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Abstract—In recent years, Handwritten Text Recognition
(HTR) has attracted widespread attention due to its huge
applications. HTR is the process of extracting handwritten text
from an image and converting it into a digital form for machine
operation. Nevertheless, due to the huge differences in personal
writing and the various properties of handwritten characters in
multiple languages, HTR is still a challenging open research
problem, and robustness and adaptability require additional
improvements. The existing approaches to solve the HTR
problem are usually systems based on Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs),
which utilize the Connectionist Temporal Classification (CTC)
objective function. However, many approaches based on
attention sequence to sequence (Seq2Seq) have been proposed for
the HTR task. The Seq2Seq based approaches are more flexible,
suitable for the temporal nature of the text and can use different
attention mechanisms to focus on the most relevant features of
the input. In this paper, we provide extensive comparison of the
current Deep Learning approaches for the task of HTR. Also, we
outline the current problems that limits the effectiveness of these
approaches.

I. INTRODUCTION

Handwriting Text Recognition (HTR) is a subfield of
Optical Character Recognition (OCR). Based on the input data,
it is further subdivided into offline recognition and online text
recognition [1]. Offline OCR is a static system in which the
input data is presented as scanned images, while online OCR is
applied to data that is being captured in present time or in real
time, and is considered more complex and advanced because it
solves overlap problems of input data that is not available in the
offline system.

Technically speaking, the main phases of OCR are image
acquisition, preprocessing, segmentation, feature extraction,
classification and/or possible post-processing. Each stage has
its own goal, and its efficiency determines the accuracy of the
next stage, and ultimately determines the entire recognition
process. HTR has been of interest to the Pattern Recognition
community for many years. Converting images from
handwritten text to machine readable format has a large
number of uses such as making HTR an open research problem
that is still challenging.

With the advent of neural networks and Deep Learning
architectures, HTR, like many other applications, has
dramatically improved performance. Actually, the architecture
proposed by LeCun et al. [2] for HTR, was one of the first
applications of Convolutional Neural Networks (CNNs). This

Samah Mohammed

ITMO University
St. Petersburg, Russia
samah369@mail.ru

architecture is proposed to recognize handwritten digits from
the MNIST dataset.

In the last two decades, several approaches have been
proposed for tackling the HTR task such as Hidden Markov
Models (HMM) [3], [4], [5]. Recurrent Neural Networks
(RNNs) and Connectionist Temporal Classification (CTC) [6],
[71, [8], [9] and attention Seq2Seq approaches [10], [11], [12],
[13].

Many surveys on HTR have been published [14], [15].
Although these surveys usually cover the basics, they are
general and not focused on the HTR architectures [16], [17]. In
addition, new research approaches have emerged. Therefore, it
will be realistic and necessary to investigate the current state-
of-the-art HTR approaches.

In this survey we focus on conducting a comprehensive and
extensive comparison between the current Deep learning
approaches for the task of HTR, for such comparison, the [AM
dataset and the most usual evaluation metrics for HTR systems
were adopted: Character Error Rate (CER) [18]. Also, the
paper contributes in outlining the current problems that limit
the effectiveness of these techniques.

The rest of this paper is structured as follows. In section II
we first review the state-of-art models in Deep Learning, that
currently used for the HTR problem: Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs),
Transforms, Bidirectional Encoder Representation from
Transformers (BERT), attention mechanisms, finally we briefly
review the Connectionist Text Classification (CTC). In section
III we introduce the most state-of art approaches for HTR:
CTC based approaches and attention Seq2Seq based
approaches, and we conduct a comparison between these
approaches. In section IV we present the current challenges in
HTR. Finally, the conclusion is presented.

II. BACKGROUND

A.  Convolutional Neural Networks (CNNs):

CNN [19] is a type of deep learning model for processing
data that has a grid pattern, such as images. CNNs are designed
for extracting features from low to high level patterns.

CNN is a mathematical construct that are ideally contains
three types of layers or building blocks: convolution, pooling,
and fully connected layers. The convolution layer is the main
layer and consists of a stack of mathematical operations such as
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convolution, which is a special type of linear operation. The
convolutional and pooling layers perform feature extraction,
while the fully connected layer maps the extracted features to
the final output, such as classification. The process of
optimizing parameters such as the kernel is called training and
is performed to minimize the difference between the output and
the ground truth label through optimization algorithms such as
backpropagation and gradient descent. Studies have shown that
CNN performance has improved by increasing the width and
depth of the network.

B.  Recurrent Neural Networks (RNNs):

RNNs are very powerful in modeling data sequences, for
example, Natural Language Processing (NLP) and time series.
Their main advantages [20] that RNN can handle input of any
length and the input size does not affect the model size.

Although one of the attractions of RNNs is the possibility
of connecting previous information to the current task, there
have been many cases, where the gap between the relevant
information and the place that it’s needed is big, RNNs can’t
learn to use the past information. In such cases, RNNs can be
difficult to train because gradients passed back through many
layers may vanish or explode. To address this problem, Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
are two modules designed as RNN building blocks to deal with
vanishing gradient and better learn long-term dependencies.

C. Transformers:

Transformer is the first transduction model that completely
relies on self-attention to calculate its input and output
representations without using sequence alignment RNN or
convolution [21].

The main components of the transformer are a set of
encoders and decoders. Encoders encode the input into a
representation, which is then decoded by decoders. One
encoder block has a self-attention mechanism and a
feedforward neural network. On the other hand, a decoder has
both encoder components and an encoder - decoder attention.
Encoders and decoders are stacks of the same structures, that is,
there will be a pair of encoders stacked one on top of the other.
Several decoders can be combined in the same way. The word
embeddings of the input sequence will be passed to the first
encoder. They are then transformed and sent to the next
encoder, and so on. The output of the last encoder will be the
input of the first decoder, then this decoder applies some
transforms and will be sent to the next decoder.

D. Bidirectional Encoder Representation Transformer
(BERT):

BERT is supported by Transformer. Its core principle is
attention. The attention function can be described as mapping a
query and a set of value-key pairs to an output, where the
query, keys, values, and outputs are all vectors. The output is
calculated as a weighted sum of the values, where the weight
assigned to each value is calculated by the query matching
function with the corresponding key. It understands the
contextual relationship between different words [22]. BERT
does not decode the encoded information, but only encodes and
generates a language model, so one encoder is sufficient.
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Compared with directional models such as RNN and LSTM,
they conceive each input sequentially (from left to right or from
right to left). In fact, Transformer and BERT are non-
directional—to be precise, because both models take the entire
sentence as input instead of reading it sequentially. This feature
allows the model to learn the context of a word relative to all
other words in the sentence.

BERT uses two training mechanisms, Mask Language
Modeling (MLM) and Next Sentence Prediction (NSP) to
overcome dependency challenges. For MLM, 15% of the
words in the sequence are masked with a [MASK] token before
the input vector is fed into the encoder. In addition, all words
are replaced by their vector representation. The goal of MLM is
to predict the masked word in relation to all other words in the
sentence. For NSP, during training, the model receives a pair of
sentences as input. Of the entire input pair, 50% have exactly
consecutive sentences as the second term, and the rest have
random sentences as the second sentence. The model
eventually learns it and predicts if the second sentence in the
pair is actually a contiguous sentence.

E.  Connectionist Text Classification (CTC):

Connectionist Temporal Classification (CTC) is an
excellent solution that can avoid pre-segmentation of training
examples and post-processing of converting the output of
recurrent neural networks into label sequences [23]. The last
layer of the network (SoftMax layer) contains a unit for each
label, and outputs the probability of having the corresponding
label at a specific time step. When using the CTC method, an
additional unit is defined to simulate the probability of having a
blank label (that is, no category label).

A representation B is a function that maps the probability
sequence m from the network output, that is, the probability
sequence of observing a specific label in a given time range, to
the prediction sequence 1, that is, one of the input observation
sequences of the label sequence whose length is less than or
equal to. B includes removing duplicate labels, and then blank
predictions. The conditional probability of the label sequence |
for a given observation sequence X is the sum of the
probabilities of the path 7, where B(n) =1 (Eq. 1):

A= > p@/x) M

m:p(mr)=1

III. HTR APPROACHES

In the literature, researchers have made considerable efforts
to employ the most state-of-art computer vision techniques to
HTR systems. The Hidden Markov Models (HMM) [3], [4],
[51, [6] is one of the most popular approaches. However, HMM
failed to make use of the context information, particularly with
long text sequences because of the Markovian assumption
where each observation depends only on the current state.

A. CTC based approaches for HTR:

In the past few years, deep learning methods have
significantly improved HTR tasks over traditional methods.
There are a lot of studies using deep learning methods to solve
this problem.
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Shi et al. [24] proposed a Convolutional Recurrent Neural
Network (CRNN)model, The network architecture (Fig. 1)
contains three main layers:

e Convolutional layers.

e Recurrent layers.

e  Transcription layer.

Convolutional layers based on the VGG-Very Deep
architecture [25] to extract the feature sequence from the input
image, particularly 7 CNN layers and batch normalization
layers are inserted after the fifth and sixth convolutional layers
respectively to accelerate the training process. The Recurrent
layers are represented by two deep Bidirectional Long Term
Short Memory (BLSTM)layers with 256 units built on the top
of the convolutional layers, to predict a label distribution for
each frame. Finally, the transcription layer: to translates the
predictions made by BLSTM into the final label sequence.

Predicted
sequence

"state"
|

[Is[-Tt-[afalt]t]e]

Transcription
Layer Per-frame

predictions

(disbritutions)

Deep
bidirectional
LST™M
Recurrent
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Convolutional
feature maps

Input image

Fig. 1. CRNN architecture [ 25]

From the network training, we seek to reduce the
probability of the negative log-likelihood of the conditional
probability of the ground truth Eq. 2):

9= = > logp(ls/y)
where [;,]; are the training image and ground truth label
sequence respectively from the training datay = {I;, [;}.

Though CRNN is composed of different kinds of network
architectures, it can be trained with one loss function and for
that the Connectionist Temporal Classification (CTC) function
[24] was adopted. However, CRNN was only applied to
identify isolated words. Also, the model size is about 6.8
million parameters which makes it difficult to implement in
many real-world applications.

@
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A similar architecture (CNN-BLSTM), introduced by
Puigcerver [6] as shown in Fig.2, has 5 convolution layers and
5 BLSTM. The number of hidden layers for each is 256. To
avoid overfitting a dropout (with probability 0.5) is applied
before the linear layer where each column after the BLSTM
layers must be mapped to an output label. Puigcerver aimed
from this architecture to investigate whether MDLSTM
networks [26] are strictly required to achieve state-of-the-art
performance for line-level HTR by comparing the proposed
(CNN-BLSTM) against 2D-LSTM architectures for two widely
used datasets (IAM & Rimes), he observed that the running
times of the 1D-LSTM architecture (the proposed architecture)
much smaller than the 2D-LSTM (6-7 speedups). Although,
(CNN-BLSTM) has a significantly lower WER in both datasets
with 9.6 million parameters in total.
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I MaxPooling 2x2 ]
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Fig. 2. CNN-BLSTM architecture [6]

Bluche et al. [7] proposed an elaborated gating system
(GCRNN) presented by adding convolution gates to the
convolution layers, the gate is implemented as a convolution
filter, followed by a sigmoid activation, the system learns in
which context a computed feature is relevant. Fig. 3 shows in
detail the distribution of parameters and hyperparameters
through 8 convolutional layers (3 gated included) and 2
BLSTM.

The output of the gating mechanism is the pointwise
multiplication of the input with the output of the gate:

y=9().x 3)

where

g(xij) =0 (Wooxi—1,j—1 +T WoiXi—1,j T WoaXi—1,j+1 “4)
+ WigX;j—1 + WX j + WX j41
T WaoXi41,j-1 T Wa1Xit1 )

+ W220Xi+,j+1)
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Fig. 3. GCRNN architecture [7]

To train the previous model a dataset from various sources
have been used. Particularly 133k text images from seven
languages (English, French, Spanish, German, Portuguese,
Italian and Russian), including 30% of private data (mainly
Russian). First, the model is trained for all the data to obtain
generic Latin-script neural networks then the decoder part
(BLSTM)is subsequently adapted to each language. GCRNN
architecture contains about 750k parameters compared to
Puigcerver (CNN-BLSTM) architecture which contains about
9.6 million parameters and thus GCRNN exchange high
performance for simplicity of the model.

Inspired by (CNN-BGRU) and GCRNN, Flor proposed
(Gated-CNN-BGRU) architecture [8], aiming at: (i) to achieve
results compatible with Puigcerver model (CNN-BLSTM); and
(i) to keep the small number of parameters (about 0.8 million
parameters), such as Bluche model (Gated-CNN-BLSTM). Fig.
4 shows the workflow of Flor architecture through 11
convolutional layers (5 of them are gated) and 2 Bidirectional
Gated Recurrent Units (BGRU) instead of BLSTM.

The model was trained in five main public datasets (IAM,
Rimes, Bentham [27], Saint Gall [28] and Washington [29]),
and then the results compared with the results obtained from
previous models (CNN-BLSTM and GCRNN) by analyzing
the average error rates obtained in all the datasets, the HTR-
Flor model reached an average CER of 3.85% with an average
WER of 12.23%. Puigcerver 7.72% with 18.71% and Bluche
7.08% with 19.02%.

Thus, the model is able to achieve satisfied results even in
smaller datasets and requires less computational and needs less
computational resources, which can be applied for real world
applications.
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Fig. 4. Gated-CNN-BLSTM architecture [8]

Tsochatzidis et al. [9] proposed a new architecture
OctCNN-BGRU (Fig. 5) inspired by HTR-Flor architecture
and  Octave-convolution operation  [30], this includes
processing the input in two different scales to capture both
high- and low-frequency patterns. Thus, the input feature map
X is factorized into two portions along the channel axis, so that
X = {X", X"}, resulting in two feature maps that capture fine
and low-detailed information. Thus, a new convolution
operator is used to operate on this representation resulting in
the layer outputY = {Y*#,Y*}, as defined in the next equations:

YH = f(xH, WH>H) + unsample (f (XL, WEH),2) )
YL = fF(XE,WEL) + f (pool(XH, 2), WH™L)) (6)

where f (X, W) represents the convolution of X and the kernel
W followed by the activation function, pool(X, k) represents
the average pooling of kernel size k, and
unsample(X, k) represents upsampling by factor k . The
channels of each OctConv layer are divided into high-
frequency and low-frequency features, which are configured by
hyperparameter a, which affects the number of convolution
kernels in each frequency band.

For the experimental evaluation, four Greek historical
handwritten documents have been used with the two public
datasets (IAM, Rimes). It turned out that the OctCNN-BGRU
outperformed the CNN-BLSTM on the Greek documents, on
average the difference between the two methods equals to 3.5%
and 6.4% for CER and WER, respectively. For the IAM and
Rimes datasets the CNN-BLSTM outperformed the OctCNN-
BGRU, the difference equals to 11.2% for CER and 3.7% for
WER.
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Fig. 5. OctCNN-BGRU architecture [9]

B. Attention Seq2Seq_based approaches for HTR:

Attention enhances the ability of the network to extract the
most relevant information for each part of the output sequence.
In addition, attention networks can not only map inputs to the
correct outputs, but also model the language structure within
the output sequence.

Attention Seq2Seq based models have been first used by
Valle et al. [31] for the HTR problem, where he used the model
proposed by Deng et al. [32] which stacks a multilayer encoder
and attention-based decoder on a multilayer convolutional
neural network (CNN). CNN contains seven-layer CNN
alternating with max-pooling layers. Each convolutional layer
uses batch normalization and a ReLU activation function with
weights initialized using Xavier initialization. Dropout (p =
0.5) is applied to the inputs after the last convolutional layer.

The CNN extracts image features from the raw input and
arranges the features on a grid. Stacked on the CNN is a single-
layer bidirectional LSTM encoder (256 hidden units) and a
two-layer Gated Recurrent Unit (GRU) decoder (128 hidden
units). The encoder reencodes each row of grid, generating a
re-encoded feature grid. Regarding to the attention, three
attention mechanism are used for the decoder (softmax,
sigmoid and no attention).

The closest model to Valle model is the model proposed by
Bluche [33], which is a MDLSTM encoder and a softmax
attention-enhanced bidirectional LSTM decoder (MDLSTM -+
Attention). The main difference is that the model does not
require a CNN to extract visual features because the encoder is
capable of inputting images. Although, the features from the
encoder step still needed to pre-trained using CTC loss.

Kang et al [10] proposed an attention-based seq2seq model
as shown in Fig. 6, which contains three main parts: i) an
encoder: VGG16-BN have been used and initialized with the
pre-trained weights from ImageNet then a multi-layered Bi-
directional Gated Recurrent Unit (BGRU) which will involve
mutual information and extra positional information for each
column is added. ii) attention mechanism: location-based
attention [24] is applied to calculate the most relevant context
vector ¢, where:
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N-1

ce = g(ay, H) = Z agih;

i-0

(7

The attention mask vector at time step t is «;, h; is the
hidden state of the encoder at the current time step i €
{0,1,..,N — 1}, s; is the hidden state of the decoder at the
current time step i € {0,1,..,T — 1}, where T is the maximum
length of decoding characters. Then,

a; = softmax(e;)

®)

eci = f(hy,si—1) = wltanh(Wh; + Vs,_; + b)
where w, W, V and b are trainable parameters.

I“ﬂrc/g,jﬁ( ~[njgihe - me.,(dq ]

Attention

Fig. 6. Kang architecture (attention Seq2Seq_based model) [10]

iii) the decoder: represented by one-directional multi-layered
GRU, its input a concatenation of the embedding vector of the
previous time step and the context vector c,and the output s; ,is
the hidden state of decoder at current time step.

Michael et al. [13] proposed a Seq2Seq model. The encoder
is a deep CNN layer followed by three BLSTM layers and the
decoder is a single unidirectional LSTM with 256 hidden units
and a dropout probability of 50% at train time. The encoder
extracts low-level features from the written text line and
sequentially encodes temporal context between them. The
decoder outputs a character sequence one step at a time, using
an attention mechanism to focus on the most relevant encoded
features at each decoding step. Many experimental
comparisons between various attention mechanisms and
positional encodings are conducted, particularly, six different
attention mechanisms are used (content based, penalized and
location-based attention, monotonic and chunk wise attention,
as well as hybrid attention).
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Diaz et al. [12] studied the general problem of developing a
universal architecture that can extract text from any image.
They compare 9 different model design options on an internal
dataset and on a universal Text-Line Recognition (TLR) task,
pairing each of three encoders (Self-Attention, Gated Recurrent
Convolutional Layer (GRCL), and BLSTM) to each of three
decoders (CTC, CTC with LM and the Transformer decoder).

They found that the model that uses a Self-Attention
encoder coupled with the Connectionist Temporal
Classification (CTC) decoder, compounded with an explicit
language model, outperforms all other models having both
maximal text-line recognition accuracy and minimal
complexity. Also, they suggest the use of image chunking to
ensure that the model works efficiently and effectively on
arbitrary long input images without shrinking.

Li et al. [11] proposed an end-to-end text recognition
approach with pre-trained image transformer and text
transformer model, namely TrOCR (Fig. 7).
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Fig .7. TrOCR architecture [11]

The vanilla transformer encoder-decoder is used in TrOCR,
where the encoder is designed to take image patches, first
resizing each image to a fixed size (H, W). The raw image must
be a set of input tokens that the Transformer encoder can
process. Here, the encoder decomposes the input image into
batches of fixed size N = HW /P?square patches (P, P). The
width W and height H of the resized image are guaranteed to be
divisible by the patch size P. The patch is then flattened into a
vector and projected linearly onto the patch-embedded D-
dimensional vector. D is the hidden size of Transformers
through all its layers. The input sequence goes through a stack
of identical encoder layers. Each Transformer layer has a
feedforward network that is fully connected to the multi-head
self-attention module. Both of these two parts are followed by
residual connections and layer normalization.

For the self-attention modules, all of the queries, keys and
values come from the same sequence. The matrix of the
attention output is computed as:

Attention(K, Q,V) = softmax <QK (10)

)’

where K,Q,V are the keys, queries, values matrices,
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respectively and d, is the dimension of keys matrix.

Similar to the encoder, the decoder has the same structure
of layers, except there is an encoder-decoder attention layer
between the multi-head self-attention layer and feed-forward
layer, the keys and the values come from the encoder output
and the queries come from the decoder input.

Both the encoder and the decoder are initialized by the
public models pre-trained on large-scale labeled and unlabeled
datasets. To initialize the encoder, the DeiT by Touvron et al.
[34] and BEIiT by Bao et al. [35] models are used. While the
RoBERTa modules [36] are used to initialize the decoder, these
modules measure the effect of hyperparameters and training
data size, they delete the next sentence's prediction objective
and change the masking pattern of the masked language
module. Many different combinations of the encoder and the
decoder are compared to find the best settings. The metrics
used for evaluation are: word level precision, F1 score and
recall. In results of combined models, the best performance is
obtained using the BEIiT encoders and the RoBERTa, psr
decoders (558M parameters in total).

Table I summarizes the main approaches for Handwritten
Text Recognition. For the comparison the Character Error rate
is used. Also, the main features and disadvantages are
presented for each approach.

IV. MAIN CHALLENGES IN HTR

This section presents the main challenges in HTR, which
mainly came from the inherent variability of handwriting text,
the huge different writing styles and the number of different
languages and scripts.

e CTC only allows monotonic alignments, which may be a
valid assumption for word-level or line-level HTR tasks,
but it lacks the possibility for further research on paragraph
or even more complex article styles. Also, it is challenging
for detectors to separate words for scripts that do not
separate words by spaces such as Chinese, Japanese, and
Korean and they are more likely to miss punctuation and
diacritic marks.

Considering issues related to long images. There are at least
two new aspects that need to be considered, which are
efficiency and performance.

Long images affect the efficiency of models with the Self-
Attention encoder due to quadratic scaling with image
length. This problem can be solved for CTC models
without performance loss by chunking the images.

Training on images of fixed maximum width affects the
performance on longer images of models that make use of
the Transformer decoder. This issue can be solved by
resizing the images to the train width.

Although encoder/decoder method achieved great success
in the field of HTR, there is still a lot of room to improve
with pre-trained CV and NLP models: i) the network
parameters in existing methods are trained from scratch
with synthetic/human-labeled datasets, leaving large-scale
pre-trained models unexplored; ii) as image Transformers
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TABLE L. MAIN APPROACHES FOR HANDWRITTEN RECOGNITION SYSTEM
Model Architecture IAM CER Main features Main drawbacks
CNN+BLSTM/CTC 7 CNN layers + 2BLSTM 35% -The model handles sequences in arbitrary | -Difficulties in remembering long
Shi et al. [24] layers/CTC lengths, involving no character | contexts due to vanishing /
segmentations. exploding gradient problems.
-It is not confined to any pre-defined lexicon -A  model with millions of
CNN+BLSTM/CTC SCNN layers + 5 BLSTM 7.72% Using random distortions during training as | trainable parameters (9.4 million)

Puigcerver [6]

layers/CTC.

synthetic data augmentation significantly
enhances the accuracy of the model

makes it achallenge to be
implemented in many real-world
applications.

GCRNN+BLSTM /CTC 8 convolutional layers (3 7.08 % -Convolution gate enables hierarchical | A model with few parameters
Bluche et al. [8] gated included) and 2 context-sensitive feature extraction. (0.7Million parameters), exchange
BLSTM layers /CTC -Fast computing on GPU high performance for simplicity of
the model.
GCRNN +BGRU/CTC 11 convolutional layers (5 of -Improve recognition results from the CNN- | Flor approach doesn’t stand out in
Flor et al. [8] them are gated) + 2 3.85% BLSTM approach through the new Gated- | number of trainable parameters
Bidirectional Gated CNN-BGRU architecture. (0.8M) and decoding time
Recurrent Units (BGRU) - Reduce the number of trainable parameters | (55ms/line) when comparing to
(thousands)through the Gated-CNN-BGRU | Bluche [8] which has (0.7M)
architecture, making the model smaller and | parameters and decoding time
with lower computational cost instead (32ms/line).
of the traditional CNN-BLSTM (millions).
OctCNN-BGRU /CTC 5 Octave-convolution layers 7.30% Octave convolution includes processing the | Text line detection and
Tsochatzidis[9] +2 Bidirectional Gated input in 2 different scales to capture both low | segmentation in the document
Recurrent Units (BGRU) and high frequency patterns image is not addressed
/CTC
CNN + LSTM-GRU /Attention 7CNN layers, stacked on 16.58% -Softmax attention focuses heavily on | -Doesn’t approach the current
(SoftMax) single-layer LSTM encoder individual characters when predicting | state  -of-the-art ~ CTC_based
Valle et al. [31] and two-layers GRU characters. models due to the complexity in
decoder. -Attention networks are trained without the | the architecture.
aid of a lexicon or explicit language model. -The most comparable model by
Michael et al. [13] outperforms it.
MDLSTM + Attention a MDLSTM encoder and a 12.60% -Does not require a CNN to extract visual | Although MDLSTM extends the
Bluche et al. [33] softmax attention-enhanced features because the encoder is capable of | capability = of  the RNNs
followed by bidirectional inputting images and that make it easy to | architecture to multidimensional
LSTM decoder implement and maintain data, Its complex architecture
requires high computational cost.
VGG16-BGRU+GRU/Attention The encoder is a VGG16-BN | 6.88% The model doesn’t need any pre-processing | Even though no language model
Kang et al. [10] followed by BGRU, the step, predefined lexicon, language model nor | is used, the decoder might learn
location-based attention is CTC loss the relations between characters in
applied and the decoder is the training vocabulary.
single-layer GRU
CNN-BLSTM+LSTM/Attention The encoder is a deep CNN 4.87% -The model can be trained end-to-end and the | Slow computations due to the
Michael et al. [13] layer followed by three optional integration of a hybrid loss allows | complexity of the architecture
BLSTM layers and the the encoder to retain an interpretable and | where RNNs are used in the
decoder is a single LSTM usable output. encoder and decoder.
with various attention -No language Module is needed
mechanisms
S-Attn+CTC+LM Self-attention encoder 3.15% -The model gets the top accuracy with low | External language model is
Diaz et al. [12] coupled with the CTC memory requirements and very good latency needed
decoder
TrOCR The encoder is pre-trained 2.89% -An end-to-end Transformer-based model | Total number of parameters of the

Lietal [11]

image transformer and the
decoder is a pre-trained text
transformer

with pre-trained CV and NLP models.
-Doesn’t use CNN as backbone doesn’t rely
on any pre/post-processing steps.

-The model can be extended to multilingual
model with minimum efforts

base model 334  million,
comparing to 558  million
parameters for the large model

become more and more popular [37], [35] especially the
recent self-supervised pre-training [37], it is worth to
investigate whether pretrained image Transformers can
replace CNN backbones, meanwhile exploiting the pre-
trained image Transformers to work together with the pre-
trained text Transformers in a single framework on the text
recognition task. Li et al. [11] were the first to investigate
with pre-trained CV and NLP models.

345

V. CONCLUSION

Since it involves such a broad range of applications, HTR
is serviceable in our daily lives. Several researchers proposed
many approaches in this field. Although, the researches
could enhance the accuracy rate and control the time
complex, two important factors that might slow down the
widespread adoption of these techniques in the area are the
need for large training data and subsequently advanced
hardware and more complex architectures to deal with such




high amounts of data and achieve the good improvements.
The main contribution of this paper is providing a critical
state-of-art review of the recent proposed approaches in the
HTR field. Although, we identified and discussed the main
challenges that still exist.

We hope that our survey will be beneficial for researchers
in the HTR field.
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