
Multidimensional Blockchain as Robust Distributed
Ledger

Ilya Shilov, Danil Zakoldaev
ITMO University

St. Petersburg, Russia

ilia.shilov,d.zakoldaev@itmo.ru

Abstract—The paper observes the problem of scaling robust
distributed ledgers based on blockchain technology. A solution for
the problem is presented - multidimensional blockchain. A model
for protocol implementing ideal multidimensional blockchain is
constructed. It is proven that multidimensional blockchain and
its corresponding protocol GUC-implement robust distributed
ledger.

I. INTRODUCTION

Multidimensional blockchain is a young technology that

largely borrows the features of a conventional one-dimensional

blockchain used to build modern distributed applications like

cryptocurrencies. Multidimensional blockchain has two dis-

tinctive features: an internal data structure that allows to

include a set of blockchains and search and verification

protocol. Structurally, a multidimensional blockchain consists

of an arbitrary number of blockchains, when each blockchain,

but the first one, goes through the registration procedure in one

of the existing blockchains. Further inter-system interaction is

performed using search and verification protocol.

Multidimensional blockchain has been developed as a

method for inter-system exchange for robust distributed

ledgers based on blockchain technology. Therefore, previous

analysis of multidimensional blockchain security assessed how

the fact that the blockchain was placed into multidimensional

blockchain and used the functionality of external transactions

impacted security. A security proof has been presented that

multidimensional blockchain had not broken the security of

internal one-dimensional blockchains (if security constraints

were followed) [1].

However, another important direction for multidimensional

blockchain exists: it can be used to scale robust distributed

ledgers, which appears to be among the most important

problems for blockchain technologies [2]. But in order to use

it for such goal it is necessary to prove that multidimensional

blockchain implements robust distributed ledger itself. Pre-

viously the security of multidimensional blockchain itself as

a separate system has not been considered separately. The

purpose of this work is to build such a proof.

To achieve this goal, several tasks are being solved. In

particular, one of the shortcomings of previously published

works is eliminated – a simplified representation of a multidi-

mensional blockchain model, which does not take into account

the developed models of a robust distributed ledger, as well

as the results achieved in the field of data exchange between

independent stable distributed ledgers. In addition, the MBC-

Protocol is formally introduced and models for the proof are

built. Finally, with a simulator and the universal composition

theorem it is proven that multidimensional blockchain inde-

pendently implements a robust distributed ledger, i.e. can be

used to securely scale robust distributed technologies.

II. PREVIOUS WORK REVIEW

Multidimensional blockchain has been introduced in 2020

in [3]. In this paper, the main aspects of the technology

implementation have been considered and a comparison has

been made with existing alternatives in terms of the availability

and integrity of the information being processed. It has been

shown that multidimensional blockchain could exist either

in state or block model. Next the pseudo-algorithms for its

functioning and inter-system exchange have been presented.

The analysis has been based on the constraints and principles

of Bitcoin [4].

A formal security proof for multidimensional blockchain

has been proposed in [1]. It was based on various methods of

the theory of probability, as well as the UC-Framework (Uni-

versal Composability Framework). This framework is used to

prove the security of protocols. It implies building models

of protocol implementations with interactive Turing machines

(Turing machines able to communicate). It represents both

target functionality (protocol) and the implementation which

security is under consideration. Generalized version of the

framework (GUC-Framework) differs in that it allows using

common functionalities for protocols running simultaneously.

The proof requires either of:

1) Showing that for any adversary attacking the target sys-

tem there exists a simulator attacking the implemented

system (or vice versa) such that external observer

(environment) is unable to distinguish the executions.

Sometimes it is necessary to show that ”bad” events

happen with negligible probability. Bad events mean

events which prevent the simulation.

2) Building a sequence of hybrid models – models in

which some parts are sequentially replaced to create a

sequence of equivalent models from the target to the

implementation (or vice versa).

3) Showing that the target model and implementation are

equivalent using theory of probabilities and describing

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



every possible input and output of these models (i.e. the

framework is used only for formalization).

Using universal composability theorem which allows to

replace parts of models with equivalent ideal functionalities

(e.g. digital signature or network) simplifies both proof con-

structions.

At the same time, in [1], only a heuristic proof of multidi-

mensional blockchain security has been proposed. It has been

shown that multidimensional blockchain GUC-implements a

robust distributed ledger (by GUC-implementation we mean

the equivalence of the model execution in case of proposed

technology and corresponding ideal functionality). Moreover,

to prove one of the statements, the universal composition

theorem has been used, which is not entirely correct given

the absence of a formal GUC security proof for some of the

functionalities among the replaced objects in hybrid proof. The

paper mentions multidimensional blockchain protocol (MBC-

Protocol), but does not properly represent it.

Also, the security proof [1] does not take into account

an analysis of inter-system exchange security. It is based on

various previously published works like [5]. Some analysis of

inter-system exchange had been created before, for instance, in

[6]. But for multidimensional blockchain a specially created

search and verification protocol for blocks and transactions

has been created [7]. A thorough analysis of various possible

construction for it have also been presented in that paper.

Next on the basis of robust distributed ledger models –

Ouroboros [8] and Bitcoin [9] – an adapted model of robust

distributed ledger has been built in [10]. This model supports

the functionality of a multidimensional blockchain, i.e. exter-

nal transactions.

III. MBC-PROTOCOL

To build a complete proof of security for multidimensional

blockchain, it is required to formalize the MBC-Protocol

model. Some aspects of its construction were previously pre-

sented in [1]. However, the protocol itself was not given. This

protocol is understood as a program executed by Interactive

Turing Machines (ITM) when simulating a system of devices

that jointly support a robust distributed ledger based on a

multidimensional blockchain. In addition, the GUC-model of

the ideal functionality that implements the multidimensional

blockchain has not been presented before.

In general, the system is a function of transition between

states [11]:

σt+1 ≡ Π(σt, B) | B ≡ (D, (Ti)i=1,...N ), (1)

where σt is the t-th state of the system, Π is a state transition

function, B is a block that contains transactions and additional

system information. The block itself consists of auxiliary in-

formation D and a set of transactions Ti. The state structure is

defined by an application and an available set of transactions.

The transition between states is performed using function Π:

Π(σ,B) ≡ Ω(Υ(Υ(...(Υ(σ, T0), ...), Tn))), (2)

where Υ is the function of transition between system states

and Ω is finalizing function. In other words, block-level state

transition is performed with sequential applying of transactions

with state-level functions and construction of block is finished

with finalizing function (represents consensus mechanism).

This model satisfies most of the currently used blockchains,

although they differ in the structure of the B block, the

finalizing function, the set of transactions that cause the

system to transition from state to state, and the state transition

function.

Let’s move on to considering a mathematical model of a

multidimensional blockchain. Since blockchains create new

states at different rates, the following relationships assume that

transactions were created over a fixed length of time - a slot.

For the most correct formulation of the mathematical model,

the following ratios can be adopted:

sl ≡ GCD(Time(σ
(k)
t → σ

(k)
t+1)), (3)

where sl is slot (a period of time), GCD is greatest common

divider function, Time is a function which returns the duration

of state transition. As multidimensional blockchain contains

multiple conventional blockchains each slot is associated with

a large set of transactions. In one-dimensional blockchain

model there is only one blockchain. The connection between

these models is following:

T k = (T (k,1), ..., T (k,j)) | j = [
Time(σ

(k)
t → σ

(k)
t+1)

sl
], (4)

where T k is a set of transactions in one round of separate

conventional blockchain, T (k, i) is a set of transactions in

conventional blockchain inside multidimensional blockchain,

j is the number of slot. For simplicity the set of transactions

in round j for conventional blockchain k in multidimensional

blockchain can be shown as:

T (k,j) = (T
(k,j)
0 , ..., T (k,j)

n ), (5)

where n is the number of transactions.

In other words, a slot is the largest period of time by which

the time intervals required for the transition between states

in all blockchains are divided. In practice it can be taken as

the least discrete period of time. As a result, each transition

between states in each blockchain is carried out once in a fixed

(integer) number of slots. That is:

Π′(σk, T (k,j)) = Ω(Υ(...Υ(σ(k), T
(k,j)
0 ), ..., T (k,j)

n )) (6)

Or in case the set of transactions is empty:

Π′(σk,∅) = σ(k) (7)

A similar model is used to prove the correctness of proof of

stake protocols [8]. In the given model, it is believed that in

some blockchains, blocks are not created in every time slot.

However, it is important that the concept of a slot used in

this paper may differ from the concept of a slot used in other

papers on security of consensus mechanisms.

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 314 ----------------------------------------------------------------------------



In general, multidimensional blockchain is a transition func-

tion over compound system state:

Σi+1 ≡ Φ(Σi, T ) | Σi ≡ {σ(1), ..., σ(N)}, (8)

where Σi is a compound state (state of multidimensional

blockchain) and Φ is a transition function, which can be further

presented as:

Φ(Σi, T ) ≡ Ψ(P (Σi, T ), T ), (9)

where Ψ - creates new blockchains, P is the state transition

function.

The state transition is a sequential state transition for each

conventional blockchain inside the multidimensional one:

P (Σi+1, T ) ≡ E(E(...E(Σi, T, 1), ...)T,K), (10)

where E is the state transition function for the k-th blockchain

in its composition, K is the number of blockchains.

To connect the novel model with conventional one [11] it

is necessary to have a supplementary function:

E(Σi, T, k) = E′(Π′(σ(k), T )), (11)

where E′ is an auxiliary function that returns a multidi-

mensional blockchain for a one-dimensional blockchain and

is used to avoid the use of the universality quantifier in

mathematical notation.

The state of a multidimensional blockchain at any given

time is a set of states of all individual blockchains. In this

case, state transition function Φ solves two problems: it applies

transactions to individual states of blockchains and creates

new blockchains, that is, it initializes their first state (genesis

block). From a formal point of view, it would be correct to use

addresses instead of blockchain numbers, but for simplicity,

integer numbering is used.

Finally, it is required to define the relationship between the

ledger state transition functions:

Π(σ(k), T (k)) ≡ Π′(Π′(...Π′(σ(k), T (k,1)), ...), T (k,j)) (12)

Therefore, multidimensional blockchain is an analogue of a

conventional one-dimensional blockchain, with the difference

that it is comprised of a set of ordinary robust distributed

ledgers, for which the multidimensional blockchain provides

an addressing abstraction.

The model of a multidimensional blockchain consists of

several ITM: A – adversary, Z – environment, Pi – a node

running the protocol, GMBC – multidimensional blockchain

ideal functionality operating according to the mathematical

model given above, GClock – clock functionality. The structure

of a node implementing multidimensional blockchain has been

previously presented in [1], and its simplified representation

is shown at Fig. 1.

Core principles of this model functioning:

1) Each node and account is characterized by a hierarchical

address that determines their location in the multidimen-

sional blockchain [3].

Fig. 1. GUC-model of multidimensional blockchain ideal functionality

2) Many robust distributed ledgers (GLedger ) operate within

the multidimensional blockchain - their code is imple-

mented in the form of functions corresponding to [10].

A significant part is borrowed from [9] with an addition

of functions and variables necessary to perform inter-

system communication.

3) When an internal (ordinary) transaction is received (in

a Next-Block message), it is applied to the ledger in a

usual way, like in any conventional blockchain.

4) When an external transaction is received, it is split into

two parts, each of which is added to the corresponding

Next-Block for each participating ledger. In this case,

the addition of the second part (incoming transaction) is

performed with a delay Δ.

The protocol implementing this ideal functionality (MBC−
Protocol) is presented at Fig. 2. The ITM are similar with the

exception that multidimensional blockchain ideal functionality

is replaced with a set of one-dimensional ideal distributed

ledger functionalities (GLedger ) and additional ideal function-

ality for search and verification is used (GVerify ).

Fig. 2. GUC-model of multidimensional blockchain protocol

Proposition 1. MBC-Protocol GUC-Implements Multidi-

mensional Blockchain.

To prove this, it is enough to show that the execution of

this protocol is equivalent to the execution of the multidimen-

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 315 ----------------------------------------------------------------------------



sional blockchain GUC-model, since in this case the universal

composition theorem will be applicable. The proof is based

on hybrid models, when each next model differs from the

previous one, but remains equivalent to it:

• HYB0 is a multidimensional blockchain model as pre-

sented on Fig. 1. All nodes use queries to the multidimen-

sional blockchain to work. In fact they act like ”dummy”

parties which only pass queries in appropriate format to

an ideal functionality.

• HYB1 is a model in which nodes independently handle

addressing actions, i.e. determine source and destination

ledgers for each external transaction. Instead of one

external transaction they redirect two internal transac-

tions (outgoing and incoming) to the multidimensional

blockchain. HYB1 is equivalent to HYB0, since the

way the model uses multidimensional blockchain does

not change: external transactions are simply divided in

advance.

• HYB2 is a model in which nodes perform notifications

on all external transactions: when a new transaction is

created, a notification is sent to the nodes that maintain

the target ledger. Then they independently send a request

to the multidimensional blockchain. The difference from

HYB1 is only in the origin of the second (incoming)

transaction, since the transmission of the notification

takes negligible time in the scale of the slot time.

• HYB3 is a model in which nodes independently ver-

ify an external transaction and send a request to add

an incoming transaction only if it is correct. For this,

the ideal search and verification functionality is used,

which is guaranteed to carry out the verification correctly.

The same functionality is used inside multidimensional

blockchain ideal functionality. Since no changes have

been made to the functionality of the multidimensional

blockchain, this model is equivalent to HYB2.

• HYB4 is a model in which nodes independently carry

out verification of incoming external transactions using

a search and verification protocol, which must GUC-

implement an ideal search and verification protocol like

those presented in [7]. According to the universal com-

position theorem, this model is equivalent to HYB3 with

a probability determined by the probability of successful

verification.

• HYB5 is a model in which the multidimensional

blockchain is replaced by many one-dimensional

blockchains. Since verification is guaranteed (subject to

the constraints of the GUC-implementation), this model

is equivalent to HYB4.

It can be seen that HYB5 is the same model as given

at Fig. 2. In other words, this model is actually a simu-

lated protocol that implements a multidimensional blockchain

(MBC-Protocol). Thus MBC-Protocol GUC-implements ideal

multidimensional blockchain functionality and can be used in

models instead of this functionality and vice versa.

IV. PROOF OF SECURE SCALING ROBUST DISTRIBUTED

LEDGER WITH MULTIDIMENSIONAL BLOCKCHAIN

The MBC-Protocol, which was first mentioned in [1] but

not presented, is actually defined in the previous section.

A novel robust distributed ledger model with support for

external transactions was presented in [10]. Any execution

model in terms of a universal composition framework implies

the presence of an adversary (A), environment (Z), a set of

nodes (Pi) executing the target protocol, and a set of global

(G) and local (F ) functionalities used by them. Each of the

listed entities represents an instance (ITI) of an interactive

Turing machine (ITM) [12].

To prove that multidimensional blockchain GUC-

implements a robust distributed ledger, it is required to show

that for any attacker A in the model with multidimensional

blockchain protocol there is such a simulator S for the model

with robust distributed ledger (ideal functionality) that (from

the view of the environment Z) the executions are statistically

indistinguishable:

EXECREAL,A,Z ≈ EXECIDEAL,S,Z (13)

Execution means sequential activation of interactive Turing

machines, starting with A, provided that a sequence of bits

(input data) is transmitted to the input of each interactive

machine. Then all further activations are performed either by

the environment Z or by previously executed ITI via message

call mechanism.

It is important to note that in current proof a dummy adver-

sary A is used: it just transmits request from the environment

to all other nodes in the execution model. The correctness

of such approach was shown in [13] with a theorem which

claimed that any protocol GUC-implements any other protocol

if and only if it GUC-emulates it with respect to the dummy

adversary.

It is also necessary to mention that the model of robust

distributed ledger used here is extended with an action which

was not previously taken into account in the proposed model,

but necessary to build a proof. When sending a response

about the result of transaction verification, the ideal search and

verification functionality sends a notification to the attacker –

(VERIFY , sid , ledgerID , tx ). This action is correct, since a

node attacking the system can ask the ideal functional to verify

the same transaction as the node executing the protocol.

Consider a simulator S for a node that implements a robust

distributed ledger. The structure of the computational model in

this case is shown in Fig. 3. The simulator internally executes

a copy of a multidimensional blockchain protocol. All external

messages for ITI are handled and delivered only if necessary

and after processing. Actually the simulator also has to run

nodes which execute multidimensional blockchain protocol,

but these are not given on the schema as they are primitive

nodes which only deliver messages from the environment to

the ideal robust distributed ledger functionalities. In other

words the simulator runs a complete copy of the emulated

model.

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 316 ----------------------------------------------------------------------------



Fig. 3. GUC-model for simulator used to prove that multidimensional
blockchain protocol GUC-implements robust distributed ledger

The simulator internally uses following variables:

• ADDRESS = {address: ledgerID} - a dictionary used to

translate addresses of GLedger to addresses of internally

executed ledgers. The translation is performed both for

transactions and the parties in transactions.

• EXTERNAL TX = {ledgerID: [TX]} - a set of external

transactions delayed until their verification is ended.

This is done to ensure that only external transactions

with both incoming and outgoing parts applied to the

multidimensional blockchain are applied to GLedger .

• SLACK POINTERS = {ledgerID: pointers} - a structure

which contains slackness pointers for all ledgers. It is

necessary to store all these pointers for internal ledgers

and translate them to a form appropriate for GLedger .

• SLACK POINTERS ROUND = {ledgerID: pointers} - a

supplementary data structure to store SET-SLACK queries

of an adversary A during round to use it as a source

for the simulator’s SET-SLACK request at the end of the

round.

• NEXT BLOCK TX = {ledgerID: [tx]} - a data struc-

ture used to store NEXT-BLOCK data sent from A to

simulated ledgers (which are parts of multidimensional

blockchain protocol). Then these transactions are used to

create the NEXT-BLOCK data structure for GLedger.

Also in the description of the simulator a set of procedures

is used for simplification:

• SEARCH(address) → ledgerID - given the address of

block, transaction or transaction party the function returns

corresponding ledger.

• IN(address, ledgerID) → boolean - given address and

ledger identifier, the function allows to check whether

the node is maintaining the ledger.

• ADDRESS(p) - given the node, the function returns its

address.

The logic for this simulator is given below. Like in [9] the

simulator is described by its reactions on incoming messages

and by the messages which originate from it.

On receiving messages from GClock the simulator S per-

forms following actions:

• (CLOCK-UPDATE, sid, p) - a message sent by clock as

notification when any node finishes its execution within

round.

1) Search: p’ = SEARCH(ADDRESS(p)).
2) Send a message (CLOCK-UPDATE, sid, p’) to sim-

ulated adversary A.

3) Remember the node from which activation was

received.

4) If this is the end of the round, then execute the

RoundEnd procedure.

On receiving messages from GLedger the simulator S per-

forms following actions:

• (SUBMIT, BTX) - a message sent by ledger after the trans-

action is included in the buffer of transactions available

for inclusion:

1) Find out the ledger address of the transaction origin.

2) Send (SUBMIT, BTX) to corresponding ledger.

3) Send (SUBMIT, BTX) to a simulated adversary A.

• (MAINTAIN-LEDGER, sid, minerID) - a message sent as

a notification about the execution of mining operations

by a node.

1) Perform search of the miner’s ledger: p’ =
SEARCH(ADDRESS(minerID)).

2) Send a message (MAINTAIN-LEDGER, sid, p’) to

node A. This message is used to notify the adversary

that a corrupted party has to perform consensus

calculations. In fact for ideal functionalities this

message has little sense but must be handled to keep

the proof correctness.

On receiving messages from GVerify the simulator S per-

forms following actions:

• (VERIFY, sid, ledgerID, tx) - after receiving the verifica-

tion result, create a BTX transaction and deliver it to the

accepting ledger - (SUBMIT, BTX).

Finally, on receiving messages internally from A the simu-

lator performs following actions:

• (SET-SLACK, pointers) - the attacker configures pointers

for the target ledger. Simulator has to store pointers for

nodes in the SLACK POINTERS ROUND variable.

• (NEXT-BLOCK, hFlag, (txid1, ..., txidl) - the attacker

offers the next block to create. The simulator must

transfer this structure to the corresponding ledger and

store the transactions in NEXT BLOCK TX.

Previously defined actions used a couple of additional

procedures:

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 317 ----------------------------------------------------------------------------



• ReadLedger - read the ledger: (READ, sid, state) →
(state, buffer, I) - read state from the ledger.

• RoundEnd - end of round, the simulator sets up State-

Slackness for the external GLedger.

At the end of the round, the simulator must ensure that the

changes that have occurred within the simulated multidimen-

sional blockchain are synchronized with the changes in the

external ledger. For this:

1) A structure (NEXT-BLOCK, hFlag, (txid1, ..., txid1)) is

formed based on all transactions in NEXT BLOCK TX.

2) All outgoing external transactions are deleted from the

structure and placed in the EXTERNAL TX variable.

3) For all inbound external transactions, the outbound

transaction is deleted from EXTERNAL TX.

Next, the state is configured:

1) The structure (SET-SLACK, pointers) is formed based on

SLACK POINTERS ROUND.

2) For those nodes that are not assigned slackness, copy

from SLACK POINTERS is performed.

It is also worth noting several important features of this

simulator. First, the transfer of transactions to the accepting

ledger occurs immediately after the inclusion of an outgoing

transaction in the initiating ledger. In a practical implementa-

tion, this action can be performed automatically (by notifying

the nodes of the target ledger or in an application that creates

an inter-system transaction). This action is necessary because

additional transaction latency can lead to one of the adverse

events that can disrupt the simulation (see below).

Second, there is only one adversary in the model. Although

its structure has not been considered before, it is worth noting

that this adversary is a wrapper over many nodes that attack

each ledger separately. A single node is used to simplify the

construction of the model.

Third, this GUC-model assumes that each node maintains

only one robust distributed ledger. Due to this simplification,

the complexity of the proof is significantly reduced. In addi-

tion, nodes that support multiple ledgers are formed on the

basis of nodes that support one ledger by combining them

using wrapper functionality, similar to creating a multicast

functionality based on unicast functionality [9].

The difference between external and internal transactions

and the time required for their applying are modeled by

temporarily excluding those transactions from blocks created

by an ideal robust distributed ledger. This assumption is based

on the fact that transactions can be considered complete in

the case of scaling only after inclusion in the accepting

ledger. During simulation this action can be expressed by

placing an intermediate node between nodes that implement

a multidimensional blockchain and the environment. It checks

the presence of both transactions in the ledgers when re-

questing information about the status of transactions from the

environment.

An alternative approach is the state-slackness setting, when

some nodes in the ideal functionality “do not see” the trans-

action until it is included in the accepting ledger. However,

this approach does not allow building a simulation, since new

blocks for lagging nodes are not created within a limited time,

which means that changes that occur in the corresponding

ledgers of the multidimensional blockchain during a round (in

the absence of external transactions) cannot be reflected.

Proposition 2. Multidimensional blockchain protocol GUC-

implements a robust distributed ledger given 1) condition

in Eq. 18 is followed and 2) secure search and verification

protocol is used [7].

The simulator presented earlier has been constructed to

show that EXECREAL,A,Z is equivalent to EXEC IDEAL,S ,Z ,

since the simulator completely repeats the logic of the adver-

sary’s work by ”translating” messages intended for one model

into messages intended for another model. At the same time,

as noted earlier, external transactions are ”delayed” until they

are included in the accepting ledger.

However, in this case, the simulation is not perfect, as it

has not been proven that probability of ”bad” events is negli-

gible. These events are those which lead to the possibility of

distinction between the models (from the view of environment

Z). Next these events and the likelihood of their occurrence

are presented.

BAD1 – violation of the correct functioning of the ledger

due to errors in the consensus mechanism. The likelihood

of this event is determined by the specific mechanism for

reaching consensus and the peculiarities of its implementation.

The likelihood of malfunction is negligible, therefore, the

following condition is met:

p1 =
N∏

1

pi = N ∗ ε, (14)

where N is the number of ledgers inside multidimensional

blockchain, ε is negligible variable.

BAD2 – search failure while using search and verification

protocol. In this model, an ideal functionality is used, so the

probability of this event is taken as negligible. In real world

execution, there must be a protocol that GUC-implements the

ideal functionality (at least with the restrictions allowed during

operation) [7]:

p2 = ε (15)

BAD3 – failed verification while using the search and

verification protocol. The probability of this event depends on

the verification mechanism. If the approach with the analysis

of the initiating blockchain [6] is used, then the probability of

this event is 0. If the secure search and verification protocol

approach is used [7], then the probability is determined by the

initiating ledger chain quality, which is broken with negligible

probability:

p3 = ε, (16)

BAD4 – transaction latency for a time longer than window

slots, when GLedger initiates a transaction regardless of the

block proposed by the attacker to keep it alive. The probability

of this event is determined by the distance between the ledgers,

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 318 ----------------------------------------------------------------------------



as well as the delays in requesting information from each

ledger (the reciprocal of the connection speed between any

two nodes in the network is taken as the worst of all possible

options during operation). The distance is calculated with:

d = d1 + d2, (17)

where di is the depth of ledger, i.e. number of parent

blockchains in the way to the root.

In addition, at least one slot is required to accept an

incoming transaction. Therefore, for this probability to be

negligible (second condition in statement), it is necessary:

window ∗ twindow − 1 ≥ max{dn} ∗ 2 ∗max{1/v}, (18)

where window is the so-called sliding window size [9], i.e.

number of rounds during which the state of any two honest

nodes is allowed to differ, twindow is the size of window round

in terms of multidimensional blockchain slots, max{dn} is the

maximum depth of any ledger in multidimensional blockchain

and v is the connection speed between any two ledgers. Then:

p4 = ε (19)

Consequently, the probability of any of these events occur-

ring when the boundary conditions are met is negligible:

P = p1 + p2 + p3 + p4 = 4 ∗ ε ≈ ε (20)

Proposition 3. Multidimensional blockchain GUC-

implements robust distributed ledger

This proposition is a corollary of Proposition 1 and Proposi-

tion 2. Since the multidimensional blockchain protocol GUC-

implements a multidimensional blockchain, in the model it

can be replaced by the corresponding ideal functionality –

according to the universal composition theorem. Hence, the

multidimensional blockchain GUC-implements a robust dis-

tributed ledger.

V. CONCLUSION

The paper is devoted to the problem of scaling robust dis-

tributed ledgers with the help of multidimensional blockchain.

Thanks to this proof, it becomes possible to use a mul-

tidimensional blockchain to build robust distributed ledgers

that support scalability, including in automatic mode. At the

same time, the most important task remains to build more

efficient protocols for the search and verification of blocks

and transactions in terms of operating time and volumes of

transmitted information.

For such usage to be correct, a two-step proof is constructed.

First, using hybrid models, it is shown that multidimen-

sional blockchain protocol GUC-implements corresponding

ideal functionality. Then, using simulator, it is shown that this

protocol GUC-implements robust distributed ledger.

REFERENCES

[1] I. M. Shilov and D. A. Zakoldaev, “Multidimensional blockchain
security analysis,” Proceedings of Sixth International Congress
on Information and Communication Technology. Lecture Notes in
Networks and Systems, vol. 235, pp. 911–924, 2022. [Online].
Available: https://doi.org/10.1007/978-981-16-2377-6 83

[2] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” 2015 IEEE Symposium on Security and Privacy, pp.
104–121, 2015. [Online]. Available: https://doi.org/10.1109/SP.2015.14

[3] I. M. Shilov and D. A. Zakoldaev, “Multidimensional blockchain and
its advantages,” Informacionnye Technologii, vol. 4, no. 6, pp. 360–367,
2020. [Online]. Available: https://doi.org/10.17587/it.26.360-367

[4] A. Antonopoulos, Mastering Bitcoin. O’Reilly Media, Inc., 2017.

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.”
[Online]. Available: https://www.ussc.gov/sites/default/files/pdf/
training/annual-national-training-seminar/2018/Emerging Tech
Bitcoin Crypto.pdf

[6] P. Gaži, A. Kiayias, and D. Zindros, “Proof-of-stake sidechains,” 2019
IEEE Symposium on Security and Privacy (SP), pp. 139–156, 2019.

[7] I. M. Shilov and D. A. Zakoldaev, “Security of search and
verification protocol in multidimensional blockchain,” Informatics and
Automation, vol. 20, no. 4, pp. 793–819, 2021. [Online]. Available:
https://doi.org/10.15622/ia.20.4.2

[8] C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas,
“Ouroboros genesis: Composable proof-of-stake blockchains with
dynamic availability,” CCS ’18: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, p. 913–930,
2018. [Online]. Available: https://doi.org/10.1145/3243734.3243848

[9] C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas, “Bitcoin
as a transaction ledger: A composable treatment,” Advances in
Cryptology – CRYPTO 2017. CRYPTO 2017. Lecture Notes in
Computer Science, vol. 10401, pp. 324–356, 2017. [Online]. Available:
https://doi.org/10.1007/978-3-319-63688-7 11

[10] I. M. Shilov and D. A. Zakoldaev, “The robust distributed ledger
model for a multidimensional blockchain security analysis,” Scientific
and Technical Journal of Information Technologies, Mechanics and
Optics, vol. 21, no. 2, pp. 249–255, 2021. [Online]. Available:
https://doi.org/10.17586/2226-1494-2021-21-2-249-255

[11] ETHEREUM: A SECURE DECENTRALISED GENERALISED
TRANSACTION LEDGER. [Online]. Available: https://ethereum.github.
io/yellowpaper/paper.pdf

[12] R. Canetti, Y. Dodis, R. Pass, and S. Walfish, “Universally composable
security with global setup,” Theory of Cryptography. TCC 2007.
Lecture Notes in Computer Science, vol. 4392, pp. 61–85, 2007.
[Online]. Available: https://doi.org/10.1007/978-3-540-70936-7 4

[13] R. Canetti, “Universally composable security,” Journal of the ACM,
vol. 67, no. 5, 2020. [Online]. Available: https://doi.org/10.1145/
3402457

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 319 ----------------------------------------------------------------------------


