose a method that can do an
automatic directory classification of test cases based on their test
case description by applying the K-nearest neighbor classifier.
Bag-of-word (Bow) and Term Frequency-Inverse Document
Frequency were used as a vector representation and fitted the
KNN classifier. The experimental result shows that using KNN-
BOW has a good score compared to KNN-TF-IDF as it
outperformed and achieved 77% accuracy in comparison with the
71% that KNN-TF-IDF achieved. Because of that, KNN-BOW is a
good option for the directory classification based on test case
descriptions. The proposed method has a contribution to the
domain and makes sure that using machine learning algorithms
can make easy directory classification of test case descriptions.

I. INTRODUCTION

 Software testing is the main component or principal element
in developing software efficiently and making certain of its
correctness regarding the operation that is expected to be carried
out under distinctive input variables [1]. Numerous techniques
or strategies exist for performing software testing. The most
common ones are black box and white box testing. Other
classifications of the software testing methods can be done by
referring to how the testing is carried out. According to this,
classification test cases can be either manual testing or
automated testing [2].

 Manual testing is performed by preparing test cases manually
and is more prone to human errors, whereas automatic testing is
carried out by recording the various test cases on the basis of
what actions the user has performed. This saves a lot of time in
writing test cases manually and improves the efficiency.
Besides that, manual testing is not suitable for intensive
software, such as those companies that are manufacturing
Android phones [4]. Because we know that Android is a broad
software platform that consists of many different layers
composed of applications, drivers, operating system,

components, and kernel. It is clear that this software has its own
complexity and Android manufacturers need comprehensive
tests in order to make sure the system is working as it is
expected to carry out and to fit the requirements of the
organization in terms of hardware support and software [2].

 To address this issue, many researchers proposed several
methods, such as using manual tags or manual assignment for
feature labels, or even using an application lifecycle
management system. Nevertheless, these proposed solutions are
still leading to inaccurately labeled test cases. Therefore, the key
objective of this paper is to propose a method that can do an
automatic directory classification of test cases based on their
test case description. The idea is to reduce the tedious manual
effort that software developers currently spend classifying test
cases. The goal is to ensure that all features and apps have been
tested and verified. In order to achieve that, there must be a good
framework that can suggest or match the feature labels with their
test cases in a chronological way. Hence, the result of this
proposed method will be the categorization of the directory
structure of the test cases by determining for each test case
which directory it must be or belongs to be in. The prediction
will be based on the whole component that the test case belongs
to, and this will ensure whether the test cases were classified
correctly or not.

 This paper is structured with five sections. The following
section provides related work of topic classification test cases.
The third section describes how it will look like the proposed
methodology that is going to be implemented in third section.
The fourth section presents the output of the proposed
framework and analyzation. Finally, the fifth section presents
conclusion and future work.

II. BACKGROUND & RELATED WORK

 As classifying software test cases is an important research
domain area, many researchers propose different methods, such
as manual tagging, using application lifecycle management, and
automatic topic classification. Each proposed method has its
own pros and cons in terms of time- consuming tasks and
inaccurately labeled task cases. For instance, tests are labelled
manually at the studied Android smartphone vendor, and they
have defined tags and feature labels. These features need to be
categorized in an accurate way, unless the test cases are

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 342 --

unsuccessful, which will cause the developer to not know which
features and apps were tested [1]. Meanwhile, application
lifecycle management is another method that has been proposed
to tackle this issue. ALM, in short form, is a way of managing a
pre-defined process to facilitate software development from
start to finish, such as product release or end product support.
The predefined process is such as defect tracking, fixing, or
testing, and it needs to be connected through a web interface or
be its own dedicated window application form [1], [2].

 In a nutshell, it’s well-known that there is a great amount of
research that has been published in the area of automatic test
case generation methods in the past few years [2], [5]. Hence,
we can classify test case generation into three main types:
requirement-based, program-based, and random-based.

A. Requirement based

 Requirement-based test case generation can also be called
specification test case generation [3], as the test case can be a
semi- formal or formal specification of the required data or a
function of the software under test [2]. The formal specification
can be driven by different formalisms of software requirements
such as logic programs, finite state machines, and first-order
logic ones [6] and [7]. On the other hand, the semi-formal
specification can also be driven by the diagram notation of
software systems. In the dataflow diagram, it has defined the
structure requirement as a hierarchy for the test case benchmark
[8].

B. Random based

 Random-based test cases are related to a certain class of
probabilistic models that are generated during the execution
time of software operations. Through a random sampling, it
usually selects test cases over the input space of the software
based on a certain probabilistic distribution [7]. By applying
previous software operations at random, it can be recognized as
a simple random testing method, whereas applying a stochastic
model can be defined as a sophisticated one. And the
sophisticated ones have been applied to various models such as
Markov Chains and Bayesian Networks. In terms of fault
detection, reliability testing, and functional validation and
verification, the sophisticate [9].

C. Program based

 Program-based test cases are based on analyzing the source
code of the program under test without taking into consideration
the execution of the program. And it doesn’t take into
consideration the behavior of the program during the execution
time as a dynamic mode. Because of that, it can be defined as a
static test creation or generation method. It is also path-oriented
because it always takes a certain path as an input during test case
generation. It is also noteworthy to mention that some
researchers define it as a goal-oriented method. Because it is
able to determine which path causes the branch or the statement
to be executed [8].

Feature labelling is also another way that researchers tackled
this issue, but it has a challenge in coming up with appropriate
features that each team should have. It has to be unique for each
feature for each team, and it has to be labeled manually, which
needs domain knowledge and investigation. This makes it

similar to other tagging tasks which are time-consuming [1].

 The proposed methodology is based on the requirement to
summarize test case descriptions. However, feature labels
cannot be assigned manually as it can cause human error, and
that is why we need to analyze the text of the test case
description to assign each feature label under which category it
belongs to. Meanwhile, text case description has gathered
Android smartphone vendors' data, and the data that has
gathered is the one we have to analyze and make the directory
classification based on the text analysis.

 However, the method presented in this work is inspired by the
idea of an application lifecycle management system, which
other researchers have improved and come up with the idea of
topic classification. Because of that, we are continuing this work
and trying to expand the areas that other researchers left in the
feature label only to be applied in the test case descriptions.

III. METHODOLOGY

 The main focus of the work is towards developing a method
that can do an automatic directory classification of test cases
based on test case description, and therefore, we know that
research methodologies are developed to achieve the work’s
objectives. As it describes the guidance that can be given to
achieve the system objective, we will explain the whole process
in detail.

A. Research Framework

 In this framework, we are dealing with the test case
descriptions as mentioned before. Because of this, we first split
the raw data into two parts: training and testing. The ratio of each
part is half of the raw data, which means 50% for training and
50% for testing [1]. We tried to do looping for the data split.
However, we found out that there is duplicate data when we are
using a loop. Because of that, we followed the previous
researchers who split the dataset into (50) training andtesting.
After splitting the dataset, the next process is to find the best
performing parameters by tuning parameters from the training
dataset. The vectorizing of training text was the next step, which
intends to covert text into a bag-of-words. As we have test case
descriptions, we need to remove words that contain numeric
characters and words that appear less than 5% of the time in
each test case description. Not only bag-of-words, but we also
did the same for converting text into TF-IDF, which stands for
term frequency-Inverse Document Frequency. Here is the figure
demonstrating the whole process.

 Fig. 1 Proposed Framework

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 343 --

Fig. 1 shows what the proposed framework looks like and it also
shows how they interconnect each step while also illustrating
how the data can come from the training row dataset and testing
row dataset. However, there are certain things that have to be
done before fitting the model, and we would like to discuss
those things before we train the model. Here is the list of certain
things we have to do before we train the model:

 Data Transformation.

 Data Cleaning

 Lemmatizing and Steaming.

 Vectorization.

1) Data Transformation

 The first step that we have done was data transformation. As
probably formatted data improves the quality of the data, it was
compulsory to do so. And this transformed data will make easier
to fit the model. Here is the actual figure of the dataset before
I’ve done data transformation.

 Fig. 2 Actual dataset

 Fig. 2 shows what the actual dataset looks like. We can see
that the test case description is in different columns, which
makes it complex to fit the training model. Because of that, we
can see there is a high demand for data transformation in order
to improve the structure of the data, which has a direct effect on
the data quality. The upcoming figure will show us what the data
looks like after we have done data transformation.

 Fig. 3 demonstrates how data become after transformation
and it is clean that is unlike in Fig. 2. The main reason that we
did data transformation is to get each test case description in
one row so that it can be easy for the model to categorize
based on the word count in the training model.

2) Data Cleaning

 The second step that was data cleaning by removing numbers,
punctuations and capitalization from the test case descriptions.
We know that as long as we have a cleaned data, we can have a

successful project as it is the start point. And that makes me to
take a proper care to clean the data by removing unnecessary
information such as numerical words or alphanumerical.

Fig. 3 Data transformed

3) Lemmatizing and Steaming

 The idea of steaming is to find the core root of the word whereas
the lemmatizing is to reduce the inflected words to ensure the
root word where it belongs in the language. Before we vectored
the words, we have to return every verb by it is base-form which
means it is core root. The upcoming figure four shows how the
original test case description was and the next figures will
demonstrated how it changed after we have done the
lemmatizing.

 Fig. 4 Text case Description

 Fig. 4 shows one of the test case descriptions that we have in
our dataset. However, we have not done lemmatizing it yet, but
we have done it only for data transformation and data cleaning
which makes now easily to be readable. Nevertheless, the next
upcoming figure will demonstrate how the same text case
description will look like after lemmatizing. However, before
lemmatizing we have to tokenize the words and then do the
lemmatizing.

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 344 --

 Fig. 5 Text case Description Tokenized

Fig. 5 shows how the same test case description looks like after
we have done tokenization word by word that makes easy to be
either lemmatized or steamed. We can see from the test case
description that words are not the core root. For instance, the
word ‘playing’ has not yet transformed to it is core root, but the
next step is to do that action which lemmatizing or steaming.

Fig. 6 Text case Description Lemmatized

 Fig. 6 illustrates how the test case description looks like after
we have done lemmatizing. It is clear that every word has turned
back by it is core root. For instance, if we take a look the work
‘play’ it was ‘playing’ before we have done the lemmatization.
However, it can be seen now that every word has turned back by
it is base form after used WordNet Lemmatized and Snowball
Steamer from Corpus dictionary. And it makes easy to either
create the bag-of –word or TFIDF as long as we have the core
root of each word.

B. Train a model with best parameters

 We used K-nearest neighbor as our statistical model and fed
the vectors which is the best parameters that come from either
bag-of- words or TF-IDF. In our model construction, we used
python scikit- learn library. In order to measure the distance of
a concerned vector against other vectors in the training dataset
in bag-of-words, we used minkowski metric to measure it. We
know there in no need for cosine distance in bag-of- words
because documents sizes are relatively similar and that is why
there is no need for size normalization of cosine distance. On
the other hand, in order to measure the distance of a concerned
vector against other vectors in the training dataset in TF-IDF,
we used cosine metric, because there is a need for size

normalization when we are measuring the cosine distance.
While training the model, we found out that the best performing
K is 4 via tuning and thus we used in this model K equal to four.

C. Vectorizing the testing dataset

 It is not similar to the train dataset, during testing dataset; we
are not supposed to check the word accuracy. Because we know
that during the training it fitted the model only the words that
does not appeared in the test dataset and word count vector are
based on the corpus dictionary in the training part.

D. Predict and Measurement

 In order to make sure how our categorization has done
correctly, we have to evaluate our model prediction result and
make sure the measurements. As we said, K-nearest neighbor is
our statistical model in order to categorize the most voted
categories as predicted label. There could be certain points that
the classifier cannot categories the labels and such output is
unpredictable and it does not contribute or affect the
performance of the model. In term of performance, we will
discuss in the result section.

IV. RESULT AND DISCUSSIONS

 In the subsequent section, results and discussions are going to
be discussed and we will present the accuracy that achieved by
each model with several of metrics that we tried it. Knn- BOW
has achieved the best accuracy with its minkowski metric while
Knn-TF- IDF has also proved its aptitude in term of a achieving
a good accuracy but not much as Knn-Bow. Here is the details
of each of them.

A. Dataset Description

 The dataset that is used in this study was collected by two
Android smartphone vendors who asked that we keep their
names anonymous. The dataset consists of various test cases, but
previous researchers had picked six test cases that came from
six teams in the company out of 50. The reason they chose is that
these test cases were managed in ALMS (the application
lifecycle management system) [1]. The following table shows
us the different domains that we have in the dataset.

TABLE I. DATASET DESCRIPTION

Team ID
Test Domain Test Cases

0 Multimedia 2286

1 Multimedia 2286

2 Android OS & Linux Kernel 2286

3 Android OS & Linux Kernel 2286

4 Cellular & Connectivity 2286

5 Cellular & Connectivity 2286

Total test cases 13716

B. Results and Discussions

 The anticipated proposed methodology for classifying test
cases based on categories applies to the K nearest neighbor
classifier that uses different metrics to calculate the distance

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 345 --

between the real vectors by summing up their absolute
differences. In this work, we used minskowsi and cosine metrics
as the metric of the K nearest neighbor.

 Here is the result that we found after we did data cleaning,
lemmatizing, and steaming and applied it to the K-nearest
neighbor with a bag of words. Although we tried different
metrics for KNN- BOW, such as minskowski and cosine, we
found that using minskowski is a good option as a metric. This
means using Minkowski as a metric is outperformed by using
cosine as a metric. Here are the two outputs.

Fig. 7 Knn-Bow minkowski (Lem-Ste)

In Fig. 7, it can be seen that using lemmatization is a good
option in terms of the accuracy, which is outperformed by
steaming by using Minkowski as a metric. However, as we can
see, F1's results in both metrics are also most similar. This shows
us how they are also close to each other. On the other hand, the
upcoming figure will demonstrate how the result is after the
cosine me tric is applied.

Fig. 8 Knn-Bow cosine (Lem-Ste)

 Moreover, Fig. 8 shows us that using steaming is a good choice
in terms of accuracy and f1-score compared to the lemmatizing
Nevertheless, the overall good accuracy is achieved by using
lemmatization in a Minkowski metric.

On the other hand, KNN-TF-IDF has applied the same data
after cleaning, lemmatizing, and steaming by applying the
cosine metric. We found out that using steam is also superior to
using lemmatization in terms of accuracy and f1- score. As the
upcoming figure illustrates.

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 346 --

 Fig. 9 Knn-TF-IDF cosine (Lem-Ste)

Overall, we have two different vector representations to be
fitted the K-nearest neighbor classifier, here the results based on
the distance metric and word root which has proportional effect
to the accuracy of the model.

TABLE II. RESULT

Model
Results

Distance
Metric

Word root Accuracy (%) F1-scores

KNN-
BoW

minkows
ki

Steaming 76.55 77

KNN-
BoW

cosine Lemmatizing 71.18 71

KNN-
BoW

minkows
ki

Lemmatizing 76.66 77

KNN-
BoW

cosine Steaming 71.63 72

KNN-TF-
IDF

cosine Steaming 71.62 72

KNN-TF-
IDF

cosine Lemmatizing 71.12 71

The best accuracy is achieved with the Knn-Bow compared to
the Knn-TF-IDF. Yet, using Minkowski as a distance metric
with lemmatizing is a good option, which scored 76.66 as
accuracy and 77 as f1-score. However, applying Knn-bow with
cosine as a distance metric has achieved a low accuracy
compared to applying Knn-TF- IDF using cosine as a distance
metric has scored 71.62 as an accuracy, but both achieved the
same f1-score, which is 72.

C. Comparative analysis

However, in comparing with previous researchers who have
classified their performance results in terms of Name-LDA or
Name- WC, we find that WC is better than LDA in their model,
which makes B, C, E, and F have good performance in terms of
F1 score, and we compared that result with the result that we
achieved. As adopted from [1], their model has scored from 0.3
to 0.88 for both WC and LD performance, yet the separation
will be WC for F1 scores of 0.71 (B, C, E, F), whereas the rest
will go through LD (A, D).

On the other hand, our model has scored 76.66 as accuracy
and 77 as f1-score, which outperformed the result of the WC
performance that was adopted by [1] researchers. This shows us
analyzing the text has achieved the best accuracy in terms of
classifying different modules.

V. CONCLUSION

Automatic directory classification based on machine
learning is proposed for this methodology, which can play an
essential role for test case classification that spends a lot of time
for testers in order to make sure which feature or apps are
working as they are expected to carry out. The K nearest
neighbor is used to be the algorithm that has done the
classification and fitted two different vector representations:
bag-of-words and TF-IDF, which stands for term frequency-
inverse document frequency. We found out that using KNN-
BOW has a good result and outperformed using KNN-TF- IDF.
Because of that, KNN- BOW is a good option for directory
classification based on test case descriptions. Moreover, we
found out how much such a system could be deployed by an
Android smartphone vendor and how much work developers
would have to invest in order to make a working system.

VI. FUTURE WORK

This proposed method can be further improved and applied
to other fields such as reinforcement learning and online
learning, or it can be applied to other machine learning
algorithms in order to improve the result.

Meanwhile, domain-specific specialization in the NLP and
IR pipelines has the potential to increase both machine learning
and run- time performance. Words like 802.11 and H264 should
be considered domain knowledge and not separated by a naïve
tokenizer. It is feasible that the feature label might be enhanced
by collecting user suggestions and collaborating with the teams,
albeit each team will have their own set of features.

REFERENCES
[1] Shimagaki, J., Kamei, Y., Ubayashi, N. and Hindle, A., 2018, October.

Automatic topic classification of test cases using text mining at an
Android smartphone vendor. In Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement (pp. 1- 10).

[2] Hasan, D. A., Hussan, B. K., Zeebaree, S. R., Ahmed, D. M., Kareem,
O. S., & Sadeeq, M. A. (2021). The impact of test case generation
methods on the software performance: A review. International Journal
of Science and Business, 5(6), 33-44.

[3] Shan, L. and Zhu, H., 2009. Generating structurally complex test cases
by data mutation: A case study of testing an automated modelling tool.
The Computer Journal, 52(5), pp.571-588.

[4] Edwards, S.H., 2004, March. Using software testing to move students
from trial-and-error to reflection-in-action. In Proceedings of the 35th
SIGCSE technical symposium on Computer science education (pp. 26-
30).

[5] Zhang, X.Y., Zheng, Z. and Cai, K.Y., 2018. Exploring the usefulness
of unlabelled test cases in software fault localization. Journal of
Systems and Software, 136, pp.278-290.

[6] Anand, S., Burke, E.K., Chen, T.Y., Clark, J., Cohen, M.B., Grieskamp,
W., Harman, M., Harrold, M.J., McMinn, P., Bertolino, A. and Li, J.J.,
2013. An orchestrated survey of methodologies for automated software
test case generation. Journal of Systems and Software, 86(8), pp.1978-
2001.

[7] Stocks, P.A. and Carrington, D.A., 1993, May. Test templates: A
specification-based testing framework. In Proceedings of 1993 15th
International Conference on Software Engineering (pp. 405-414).IEEE.

[8] Ammann, P. and Offutt, J., 1994, June. Using formal methods to derive
test frames in category-partition testing. In Proceedings of
COMPASS'94-1994 IEEE 9th Annual Conference on Computer
Assurance (pp. 69-79). IEEE.

[9] Hartman, A. and Nagin, K., 2004. The AGEDIS tools for model based
testing. ACM SIGSOFT Software Engineering Notes, 29(4), pp.129-
132.

ISSN 2305-7254__PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

-- 347 --

