
Towards Interoperable Enclave Attestation:
Learnings from Decades of Academic Work

Arto Niemi, Sampo Sovio, Jan-Erik Ekberg
Huawei Technologies Oy (Finland) Co Ltd.

Helsinki, Finland

firstname.surname@huawei.com

Abstract—Secure enclave technology has during the last decade
emerged as an important hardware security primitive in server
computer cores, and increasingly also in chips intended for
consumer devices like mobile phones and PCs. The local or
remote user of the enclave will rely on attestation protocols to
confirm the isolation and other security properties of the enclave.
In this paper, we analyze different attestation architectures and
techniques as well as ways to present attestation evidence and
metrics. We find that existing industry efforts to make attestation
interoperable across platforms and trust roots can benefit from
the wealth of research around remote attestation that has taken
place since the 1990’s.

I. INTRODUCTION

An enclave is an isolated execution environment that pro-

tects code and data from the rest of system, including from

privileged components such as the operating system or the

hypervisor. Enclaves are widespread in today’s computing:

Arm TrustZone based enclaves are used on billions of con-

sumer devices to protect applications such as DRM and user

authentication [1], while Intel SGX and AMD SEV enclaves

are used in the cloud to enable confidential computing [2].

Relying parties, such as cloud tenants or content providers,

can establish trust in an enclave, its code and outputs using

attestation—a process that allows trustworthiness of a target

entity to be determined based on cryptographic evidence

produced by a trusted on-device component.

Attestation was first studied in the context of Trusted

Platform Modules (TPMs) [3], where its main use case is

to provide trusted boot via the Linux integrity measurement

architecture [4][5][6]. The most widespread form of enclave

attestation to date is Android key attestation [7], which can be

used to prove to a remote verifier that a cryptographic key, such

as content decryption key, is confined to a TrustZone-based

enclave. In the cloud, AMD SEV and Intel SGX enclaves

are widely deployed and attested [8], while many academic

proposals exists for attestation in the Internet of Things [9].

Recently, a number of academic surveys on remote attesta-

tion have been published [10][11][9][12]. In fact, attestation

has been studied for almost twenty years, but many concepts

around attestation have only recently received wider attestation

in the industry [12, p. 1608], as exemplified by renewed

standardization efforts: a substantial set of IETF standards for

remote attestation procedures (RATS) [13][14][15] is under

development and ETSI has published an attestation architec-

ture for NFV [16]. With Intel TDX [17], IBM PEF [18]

and ARM CCA [2], new hardware support for attestation

is emerging, and open-source projects such as Veracruz [2]

and Veraison [19] are addressing attestation in the enclave

setting. We feel that there is a clear need for a survey that

summarizes these developments, identifies the main issues in

enclave attestation, and provides a set of recommendations for

the industry.

To our knowledge, no significant surveys exists that specif-

ically cover enclave attestation. Primarily, academic work has

focused on the remote attestation of complete computing plat-

forms, not on enclaves. Also, most publications on attestation

tend to focus on one subtopic such as evidence generation

and validation, and neglecting others such as authentication,

endorsements and channel binding. Terminology in this field is

also often inprecise and mutually conflicting between works.

In an attempt to be more comprehensive and precise, this

study follows the basic architecture and terminology of RATS

(which are similar those of the TCG [20]). We slightly tweak

the RATS architecture to suit our needs, as shown in Fig. 1 and

provide a more detailed discussion of topics such as identities

and attestation metrics. Our approach resembles that of [12],

which uses the RATS architecture as a basis for studying

attestation for blockchain networks.

II. ATTESTATION

In broad terms, attestation can be defined as a process that

allows a relying party to assess properties of a target entity,

which may be a system component or data. To make this

possible, an attester produces attestation evidence on prop-

erties of the target entity. The properties are called attestation
metrics. The evidence is evaluated by a verifier, which may

be the relying party or a different entity, such as a verification
service. If the verifier decides that the prover is trustworthy, it

may issue an attestation result, which the relying party can use

to make the final trust decision. The verifier’s decision is based

on the attestation evidence and possibly on endorsements—a

set of attestation metrics that an endorser indicates to be good,

for example, as reference values. Evaluation of attestation

evidence and attestation results may also be influenced by

attestation policy, which can consist of an appraisal policy
for evidence used by a verifier and an appraisal policy for
attestation results used by the relying party [13, p. 31]. In

practice separation of appraisal policies means that policy for

relying party might consider certain attestation metrics to be

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



Fig. 1. Roles, messages and processes in the architectural model used in this
article (adapted from the TCG and RATS architectures [20, p. 12][13, p. 8].
As discussed in the text, many variations are possible.

relevant even if these metrics are not relevant to the verifier.

In layered attestation, multiple layers of attesters are possible.

A root-of-trust is a last-level attester that, once authenticated,

is unconditionally trusted by the verifier without attestation

evidence. The root-of-trust may provide metrics about itself

to the verifier, and these metrics are also trusted without

attestation evidence. These processes are summarized in Fig.

1.

The end goal of attestation is to establish trust. Paraphrasing

[21], we regard it as safe for a relying party to trust an entity

when the following conditions hold:

1) The entity can be unambiguously identified

2) The entity operates unhindered and shielded from exter-

nal influence

3) The relying party a) has first-hand evidence of consis-

tent, good behaviour or b) trusts someone who vouches

for consistent, good behaviour.

We would like to stress that all of these are necessary. For

example, having proof that a program behaves according to

expectations is of no use if an attacker manages to swap the

good program with a compromised one or tamper with the

program’s execution at run-time. The first condition can be

fulfilled by establishing the identity of the target either via

attestation or cryptographic (public-key based) authentication.

Running the target in an enclave allows to achieve the second

condition, provided that the enclave isolation mechanisms are

identified and trusted. To fulfill the third condition, three

options are possible: (1) the relying party has a way of

establishing trust in the target’s behaviour directly, for ex-

ample, because it has performed a semantic analysis of the

program code; (2) the relying party matches the attestation

metrics against endorsements by a trusted third-party; or (3)

the relying party trusts a trusted compiler or interpreter that,

before execution, transforms the program into a form that can

is more trustworthy than the original. These options all rely on

fundamentally different trust bases, respectively called analytic
trust, axiomatic trust and synthetic trust in [22].

We formulate a list of questions to guide our survey of

enclave attestation, inspired by a set of requirements presented

in the literature. Coker et al. [4] presented five requirements

for attestation in general. Addressing attestation in the context

of virtualized systems, Lauer et al. [23][24] add two more

requirements for layered attestation, and Eckel et al. [25]

propose further implementation-specific requirements. Finally,

Chen et al. [26] formulate three requirements specifically for

the enclave attestation use case. Based on these, we assert

that a secure and effective enclave attestation procedure must

answer the following questions:

• Q1 (Enclave identity). What is the identity of the

hardware and firmware that is responsible for the isolation

of the enclave? What is the root-of-trust? How are these

identities established?

• Q2 (Target identity). What is the identity of the target

entity (software or data) that is protected by the enclave?

How is the identity established?

• Q3 (Metrics). Which properties of the target entity and

the enclave should are included in attestation evidence?

Are they sufficient for a comprehensive appraisal of

trustworthiness of the target and its running environment?

• Q4 (Trust base). Given a valid attestation evidence, what

is the basis for the decision on whether to trust the

evidence or not? Is the trust base axiomatic, analytic or

synthetic?

• Q5 (Interaction patterns). How is attestation evidence

requested? How are evidence and endorsements conveyed

to the verifier? How is attestation result conveyed to the

relying party?

• Q6 (Packaging). How are attestation evidence, endorse-

ments and results protected and encoded for transmis-

sion? How is the freshness of attestation evidence guar-

anteed?

• Q7 (Channel binding). Is the target with the given

identity and attested metrics the end-point of the current

communication channel?

• Q8 (Privacy). Is the target entity able to constrain the

amount of information attestation reveals to other parties?

Can the target entity choose the attestation metrics based

on the identity of the verifier?

• Q9 (Linking). If multiple attestation evidences are gener-

ated for the same system, how are these bound together?

In the rest of the paper, we attempt to survey how questions

Q1-Q9 are addressed in literature and in industry open-source

projects. In Sections III to XI we discuss concepts and issues

related to each of the above questions in turn. Compared to

previous surveys on attestation, we provide a more in-depth

coverage of topics such as identities, interaction patterns and

evidence packaging. Finally, in Section XII we show how the

questions are addressed in open-source enclave projects.

III. ENCLAVES

Enclave attestation can be classified into software, hardware
and hybrid attestation, depending on whether the attester is a

software or hardware component, or whether both hardware

and software attesters are used [10]. For example, in the

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 190 ----------------------------------------------------------------------------



Fig. 2. In AMD SEV, enclaves are directly attested by a discrete security
processor (AMD-SP). Enclaves are virtual machines, managed by an untrusted
hypervisor.

Fig. 3. In Intel SGX, enclaves are first locally attested by the CPU and
microcode. An Intel-provided Quoting Enclave then signs the local attesta-
tion evidence using a device-specific key to produce the remote attestation
evidence.

Fig. 4. In the upcoming Arm CCA architecture, attestation is hierarchically
layered. There are three CPU-isolated worlds (realm, non-secure and root),
each with multiple privilege levels. Enclaves run in the realm world and may
be either virtual machines or more restricted applications.

layered attestation model, only the lowest level attester (the

root-of-trust) may be a hardware component.

A. Currently available enclave hardware

Enclaves are currently supported in commercial hardware

via the Intel SGX, AMD SEV and Arm TrustZone CPU/ISA

extensions. Of these, TrustZone is the oldest, having been

introduced already in 2005 [1].

Intel introduced Secure Guard Extensions (SGX) in 2015

for its 6th generation processors. SGX enclaves are CPU-

protected, isolated sub-processes of a host application [27].

The enclave’s identity is called MRENCLAVE. It consists of

a hash over the enclave’s memory pages (data and code), the

relative positions of the pages in the enclave, and security flags

associated with the pages [27]. MRENCLAVE is included

as a metric in SGX attestation evidences. The root of trust

for attestation is the CPU and its microcode. SGX enclaves

are first attested locally by the CPU. The results are then

converted into remote attestation evidence by an Intel-provided

Quoting Enclave. Initially, SGX allowed attestation evidence

to be verified only using an Intel-provided online verification

service. Later, with the Data Center Attestation Primitives

(DCAP) [28], it became possible to use custom verification

servers. SGX has no limit on the number of running enclaves.

SGX has now been deprecated from some Intel core series 1.

Its replacement, called Intel TDX, is described in the next

section.
AMD SEV first became available in AMD EPYC processors

in 2017. In contrast to SGX, SEV protects entire virtual

machines, even from an untrusted hypervisor [28]. The enclave

identity is called MEASURE. It is a HMAC over the SEV API

and AMD-SP firmware versions, the launch hash, a nonce and

a symmetric Transport Encryption Key (TIK), computed in

a preceding key exchange in the remote attestation protocol

[29, p. 459]. The root of trust is a separate isolated processor

(AMD-SP). In SEV, enclaves are directly attested by the SP.

SEV supports running at most 15 enclaves at the same time,

which is considered as one of the main drawbacks of SEV

in [30]. The first version of AMD SEV only provided boot-

time attestation of enclaves, but the latest SEV-SNP variant,

first included in the 3rd Generation AMD EPYC processors

in 2021, allows attestation to be requested at any time [29].

Other improvements in SEV-SNP introduce memory integrity

protection.
In contrast to SGX and SEV, Arm TrustZone only supports

a single hardware-isolated enclave, called the secure world,

which runs a separate operating system (secure OS). Relying

on secure boot, the secure OS can provide additional, software-

based isolation for secure world applications. TrustZone based

enclaves, especially ones that follow the GlobalPlatform spec-

ifications, are prevalent in smartphones [31]. However, they

are not ideally suited for virtualization and, as a consequence,

are rarely used in the cloud. Furthermore, there is no native

hardware or firmware support for attestation in TrustZone [1].
Trusted Platform Modules (TPMs) [3] do not, on their

own, provide hardware support for enclaves. However, they

can be used as root-of-trusts for a boot sequence where

hashes of loaded components are added to a hash chain and

the accumulated hash is included as a metric in attestation

evidence. With such measured boot, it is possible for verifiers

to receive evidence trusted software, such as a hypervisor,

is running on the target device and providing isolation for

enclaves. This is sometimes called hypervisor-based isolation.

B. Future enclave hardware
In the near future, two important new enclave hardware

architectures are about to appear: Intel TDX and Arm CCA.
Like SEV, TDX can be used to protect virtual machines.

Details have not yet been fully disclosed by Intel, but based

1https://cdrdv2.intel.com/v1/dl/getContent/655258

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 191 ----------------------------------------------------------------------------



on available information, TDX attestation resembles SGX

attestation in many aspects. For example, TDX also relies

on a quotation enclave to convert local evidence to remotely

verifiable evidence. The main difference is that more of the

software stack can be attested in TDX [17].

In contrast, CCA can be used to protect both virtual ma-

chines and single processes, or even just a part of a process

[2]. This reflects the fact that Arm processors are mainly used

in end-user devices and embedded systems, but also marketed

for cloud environments. Whereas TrustZone enclaves are pri-

marily used to run OEM-installed first-party applications, Arm

CCA aims to “democratize trusted computing” by providing

enclaves where third parties can easily deploy their trusted

software. Attestation in CCA is split into two parts: attestation

of the platform and attestation of the enclave (called realm in

CCA terminology) [32]. The root-of-trust is called Hardware

Enforced Security (HES), which Arm recommends should be

a discrete processor, but other kinds implementations are also

possible [33]. Attestation is requested by the enclave (realm)

code, and the request is passed all the way down to the HES.

The HES attests the monitor, which is responsible for isolating

the realm and the normal worlds from each other. The monitor

attests the realm management module (RMM), which runs in

the realm world and is a hypervisor for the enclaves [34].

Finally, the RMM attests the enclave, as shown in Fig. 4.

The CCA architecture does not define an attestation protocol,

but requires Arm PSA tokens to be used as the evidence

format. According to the currently available specifications, like

the early versions of SEV, Arm CCA seems to only support

launch-time attestation of the enclave [32].

C. Security concerns

It should be stressed that attestation can, at best, only be as

secure as the underlying hardware primitives. Unfortunately,

numerous attacks against SGX [35] and SEV [36][29] have

been presented in the literature, including ones that compro-

mise attestation. The possibility of such vulnerabilities needs

to be carefully taken into account when relying on attestation.

IV. IDENTITIES

Unambiguous identification of a target and its enclave

are necessary preconditions for attestation (Q1 and Q2). An

identity is something that can be used to distinguish an entity

from other entities.

We classify identities into three groups according to their

origin: provisioned, derived and emergent. We also distinguish

between unique and non-unique run-time identities as well as

functional (identifying a functionality of the entity) and non-

functional identities.

1) Unique run-time identities: Enclaves are live, run-time

entities. An identity that can be used to uniquely distinguish

a run-time entity—such as a running instance of a program or

a particular copy of data—is called a unique run-time (URT)
identity.

2) Provisioned identities: A provisioned identity is fixed

(e.g. fused) during manufacturing or provisioning and usually

cannot be changed after assignment. Examples include serial

numbers, private keys and random seed values, such as the

Unique Device Secret (UDS) in the TCG’s DICE architecture

[20][37] or Chip Endorsement Key (CEK) in AMD SEV-SNP

[38]. These are URT identities for the specific device; they

cannot be used as URT identities for software components,

but can form a basis from which component-specific URT

identities can be derived. An example of provisioned non-

URT identity is a program’s binary code, which may be shared

among multiple run-time entitities.

3) Derived identities: It is possible to derive new identities

from an provisioned identity using a key-derivation function.

For example, the Compound Devide Identifiers (CDIs) in

DICE are derived from the UDS and the code hash of the

attester, while in SEV-SNP new identities, called Versioned

Chip Endorsement Keys (VCEKs), can be derived from the

CEK and version numbers of the trusted firmware. In layered

attestation, a parent layer (such as a hypervisor) may be able

to assign a derived URT identity to its children, assuming

that they are domain separated from each other (e.g. virtual

machines or enclaves). The derived URT identity can then

be included as one of the attestation metrics—this is called

authenticated attestation [39]. A derived identity may also be

short-term, such as a single-use keypair generated for secure

channel establishment (a channel end-point identity).

4) Emergent identities: An emergent identity is not provi-

sioned or derived, but emerges from non-functional properties

of the entity—the main examples are physically unclonable

functions (PUFs) [40]. In software attestation, timing profiles,

such as network or memory access latencies, are also used as

identitites [10, p. 142395].

5) Cryptographic identities: Most digital identities are eas-

ily copyable; claiming an identity therefore requires a process

that does not allow verifiers to steal the identity. This can be

done with cryptographic tools using authentication or identity

attestation (Section V). Particularly useful are cryptographic
identities. A cryptographic identity is a public key; the identity

can be claimed by an entity by demonstrating that it has

access to the corresponding private key, e.g. by signing a

verifier-provided nonce. Cryptographic identities may be either

provisioned or derived, usually depending on whether the

entity exists during manufacturing (such as a secure hardware

component) or is created at run-time (such as a virtual ma-

chine or enclave). Cryptographic identities are typically URT

identities.

Related to identities, we define authentication as a pro-

cess that allows an entity to assess the identity of a target

entity. Authentication can be regarded as a form of attestation

(identity attestation), however, in this paper, we make the

following distinction: authentication is the process of claiming

a cryptographic identity, i.e. that an entity is in possession of

the private key corresponding to a certain public key.

All attestation schemes rely on authentication as defined

above; attestation alone is insufficient to establish trust in

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 192 ----------------------------------------------------------------------------



Fig. 5. Examples of attestation metrics

the target entity. Attestation always relies on a root-of-trust

that cannot be attested by any other trusted on-device entity

(strictly speaking, the root-of-trust can still self-attest, i.e. cre-

ate attestation evidence regarding itself) The verifier’s decision

of whether to trust the root-of-trust must thus rely on authenti-
cation. In attestation, the root-of-trust is typically authenticated

by the verifier, usually using asymmetric signatures. Similarly,

the verifier usually authenticates the endorser, and the relying

party authenticates the verifier.

V. METRICS

An attestation metric is a value that describes a property

of the target entity. Good metrics allow verifiers to decide

whether to trust a target; which metrics should be attested

(Q3) is one of the main questions in trusted computing.

A. Attestation metrics can be categorized into static and

dynamic metrics [10, Sec V] based on whether the metric

value can legitimately change during the lifetime of the target

component. For example, the hash of the binary code can

usually be expected to stay the same, while hash of the

program’s memory space will not. As pointed out in [37, p.

4], dynamic enclave memory management—supported e.g. by

the second generation SGX—may complicate things: loading

or evicting code pages at run-time changes the code hash,

which most verifiers expect to be static. This highlights the

need to define enclave identities carefully. Dynamic evidence

may include, for example, a log of system calls invoked by the

enclave code, a monotonic counter or a timestamp. Dynamic

evidence is usually much harder to collect than static evidence.

B. The most widely-used attestation metric is a crypto-

graphic hash of a target component’s binary code, taken by the

attester before the component is loaded; this is called binary
attestation or hash-based attestation [41]. Binary attestation

is a form of identity attestation, because it attests an identity

(binary code) of the target entity. Other kinds of identities,

such as serial numbers, boot sequence hash values or public

keys, can also be attested. One problem with binary attestation

is that although it can be used to verify the identity of a

program, it does not allow validating the trustworthiness of

a program instance, since even programs with trustworthy

code may be subjectible to various run-time attacks by e.g.

an untrusted operating system.

C. In key attestation, a public key or a hash of a public key

is used as an attestation metric and associated with a claim

that describes how the private counterpart is protected. The

claim can either be explicitly encoded as a metric or it can

implicit, e.g. the attester is trusted to only attest a key if the

private counterpart is securely stored. Key attestation can be

used in layered attestation architectures to establish a chain-

of-trust for attestation signing keys.

D. Property-based attestation (PBA) [42] proposes to attest

properties of the software components instead of just hash-

based identities. In property-based attestation, a trusted third

party provides a mapping between identities and properties.

In the architecture of Fig. 1, this can be done using the

endorsements. For example, the endorsements could be X.509

certificates that cryptographically bind hashes to properties.

The main difficulty in PBA is extracting the properties to be

attested and deciding how the relying party can use these

properties to actually predict program behaviour [6, p.41].

Another issue with both binary and property-based attestation

is that trust decisions are done by fiat, relying on an external

endorser [22].

E. Semantic or behavioral attestation [43], attempts to fill

the semantic gap between properties and and actual behaviour.

It relies on a trusted execution service (TES), such as a

virtual machine or an interpreter, to constrain and inspect a

program running within. For example, the TES can restrict

the system APIs the program may call, or instructions it may

execute. Functioning as an attester, the TES can then include

the constraints, or even the actual behaviour of the program, as

attestation metrics in the evidence. Semantic attestation tech-

niques can be divided into analytic methods, where program

code is analyzed before execution, and synthetic methods,

where a program is transformed prior to execution, producing

an artifact that can be trusted in ways that the original could

not [22]. The semantic attestation paradigm is very powerful.

For example, the verifier could even send an arbitrary test

suite to the attester, which runs the testsuite against the target

entity and returns attestation evidence indicating the test result.

Today, concrete and practical implementations of semantic

attestation are still not widely available, as noted in [2, p. 136].

Identity, property-based and semantic attestation are illustrated

in Fig. 5.

F. In logical attestation [22], attestation metrics consist of

logic formulas. A goal statement is associated with every

operation and resource on the system. A process requesting an

operation is required to provide attestation evidence containing

a proof that allows the goal statement to be reached. The

proof is validated by a trusted operating system kernel. The

authors of [22] describe an operating system called Nexus that

supports logical attestation, using a TPM as the hardware trust

root. Logical attestation provides a framework that supports all

kind of attestation approaches, including semantic attestation

without external endorsers. The drawback is that a rather large

TCB is required, including an entire specialized operating

system.

G. As discussed in II, the target entity may consist of

software components, data or both. Data attestation metrics
may, for example, indicate the origin of the data, how it was

computed (e.g. whether it was computed in a TEE-isolated

process) and when the data was created, e.g. by binding to a

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 193 ----------------------------------------------------------------------------



value of a trusted timestamp or monotonic counter.

H. Metric collection or measuring refers to the process of

determining the attestation metrics of a target entity:

1) Discrete and continuous metric collection: Metric col-

lection may be discrete (collected at a particular time) or

continuous (collected over a time period). Some attacks against

discrete metric collection are listed in [10, Sec VI-A]. For

example, an attacker with code injection capability may wait

until after the target entity’s memory code is hashed during

metric collection before launching his attack. Continuous

attestation can partially address such TOCTOU attacks. Metric

collection is usually performed by a TCB.

2) Domain separation: Domain separation between the

attester and the target [4, Sec 4.2.] is important in metric

collection, because the target should be prevented from in-

fluencing the result of attestation. One way to achieve domain

separation is to use hardware-based isolation. For example,

the attester may be a hypervisor running on a more privileged

CPU protection level (e.g. Ring −1 or EL2) and the target

may be a virtual machine (running e.g. on Ring 0 or EL1).

Ideally, the run-time status of the isolation mechanism should

also be attested to ensure that the mechanism is working at the

time of attestation. Another way to achieve domain separation

is to measure a component (e.g. it’s binary code) before it is

started — before it can influence the attestation result.

VI. TRUST BASE

Most attestation methods use an axiomatic trust base (Q4),

where trust decisions are done by fiat [22]. Endorsements
are attestation metrics whose trustworthiness is vouched for

by a trusted party (an endorser) in some way, typically by

appending digital signature to the metrics. Endorsements are

needed in most variants of attestation, except in semantic

attestation.

One interoperable way to store and convey endorsements is

Attestation Transparency (AT) [44][45] which builds on top of

Google’s Certificate Transparency (CT) framework [46]. CT

revolves around a public, append-only log that containing a

whitelist of known-good public-key certificates. Consistency

and trustworthiness of the log is maintained by continuous

monitoring. A TLS extension defined in [46] can be used to

prove that the sender’s (TLS end-point) public-key certificate

is included in the log. AT adds attestation metrics into these

certificates, turning them into endorsements. The advantage of

AT is that it builds on top of existing public-key infrastructure

(PKI), which has been widely studied and deployed. However,

only certificates signed by established CAs can be included

in CT logs, and these CAs usually refuse to sign custom

extensions, such as attestation evidence. To circumvent this,

[44] suggests to use separate AT and CT logs, and bind

attestation evidence to the certificate public keys by including

the public key hash among the metrics.

Project Trillian2 is an AT-like endorsement conveyance

method that has found some adoption in practice (see Section

2https://github.com/google/trillian

XII). Project Trillian is an open-source implementation of the

gRPC service3, i.e. a repository of verifiable data structures

described in a whitepaper by Eijdenberg et al. [47]. These data

structures are Verifiable Logs, Verifiable Maps and Verifiable

Log-Backed Maps. Verifiable Logs in Project Trillian [46] are

implemented as Merkle Trees. The idea of Verifiable Logs is

to provide a transparent ledger, where entities can publish data

in append-only manner. Project Trillian represents hash values

of all data elements in this tree. The signed Verifiable Logs

structure allows clients to detect tampering of data, history of

data and split-view attacks (service show only partial data).

The most widely used application for Trillian is CT. Another

application of Trillian is Firmware Transparency (FT), where

Firmware metadata of ”good firmware” are stored in Verifiable

Logs. A verifier who receives claims containing firmware

metadata associated with a target entity can compare such

values against references published in Trillian logs.

In contrast to axiomatic trust, the semantic attestation
paradigm provides the verifier the possibility to directly an-

alyze the target’s behaviour, providing an analytic trust base.

For example, the verifier can, for example, transmit a testsuite,

which the attester then executes on the target, including the test

results in attestation evidence. Just-in-time (JIT) compilation,

interpretation and sandboxing can be used to achieve synthetic
trust, where the target is transformed into a more trustworthy

(e.g. better isolated or constrained) form by a trusted compiler

or interpreter. WebAssembly is used for this purpose in some

enclave projects, see Section XII).

VII. INTERACTION PATTERNS

In this section, we discuss the various topologies and

interaction patterns in attestation (Q5).

A. In the passport model [13, Sec 5.1.], the relying party

receives the attestation result from the attester instead of from

the verifier, as shown in Fig. 6. This is similar to how people

identify themselves by presenting a passport that has been

issued by a trusted party. Successful identification (identity

attestation) is a precondition for issuing the passport (attes-

tation result), which then stored (cached) and used multiple

times. The passport model is called certificate-style attestation

in some sources [11].

B. In the background check model [13, Sec 5.2.], the attester

delivers the evidence to the relying party, who then sends it

to the verifier (e.g. an online verification service) for evidence

verification, as shown in Fig. 7. The background check model

is called “back-channel” in SAML 2.0 literature [12, p. 1597].

C. In attestation by proxy [2][48], the verifier receives

from the target an evidence of type A, and forwards it to a

verification proxy. The proxy evaluates the evidence and issues

a new evidence, of type B, based on the original evidence and

returns the evidence to the main verifier. The primary benefit

of this approach is that it allows to abstract over various kinds

and formats of attestation evidence. A verifier does not have to

support all possible kinds of attestation evidence. For example,

3https://www.grpc.io/

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 194 ----------------------------------------------------------------------------



Fig. 6. Passport model

Fig. 7. Background check model

Fig. 8. Attestation by proxy

Fig. 9. Trusted channel model with one-sided intra-handshake attestation

Fig. 10. Bundled endorsement model

there might exist a separate proxy for each evidence type.

The attester also only needs to communicate with a single

verification server. Project Veracruz uses attestation by proxy

for this purpose [2]. Arm Ltd. has also applied for a patent

that covers attestation by proxy [49].

D. In trusted channel model, attestation is bound to a secure

channel, such as a TLS 1.3 session. There are three fundamen-

tal approaches for this: pre-handshake (evidence is genered

before the handshake), intra-handshake (evidence is generated

during the handshake) and post-handshake (evidence is gen-

erated after secure channel establishment). According to [50],

the intra-handshake approach is the best, because it avoids

the extra round-trip needed for the post-handshake approach

and allows stronger channel binding (see Section IX) than

the pre-handshake approach. Furthermore, the intra-handshake

approach is conceptually convenient, because it makes secure

channel establishment conditional on successful attestation,

avoiding an intermediate “secure, but not attested” channel.

Fig. 9 shows the trusted channel approach, following the

proposal of [50], but with one-sided instead of of mutual

attestation. The challenge c is influenced by the transmitted

handshake messages as well as the derived ECDH secret,

providing strong channel binding.

E. In the bundled endorsement model, the endorsements

are obtained by the attester and bundled with the attestation

evidence. For example, when using binary attestation, the

endorser may be the provider of the the target and attester com-

ponents. When provisioning these components, the provider

may provide a signed approval (endorsement) of their hashes

as auxiliary data. The attester can then concatenate these to

the evidence.

F. In challenge-response attestation, the verifier sends a

challenge value (nonce) to the attester. The verifier expects the

attester to include the nonce as one of the attestation metrics.

The goal is to ensure freshness of attestation evidence and

prevent relay and replay attacks.

G. Attestation protocols are usually interactive to guarantee

freshness of the attestation evidences. However, interaction is

not always possible between the attester and the verifier, for

example, when store-and-forward communication is used. In
uni-directional attestation, the verifier is not able to supply a

fresh nonce to the attester. One solution is to use a timestamp

in place of a nonce if a secure clock is available.

H. In the mobile agent model, the target entity is a mobile

agent running in a trusted execution service (TES) such as

a virtual machine. Mobile agents have the ability to migrate

from one TES to another without losing execution state.

Thus, instead of letting the TES perform metric collection

and packaging, it is possible to migrate the target entity to

a TES on the verifier’s (or relying party’s) device, and attest it

there locally. Migration can also be performed via a store-and-

forward channel. The mobile agent model has received little

attention in the literature; the closest work is probably [51].

I. In standard attestation, targets are typically attested only

when their services are needed. In contrast, streaming at-
testation attempts to detect target compromise as soon as it

occurs. For example, some streaming attestation methods use

heartbeats to detect when a device leaves the network, which

may be an indication for a possible physical attack. [52]

J. Attestation can be local or remote, depending on whether

the verifier is on the same or a different device as the prover.

In some sense, local attestation is harder: if the device is

under the control of an attacker, how can the verifier be

trusted to operate correctly? Typically, a local verifier must

be part of the TCB. Local attestation is used for enclave-

to-enclave interaction on the same device, or when a host

application needs to establish trustworthiness of the enclave

it has launched. A special case of local attestation is secure
boot, where the first-stage bootloader (combining the attester,

verifier and relying party roles) is trusted to measure the next-

stage bootloader’s binary code. If the hash matches a hard-

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 195 ----------------------------------------------------------------------------



coded endorsement value, the next bootloader is loaded. The

process continues iteratively until the operating system kernel.

In contrast to secure boot, trusted boot is based on remote

attestation: no component is prevented from being loaded, but

the cumulative hash of all loaded components is reported to

the relying party in attestation evidence.

VIII. PACKAGING

Evidence packaging (Q6) refers to the process of encoding

the attestation metrics and protecting them. All message types

(evidence, endorsement, result) require specifications and en-

coding formats.

A data definition language can be used to define data types.

Examples include ASN.1, CCDL and JSON. In the TCG

context, ASN.1 is typically used, but e.g. RATS uses CDDL

instead. The encoding of a type should be uniquely decodable,

compact to make transmission efficient, and canonical to allow

it to be digitally signed. Some formats such as JSON and

CBOR [53] combine definition and encoding into one, while

others, such as ASN.1 [54], provide separation between the

two, allowing different encoding rules to be used for the

type definition. For example, ASN.1 types can be encoded

using the unique Distinguished Encoding Rules (DER), the

compact Packed Encoding Rules (PER) or the human-readable

XML Encoding Rules (XER). DER is used to encode X.509

certificates, cryptographic keys and many TCG attestation data

types. The RATS architecture prefers the CBOR encoding

format and CDDL types. CBOR has been designed to produce

a very compact encoding, and small-footprint codecs such as

tinycbor are available as open source. The comparison of DER,

PER and CBOR encoding for common attestation data types

is an interesting research topic; a survey of various encoding

formats, including these, is available as a pre-print [55].

However, the authors do not take security relevant aspects,

such as canonicality into account.

We regard evidence protection to be part of evidence

packaging. Evidence must be protected against modification

as well as replay and relay attacks. The origin of the ev-

idence (attester) must also be authenticated in some way.

Both integrity protection and origin authentication is typically

achieved by letting the attester sign the metrics using its

private (asymmetric) or secret (symmetric) key, such that the

verifier has access to or can authenticate the corresponding

verification key. It is convenient to include an identity of

the attester (SignerInfo) in the attestation evidence to make

verification easier. The identity may be, for example, a public-

key certificate or a public key hash. Standard formats for

signed data, such as CMS [56] and COSE [57] can be used for

this purpose. Protecting against replay attacks requires either

a timestamp or a nonce (attestation challenge) to be included

in the attestation metrics. To protect against relay attacks,

the nonce value should be provided by the verifier and be

dependent on a unique identifier of the evidence conveyance

channel, as analyzed in [50].

In order to protect the evidence, an attester needs an

evidence protection key. The key must be known only to the

attester and trusted (e.g. attested) parties. How the key is

securely provisioned to the attester is an important problem.

In many layered attestation methods, the current layer derives

a new keypair for the next layer based on its own and the

next layer’s identity (usually code hash) [37]. This is done,

for example, in DICE [20].

IX. CHANNEL BINDING

Secure communication with an enclave-bound target is a

common requirement. Typically, a secure channel protocol,

usually TLS, is used for this purpose. The critical considera-

tion is prevention of relay attacks, where a TLS end-point on

a compromised system relays the attestation challenge to an

uncompromised enclave on another system, and presents the

received evidence as its own. In other words, it is important

to ensure that the entity that is being attested really is the

end-point of the current communication channel—the process

that accomplishes this called channel binding [58]. Channel

binding (Q7) is a non-trivial problem, as discussed in [50].

One technique is to compute a unique identifier for the current

secure channel session, include it in the attestation metrics, and

transmit and validate the evidence during secure channel setup.

When secure channel setup is dependent on mutual attestation,

the result is called a trusted channel [59] (see also Section VII).

X. PRIVACY

An important concern is attestation privacy (Q8)—the abil-

ity of the target entity or its author to choose which attestation

metrics are revealed to 1) the verifier, 2) to observers listening

to network traffic. There are essentially three ways to achieve

attestation privacy using cryptography. The first is encryption:

the target encrypts the attestation evidence using either the

verifier’s public key or a secure channel (such as TLS) session

key. This requires the target be pre-provisioned with the

verifier’s public key or to trust the verifier’s public key or

certificate (for secure channel end-point authentication). The

second approach is to use a zero-knowledge proof (ZKP),

which allows convincing a remote verifier of an attestation

metric without revealing the metric value to the verifier or po-

tential eavesdroppers. The ZKP approach is used in the TCG’s

Direct Anynymous Attestation (DAA) [60], used together with

TPMs. The third approach, used in Intel SGX’ Enhanced

Privacy ID (EPID) [27] attestation, is to rely group identities

to protect attestation evidence. An alternative or supplement to

cryptographic protection is to allow the target and verifier to

negotiate a minimum set of metrics in the attestation protocol,

ensuring that only the minimum amount of information is

revealed.

XI. LINKING

Unless the root-of-trust can attest the target entity directly,

several attestation evidences are needed to establish trust and

the evidences need to be linked (Q9). There are two basic

approaches for this: composition and layering [12, p. 1598].

In composite attestation, each target generates an attestation

evidence and forwards it to a lead attester, which concatenates

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 196 ----------------------------------------------------------------------------



Fig. 11. Layered and composed attestation

Fig. 12. Nested evidences

Fig. 13. Chained evidences with challenge-based binding

Fig. 14. Chained evidences with hash-based binding

and sends them together to the verifier, possibly adding its own

attestation into the mix. In layered attestation, each attester

attests the next one, with the root-of-trust at the bottom, as

shown on the left side of Fig. 11. In the context of virtualized

systems, layered attestation is called deep attestation [23][39].

In layered attestation, attestations evidences are either nested

or chained. Hardjono et al. [12, p. 1599] list four requirements

for layered attestations: i) each layer must be unambiguously

distinguishable; ii) the next layer must be inspectable by the

current layer; iii) there must be a way to achieve layer se-

quencing; iv) there must be a way for each layer to generate an

attestation evidence of itself, while cryptographically binding

the evidence to evidences of previous layers. The requirements

may be difficult to fulfill in some use cases, however. Layered

attestation typically assumes that each attested component is

part of a consecutive boot sequence. If this is not the case,

a combination of composite and layered attestation may be

sometimes needed, as shown in Fig. 11.

In layered attestation, each layer may produce a separate

attestation evidence. All evidences must then be conveyed to

the verifier. Some form of binding should exist between the

evidences so that the verifier can validate whether they all

come from the same source and are connected to the attestation

of the same target entity. There are two basic ways to do this:

nesting and chaining. In nesting, the target entity’s evidence

contains the attester’s evidence as one of the attestation

metrics, as shown in Fig. 12 (or the other way around, see

Section XI-A. The benefit of nested evidence is that the outer-

level signature cryptographically binds all evidences together

and there is no need to match evidences against each other.

Evidence chaining may be easier to implement. One way to do

chaining is to include the same challenge value as a metric in

each evidence as in Fig. 13. This ensures that every evidence

is fresh, but prevents evidence caching, which is useful e.g.

when the last-level evidence is generated by a slow hardware

root-of-trust. This approach provides only weak binding [25],

and depends on the secrecy of the challenge value. Another

way is to include the hash of the next evidence as one of

the claims, as in Fig. 14. The problem of evidence binding

in layered attestations is called layer linking in some sources

such as [39] and [23]. Temporal order of attestations is also

an important concern, as discussed in Section XI-A.

A. Temporal order of attestations

The temporal order of attestations is important to prevent

TOCTOU attacks [61]. Consider a layered attestation with

3 layers. Assume that an attacker cannot compromise the

root-of-trust (layer 1), but is able to compromise the next

attestation layer (layer 2) at the time of his choosing. Then

he can wait until the root-of-trust has generated (a valid)

attestation evidence for layer 2 before launching his attack. A

compromised layer 2 will naturally create a valid attestation

evidence for layer 3. Now, the whole chain of attestation

evidences will be valid, even though layers 2 and 3 are

compromised. A critical consideration is the order in which

the layers should be attested: bottom-up, starting from the

most lowest (most privileged) layer, or top-down, from the

highest (least privileged layer)? The answer depends on the

difficulty for an attacker to repair a component, i.e. to convert

it from compromised back to uncompromised state in order

to receive a valid attestation evidence. If repairing is hard or

impossible, top-down may be more secure [23]. If repairing is

easy, then bottom-up is optimal [11]. In any case, the layer

evidences must be bound together. This can be done, for

example, with evidence nesting, using the first layer as the

inner-most evidence, or with chaining, where each evidence

includes a hash of the previous layer’s evidence among the

attestation metrics. It should be noted that the approach of

Fig. 13, where evidences are bound together by including the

same challenge in each, cannot be used to prove temporal

order of attestation. Nested, top-down approach potentially

also has the befit that it allows each layer to understand what

it is signing. Each evidence then not only vouches for the

original metrics of the target, but also that those metrics were

valid when the target attested some other entity. The Copland

language and formal semantics can be used to define and

negotiate attestation processes, including the order in which

layer attestations are generated [11].

B. Scalability of evidence binding

Attestation by the root-of-trust can be very slow in some

cases (e.g. when the root-of-trust is a TPM). Therefore, it

may be unacceptable to require a fresh attestation evidence

from the root-of-trust in every layered attestation, especially

if the number of attested components is large. This is the

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 197 ----------------------------------------------------------------------------



case, for example, when a hypervisor attests a number of

virtual machines, and the hypervisor is attested by a root-of-

trust. Evidence caching can used in this situation, but then

the problem becomes how to link the lower-level evidences

with the top-level evidence. The work [39] proposes one

solution for this: the hypervisor creates a set of n key pairs

(k1,K1), ..., (kn,Kn)) in advance, with n being the expected

maximum number of virtual machines (VMs) in the system.

When a VM is launched, the hypervisor gives it the next

unused keypair, e.g. (ki,Ki). The hypervisor is attested by the

root-of-trust only once, but the public keys K1, ...,Kn are all

included in the hypervisor’s attestation metrics. This provides

linkage between hypervisor and VM attestation evidences. A

similar solution is proposed for scalable attestation in the Arm

CCA architecture [33, Section 9.4].

XII. SURVEY OF ATTESTATION IN OPEN-SOURCE ENCLAVE

PROJECTS

A. Veracruz is “a framework for designing and deploying

collaborative privacy-preserving computations” [2]. It cur-

rently supports TrustZone and SGX based enclaves, AWS

Nitro enclaves, and enclaves based on seL4/IceCap virtual

machines. Support for CCA is on the project’s backlog. The

main component of Veracruz is a trusted runtime, which

also provides attestation and TLS-based trusted channels. The

enclave services are compiled into WebAssembly, providing

sandboxing and executed at run-time, providing a form of

synthetic trust (see Section VI). Veracruz uses attestation by

proxy, where the various “native” attestation evidence formats

are converted into CBOR-encoded Arm PSA attestation tokens

by a proxy. The communication between the proxy verifier and

the relying party is based on the Arm PSA attestation protocol.

[48]

B. Since the Arm CCA ecosystem is expected to comprise

various stakeholders and supply chain actors, the verification

of the trustworthiness of the Arm CCA enclaves is likely to be

complex. Therefore, Arm has initiated the open-source Project
Veraison [19], whose goal is to implement an Attestation

Verification Service that is flexible enough to support vari-

ous endorsements, interaction models, Appraisal Policies and

RoTs. Project Veraison developers have seen the opportunity

to utilize firmware transparency through the Verifiable Logs

provided by the Project Trillian (see Section VI). This allows

vendors from supply chain to endorse firmware binaries.

C. The open-source Open Enclave (OE) SDK originating

from Microsoft, focuses on APIs (both run-time and interac-

tion ones) for platform agnosticity. OpenEnclave applications

are written in C/C++, so portability without recompilation is

not supported. From the start, OpenEnclave has been supported

on Intel SGX, where APIs to attest OpenEnclaves using SGX

methods have been supported. With a recent OpenEnclave port

to ARM OP-TEE, alternative approaches to attestations have

had to be considered [62]. The new plan includes a generic

list of evidences such as platform and enclave code UIDs,

code version and validity as well as platform indicator (SGX

or OP-TEE). The attestation API is formalized as a plugin

mechanism, and no formatting proposal to unify evidence

structures has yet been proposed.

D. Similar to OpenEnclave, Google Asylo [63] is a C++

framework for enclave implementation, also initially only

running on Intel SGX. Asylo focuses on the easy construction

of host - enclave application pairs, by formalizing the enclave

as a Remote Procedure Call (RPC). In a sense, Asylo can be

considered an abstraction running over SGX, and its attestation

support is proposed as an alternative to SGX Quoting Enclaves

by Intel. [64]. The Asylo Assertion Generator Enclave (AGE)

adds mutual device attestation to the RPC secure channel

between two enclave applications, or between an enclave

application and a non-enclave application. AGE attestation

relies on SGX identities as evidences.

E. Red Hat’s Enarx4 is an open-source application de-

ployment system that allows applications to run inside en-

claves without source code changes; only recompilation into

WebAssembly (WASM) bytecode is needed. Enarx enclaves

(called Keeps) are currently based on Intel SGX and AMD

SEV hardware. Each enclave contains a microkernel, the

WASM runtime, the WASM System Interface (WASI) and the

enclave application bytecode. By using WebAssembly, Enarx

allows a synthetic trust base, like Veracruz. Attestation in

Enarx has not yet been fully implemented, but some details

are available in the project documention. The attested metrics

include the SGX/SEV hardware and firmware versions and

a hash of the Enarx runtime. An external verifier service

provided by Red Hat must be used to validate the attestation

evidence. A CDDL-defined and CBOR-encoded types are used

to wrap SGX or SEV attestation evidences. Attestation is

supposed to be fully transparent to the application. No channel

bindings to standardized protocols such as TLS are provided,

but AMD SEV’s proprietary secure channel protocol (see e.g.

[36, p. 4]) can be used. All metrics are coalesced into a

single attestation evidence, and no evidence linking methods

are described in the documentation.

F. Project Oak5 is an open-source project from Google

aiming to provide specification and a reference implementation

for the secure transfer, storage and processing of data. The Oak

provides isolated WASM runtime to execute code units called

Oak Nodes. Oak Enclave consists of set of Oak Nodes called

Oak application and Oak runtime. Clients can communicate

with Oak application using Google gRPC protocol. When

Oak Client establish connection to Oak Application they first

agree ephemeral session key and then they provide assertions

to each other. The client will receive exact hash of the Oak

Runtime, which is cryptographically bound to gRPC session

and signed by HW RoT. Current version of the Oak supports

Intel SGX based enclaves and their attestations. The session

key agreement and attestation is implemented using Enclave

Key Exchange Protocol (EKEP) which is part of Google Asylo

framework.

G. Amazon’s AWS Nitro Enclaves [65] depend on a trusted

4https://enarx.dev/docs/Technical/Introduction
5https://github.com/project-oak/oak

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 198 ----------------------------------------------------------------------------



TABLE I. ATTESTATION IN THE SURVEYED PROJECTS. HEADINGS Q1 TO Q9 REFER TO THE QUESTIONS IN SECTION II. ABBREVIATIONS: AXIOMATIC 
TRUST (AX), SYNTHETIC TRUST (ST), ATTESTATION BY PROXY (PROXY), USER-DEFINED (UD), BINARY ATTESTATION (BA)

Project Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Veracruz SGX/SEV MRENCLAVE/MEASURE BA AX+ST PROXY PSA token TLS No None
Veraison Cortex-M/Dice Hash-based BA AX UD PSA/DICE token None No None

Open Enclave SGX MRENCLAVE BA AX UD Opaque blob None No None
Enarx SGX/SEV MRENCLAVE/MEASURE BA AX+ST PROXY CBOR wrapper None No None
Oak SGX MRENCLAVE BA AX UD CBOR wrapper EKEP No None

AWS Nitro N/A Hash-based BA AX UD COSE/CBOR None No None

hypervisor (Nitro Hypervisor) to enforce isolation and provide

to provide attestation. The hypervisor is also the root-of-trust

for attestation. AWS Nitro enclaves are currently a software-

only solution and do not offer hardware-backed enclaves.

Attestation evidence is encoded using COSE and CBOR. At-

testation metrics include ID of the attester (a Nitro hypervisor)

and its public-key certificate, binary hashes and an optional

public key [65, pp. 33-34]. As in TPM-based attestation,

Amazon’s documentation calls the binary hashes “PCRs”, but

there is no evidence that the PCR values would actually be

provided by a TPM. Verification process includes matching

the hashes against endorsements, validating the signature and

validating the certificate using the AWS Nitro Attestation PKI.

No channel binding mechanism or guidance on how to do

channel binding is provided in the documentation.

H. Other examples of open-source enclave projects that at

least partially address attestation include Apache Teaclave6,

MarbleRun7 and KubeTEE8. We do not review these here as

either their design is still under development or they have not

garnered significant industry mindset yet.

XIII. CONCLUSIONS

Table I summarizes our survey results, as applied to indus-

trial and open-source projects. We can see that the projects

in terms of attestation properties remain close to each other,

differing mainly when it comes to packaging formats. How-

ever, the questions in Section II point to requirements that

will have to be considered carefully before these systems

reach widespread utilization: Will the mechanisms support

(live) migration between platforms? Will attestation work in a

proxy-less distributed manner, or at the very least, how can the

existing proxies interact to enable cross-domain attestation. Is

there not a necessity for channel binding, e.g. to push confi-

dential data to (and from) enclaves as part of the attestation

procedure? We note that none of the projects provides privacy

as defined in Section II, because the target has no control over

the set of metrics revealed to the verifier, such as the template-

based MRENCLAVE or MEASURE identities, that are always

included. Also, we believe that the emergence of VM-based

enclaves will highlight the necessity of proper security linkage

between multi-layered attestation schemes. All of these issues

have been identified and solutions have been proposed in the

6https://teaclave.apache.org/
7https://marblerun.sh/
8https://github.com/SOFAEnclave/KubeTEE

body of surveyed academic work. As a conclusion, we now

see theory turning into practice.

REFERENCES

[1] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A comprehen-
sive survey,” ACM Computing Surveys, vol. 51, pp. 1–36, Feb. 2019.

[2] D. P. Mulligan, G. Petri, N. Spinale, G. Stockwell, and H. J. M.
Vincent, “Confidential computing—a brave new world,” in 2021 In-
ternational Symposium on Secure and Private Execution Environment
Design (SEED). IEEE Computer Society, 2021, pp. 132–138.

[3] A. Segall, Trusted Platform Modules: Why, when and how to use them.
London, United Kingdom: Institution of Engineering and Technology,
2017.

[4] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon,
H. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen, “Principles of remote
attestation,” International Journal of Information Security, vol. 10, pp.
63–81, 2011.

[5] M. Alam, T. Ali, S. Khan, M. Ali, M. Nauman, A. Hayat, M. K. Khan,
and K. Alghathbar, “Analysis of existing remote attestation approaches,”
Security and Communication Networks, vol. 5, pp. 1062–1082, 2012.

[6] J. Lyle, “Trustworthy services through attestation,” Ph.D. dissertation,
Oxford University, 2011.

[7] B. Prünster, G. Palfinger, and C. P. Kollmann, “Fides: Unleashing the full
potential of remote attestation,” in Proceedings of the 16th International
Joint Conference on e-Business and Telecommunications, SECRYPT’19.
SciTePress - Science and Technology Publications, 2021, pp. 314–321.

[8] O. Demigha and R. Larguet, “Hardware-based solutions for trusted cloud
computing,” Computers & Security, vol. 103, p. 102117, Jan. 2021.

[9] B. Kuang, A. Fu, W. Susilo, S. Yu, and Y. Gao, “A survey of
remote attestation in internet of things: Attacks, countermeasures and
prospects,” Computers & Security, vol. 112, p. 102498, 2022.

[10] W. A. Johnson, S. Ghafoor, and S. Prowell, “A taxonomy and review of
remote attestation schemes in embedded systems,” IEEE Access, vol. 9,
pp. 142 390–14 210, 2021.

[11] S. C. Helble, I. D. Kretz, P. A. Loscocco, J. D. Ramsdell, P. D. Rowe,
and P. Alexander, “Flexible mechanisms for remote attestation,” ACM
Transactions on Privacy and Security, vol. 24, no. 4, 2021.

[12] T. Hardjono and N. Smith, “Towards an attestation architecture for
blockchain networks,” World Wide Web, vol. 24, pp. 1587–1615, 2021.

[13] H. Birkholz, D. Thaler, M. Richardson, N. Smith, and W. Pan, “Remote
attestation procedures architecture,” draft-ietf-rats-architecture, 2021.

[14] H. Birkholz, M. Eckel, W. Pan, and E. Voit, “Reference interac-
tion models for remote attestation procedures,” draft-ietf-rats-reference-
interaction-models-05, 2021.

[15] ——, “The entity attestation token (eat),” draft-ietf-rats-eat-11, 2021.
[16] “Report on NFV remote attestation architecture,” Network Functions

Virtualisation (NFV) ETSI Industry Specification Group (ISG), Sophia
Antipolis Cedex, FR, Group report, 2019.

[17] M. U. Sardar, S. Musaev, and C. Fetzer, “Demystifying attestation in
Intel Trust Domain Extensions via formal verification,” IEEE Access,
vol. 9, pp. 83 067–83 079, 2021.

[18] G. D. H. Hunt, R. Pai, M. V. Le, H. Jamjoom, S. Bhattiprolu, R. Boivie,
L. Dufour, B. Frey, M. Kapur, K. A. Goldman, R. Grimm, J. Janakirman,
J. M. Ludden, P. Mackerras, C. May, E. R. Palmer, B. B. Rao, L. Roy,
W. A. Starke, J. Stuecheli, E. Valdez, and W. Voigt, “Confidential
computing for OpenPOWER,” in EuroSys ’21: Proceedings of the
Sixteenth European Conference on Computer Systems. New York, NY,
USA: ACM, Apr. 2021, pp. 294–310.

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 199 ----------------------------------------------------------------------------



[19] ARM, “Attestation verification service /veraison),” https://github.com/
veraison/veraison, 2021.

[20] DICE Attestation Architecture, Trusted Computing Group, Mar. 2021,
rev. 0.23.

[21] A. Martin, “A ten-page introduction to trusted computing,” Oxford
University Computing Laboratory, Tech. Rep., 2008.

[22] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, and K. Walsh, “Logical
attestation: an authorization architecture for trustworthy computing,”
in SOSP ’11: Proceedings of the Twenty-Third ACM Symposium on
Operating System Principles. ACM, Oct. 2011, pp. 219–229.

[23] H. Lauer and N. Kuntze, “Hypervisor-based attestation of virtual en-
vironments,” in 2016 Intl IEEE Conferences on Ubiquitous Intelligence
Computing, Advanced and Trusted Computing, Scalable Computing and
Communications, Cloud and Big Data Computing, Internet of People,
and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/Smart-
World), 2016, pp. 333–340.

[24] H. Lauer, A. Salehi, C. Rudolph, and S. Nepal, “User-centered attestation
for layered and decentralized systems,” in Proceedings of the 2018
Workshop on Decentralized IoT Security and Standards (DISS), 2018.

[25] M. Eckel, A. Fuchs, J. Repp, and M. Springer, “Secure attestation of
virtualized environments,” in 35th IFIP International Conference on ICT
Systems Security and Privacy Protection (SEC). Springer International
Publishing, Sep. 2020, pp. 203–216.

[26] G. Chen and Y. Zhang, “MAGE: Mutual attestation for a group
of enclaves without trusted third parties,” in 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA, USA: USENIX
Association, Aug. 2022. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity22/presentation/chen-guoxing

[27] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, “Innovative
technology for CPU based attestation and sealing,” Intel Corporation,
Tech. Rep., 2013.

[28] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski, “Supporting
third party attestation for Intel SGX with Intel data center attestation
primitives,” White paper, 2018.

[29] L. Wilke, J. Wichelmann, F. Sieck, and T. Eisenbarth, “undeSErVed
trust: Exploiting permutation-agnostic remote attestation,” in 2021 IEEE
Security and Privacy Workshops (SPW), 2021, pp. 456–466.

[30] J. Gu, X. Wu, B. Zhu, Y. Xia, B. Zang, H. Guan, and H. Chen,
“Enclavisor: A hardware-software co-design for enclaves on untrusted
cloud,” IEEE Transactions on Computers, vol. 70, pp. 1598–1611, Oct.
2021.

[31] K. Suzaki, K. Nakajima, T. Oi, and A. Tsukamoto, “Library implemen-
tation and performance analysis of GlobalPlatform TEE Internal API
for Intel SGX and RISC-V Keystone,” in 2020 IEEE 19th International
Conference on Trust, Security and Privacy in Computing and Commu-
nications (TrustCom), 2020, pp. 1200–1208.

[32] “Introducing Arm Confidential Compute Architecture,” Arm Limited,
Tech. Rep. Den0125, 2021.

[33] “Arm CCA security model 1.0,” Arm Limited, Tech. Rep. Den0096,
2021.

[34] “Arm Confidential Compute Architecture software stack,” Arm Limited,
Tech. Rep. Den0127, 2021.

[35] S. Fei, Z. Yan, W. Ding, and H. Xie, “Security vulnerabilities of SGX
and countermeasures: A survey,” ACM Computing Surveys, vol. 54, pp.
1–36, Jul. 2022.

[36] R. Buhren, H. N. Jacob, T. Krachenfels, and J.-P. Seifert, “One glitch
to rule them all: Fault injection attacks against AMD’s secure encrypted
virtualization,” in CCS ’21: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2021,
pp. 2875–2889.

[37] T. Hardjono and N. Smith, “Decentralized trusted computing base for
blockchain infrastructure security,” Frontiers in Blockchain, vol. 2, pp.
1–15, 2019.

[38] A. SEV-SNP, “Strengthening VM isolation with integrity protection and
more,” AMD White Paper, January, 2020.

[39] G. Arfaoui, P.-A. Fouque, T. Jacques, P. Lafourcade, A. Nedelcu,
C. Onete, and L. Robert, “A cryptographic view of deep-attestation,
or how to do provably-secure layer-linking,” in Proc. 20th International
Conference on Applied Cryptography and Network Security. Springer,
2022, to appear, https://eprint.iacr.org/2021/1487.

[40] A.-R. Sadeghi, S. Schulz, and C. Wachsmann, “Lightweight remote
attestation using physical functions,” in WiSec’11: Proceedings of the
fourth ACM conference on Wireless network security. ACM, 2011, pp.
109–114.

[41] S. Wagner and C. Eckert, “Policy-based implicit attestation for
microkernel-based virtualized systems,” in Information Security. ISC
2016, ser. Lecture Notes in Computer Science, M. Bishop and A. Nasci-
mento, Eds., vol. 9866. Cham: Springer, 2016, pp. 73–89.

[42] A.-R. Sadeghi and C. Stüble, “Property-based attestation for computing
platforms: caring about properties, not mechanisms,” in NSPW ’04:
Proceedings of the 2004 workshop on New security paradigms. ACM,
2004, pp. 67–77.

[43] V. Haldar, D. Chandra, and M. Franz, “Semantic remote attestation—a
virtual machine directed approach to trusted computing,” in USENIX
Virtual Machine Research and Technology Symposium, vol. 2004. San
Jose, USA: USENIX Association, 2004.

[44] J. G. Beekman, J. L. Manferdelli, and D. Wagner, “Attestation trans-
parency,” in Asia CCS ’16: Proceedings of the 11th ACM on Asia
Conference on Computer and Communication Security. ACM, 2016,
pp. 1–13.

[45] J. G. Beekman, “Improving cloud security using secure enclaves,” Ph.D.
dissertation, University of California at Berkeley, 2016.

[46] A. Laurie, A. Langley, and E. Kasper, “Certificate transparency,” RFC
6962, Jun. 2013.

[47] A. Eijdenberg, B. Laurie, and A. Cutter, “Verifiable data
structures,” https://github.com/google/trillian/blob/master/docs/papers/
VerifiableDataStructures.pdf, 2015.

[48] V. Project, “Veracruz attestation,” https://github.com/veracruz-project/
veracruz/wiki/Veracruz-Attestation, 2021.

[49] M. S. L. Brossard, D. D. Miller, and D. P. Mulligan, “Attestation
forwarding,” US 2021/0409404 A1, Dec. 2021.

[50] A. Niemi, V. A. B. Bop, and J.-E. Ekberg, “Trusted Sockets Layer:
A TLS 1.3 based trusted channel protocol,” in Secure IT Systems:
26th Nordic Conference, NordSec 2021, ser. Lecture Notes in Computer
Science, N. Tuveri, Ed. Cham: Springer International Publishing, 2021,
pp. 175–191.

[51] J. H. Østergaard, E. Dushku, and N. Dragoni, “ERAMO: Effective
remote attestation through memory offloading,” in 2021 IEEE Inter-
national Conference on Cyber Security and Resilience (CSR). IEEE,
2021, pp. 73–80.

[52] L. Moreau, E. Conchon, and D. Sauveron, “CRAFT: A continuous
remote attestation framework for IoT,” IEEE Access, vol. 9, pp. 46 430–
46 447, 2021.

[53] C. Bormann and P. Hoffman, “Concise binary object representation
(CBOR),” RFC 8949, Dec. 2020.

[54] J. Larmouth, ASN.1 Complete. USA: Morgan Kaufmann Academic
Press, 2000.

[55] J. C. Viotti and M. Kinderkhedia, “A survey of JSON-compatible
binary serialization specifications,” CoRR, vol. abs/2201.02089, 2022.
[Online]. Available: https://arxiv.org/abs/2201.02089

[56] R. Housley, “Cryptographic message syntax (CMS),” RFC 5652, Sep.
2009.

[57] J. Schaad, “CBOR object signing and encryption COSE,” RFC 8152,
Jul. 2017.

[58] N. Asokan, V. Niemi, and K. Nyberg, “Man-in-the-middle in tunneled
authentication protocols,” in Security Protocols. Springer Heidelberg
Berlin, 2005, pp. 28–41.

[59] Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger, and N. Asokan, “Beyond
secure channels,” in Proceedings of the 2007 ACM Workshop on Scalable
Trusted Computing. New York, USA: ACM Press, Jan. 2007, pp. 30–
40.

[60] E. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attestation,”
in CCS ’04: Proceedings of the 11th ACM Conference on Computer and
communications security. ACM, Oct. 2004, pp. 132–145.

[61] I. D. O. Nunes, S. Jakkamsetti, N. Rattanavipanon, and G. Tsudik, “On
the TOCTOU problem in remote attestation,” in CCS ’21: Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2021, pp. 2921–2936.

[62] A. Gupta, “Custom attestation data formats for open enclave,”
https://github.com/openenclave/openenclave/blob/master/docs/
DesignDocs/CustomAttestation.md, Microsoft.

[63] “Asylo: An open and flexible framework for enclave applications,” http:
//asylo.dev, Google.

[64] “Asylo assertion generator enclave,” https://asylo.dev/docs/concepts/
remote attestation.html, Google.

[65] “AWS - AWS Nitro enclaves user guide,” https://docs.aws.amazon.com/
enclaves/latest/user/enclaves-user.pdf, Amazon.

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 200 ----------------------------------------------------------------------------


