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Abstract—Transformer  architecture shows significant
improvements in different applications, such as Natural
Language Processing, Computer Vision and even Graph Machine
Learning. Recent advances in the Human Pose Estimation (HPE)
show that Vision Transformers are a great choice for this
problem as well. But even state of the art architectures require
additional enhancements to the training process to achieve the
best results. In this paper we propose the privileged learning
approach to HPE by incorporating the information about body
proportions into the training pipeline. We quantitatively and
qualitatively evaluate our method on the standard benchmark
dataset Human3.6M. The proposed method shows stable
improvements using the same model architecture as [1].

1. INTRODUCTION

The Human Pose Estimation (HPE) task is one of the
significant computer vision tasks along with such topics as
object detection, object classification, face recognition, image
segmentation. HPE has many practical applications. For
example, modern video surveillance systems, virtual reality,
sport, and medicine and a lot of other fields. In addition, HPE
is used to solve the problems of human action recognition [2-
3] and tracking [4-5].

The task of 3D-HPE is to determine the keypoints of the
body in 3D space. The formal statement of the problem is to
find the positions of K key points J = {Jk|k = 1,...,K} from the
input image.

In the current work, we put forward a hypothesis on the
improvement of the quality of prediction when taking into
account characteristics invariant to rotation and point of view
change. Moreover, we study the dependence between the
constraints strictness and the quality of prediction.

1L RELATED WORKS

Human 3D pose estimation has a rich history of research.
The classical approach to the Human Pose Estimation problem
is to use frameworks which use a predefined pose, regardless
of the image data supplied to the algorithm [6,7]. Of course,
such approaches are very limited, as they use predefined pose
templates. With the evolution of deep neural networks (and
especially CNNs), this limitation was removed. Rapid
development of deep learning approaches made it possible to
extract informative feature representation straightforward from
the provided visual data.

After the introduction of "DeepPose"[8], many started using

CNN as a backbone. Deep learning approaches can be divided
into two groups. The first one includes solutions which predict
key points directly, e.g. “DeepPose”, Fan et al. [9] and other
works [10-11]. Another group first generates a heat map with
scores for all possible points, and then predicts keypoints, e.g.
works [12-15].

Many works use the refinement method. The main idea is to
refine the position of keypoints after receiving some of their
initial position. One of the ways to refine the position of
keypoints is to take into account their relative position. So, for
example, in [1], [16-18] the position of a particular keypoint is
determined by the positions of its neighbors. In [1] this
accounting is done using a spatial transformer, which extracts
features, taking into account the correlation of the joints.

It is known that incorporation of prior knowledge in the
appropriate form can significantly improve the stability and
quality of the solution and increase the number of its potential
applications [19]. We focus on the LUPI (Learning Using
Privileged Information) paradigm proposed by Vladimir
Vapnik and Rauf Izmailov [20]. 3D representation of the
human body should be the same for all positions of the camera
(ignoring the HPE error), only the relative sizes should
change. That’s the reason why body proportions are used as
invariants in this case. Hence, we use the relative positions of
the specific human body keypoints as privileged information
during the training stage. This constraint is incorporated into
the loss function in the form of an additional penalty for the
difference in the proportions of the predicted and correct
poses.

[II. METHOD

As noted above, the main idea of the proposed method is to
use the prior assumptions and incorporate the privileged
information on the body proportions of the subject. To do so,
we add the regularization term to the main loss function. This
term represents the difference between the size characteristics
of the predicted and ground truth poses. The greater the
discrepancy between the prediction and ground truth, the
greater the penalty. We use Euclidean distance between
specific keypoints (for example, shoulder width) as
dimensional characteristics. In our method we took into
account following properties:
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e  Shoulder width.

e Distance from heel to knee for both feets.

The penalty is the MSE (Mean Squared Error) between the
predicted and correct size characteristics:

ProportionsPenalty = %Z{‘zl IE; — Efll2

where E; stands for real size of the selected edge, and E; for
the predicted one. This regularization term incorporates the
information about the body proportions, but also naturally
takes into account the certainty of the prediction. With the
increase of the distance to the tested subject the uncertainty of
the prediction increases, and this regularization term reduces
the penalty corssespondingly.

Then mathematically the new loss function looks like this:

ProposedLoss = OriginalLoss + «

- ProportionsPenalty

Here, the variable a stands for a positive real factor
multiplied by the ProportionsPenalty to vary the
impact of the regularization term. Large alpha
coefficient forces the algorithm to focus on the
proportions preservation.

ProportionsPenalty — penalty for violation of
proportions

Since the ground truth size characteristics are taken from
the ground truth key points on the current photo, the
proportions are used as prior during the training stage. There is
no need for additional information on the inference stage.

This approach is similar to the LUPI paradigm [20], where
the training set contains i.i.d. triplets: (x, x*,y).

e First term x stands for the original data
representation, available both during training and
inference. In the selected problem this is the visual

information on the human subject.

Second term x* stands for the privileged information,
available only during the training stage. Here we use
the body proportions, which are available for every
subject in the training set.

Last term y stand for the labels: human body
keypoint locations.

A. OriginalLoss details

Our experiments are based on the model presented in [1].
Mean Per Joint Position Error (MPJPE) is used as loss
function accordingly. MPJPE is the sum of Euclidean
distances averaged over the number of keypoints between
predicted J; and ground truth J; key points:

1 *
MPJPE = 13X 1~ Ji,

So the new loss is:

ProposedLoss MPJPE + a - ProportionsPenalty
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B. Evaluation metrics details

For evaluation were used two metrics — MPJPE and P-
MPJPE.

P-MPJPE aligns the estimated 3D pose to the ground-truth
by a rigid transformation before computing the MPJPE:

P-MPIPE = MPJPE(alignedp,se, Gtpose) » Where

® aligned,,s, — is the result of performing scaling,
rotation and transformation to the predicted pose,
®  gityose —is the ground truth pose.
IV. EXPERIMENTS
A. Dataset

To evaluate the proposed method we used Human3.6M
dataset [21]. This dataset consists of 3.6 million video frames
with ground truth annotation. Since Human3.6M has 11
professional actors in 17 different actions (like discussion,
smoking, taking photos, talking on the phone etc.), then this
dataset is truly diverse. Training and testing experiment
settings are the same as in works [1], [22-24]. In more details
for training and testing all 15 actions were used. Five subjects
(S1, S5, S6, S7, S8) were selected for training and two
subjects (S9, S11) — for testing.

B. Computational experiments

Two NVIDIA GeForce RTX 2080 Ti GPUs were used for
model training and inference. One epoch took approximately
100 minutes, and in every experiment the model was trained
until convergence (which took 12 epochs on average). Batch
size was set to 256 due to the hardware limitations to achieve
more stable convergence.

PoseFormer architecture was used as baseline.
Hyperparameters (except alpha coefficient and initial learning
rate) were inherited from the original paper.

Before training the model with the novel loss function, the
best initial learning rate was selected as shown in Table 1.

TABLE I. SELECTION OF THE REQUIRED INITIAL RATE

Alpha Initial learning rate MPJPE P-MPJPE
0 2 .10"¢© 45.6 355
0 2 .1077 45.1 35.1
0 2 .1078 445 34.8
0 2 .107° 443 34.6

The initial learning rate was fixed equal to 2 - 107°. Alpha
coefficient was varied.

To select the appropriate coefficient the scale of MPJPE
and ProportionsPenalty was estimated. MPJPE values are
about 100 times bigger than ProportionsPenalty. So the initial
coefficient was 100 (and it already has shown the
improvement). In further experiments we have analyzed lower
and higher coefficient values. Coefficient increase led us to the
almost monotonous improvement of the results. The results are
shown in Table II.




TABLE II. EXPERIMENTS WITH A FIXED INITIAL LEARNING RATE AND THE
PROPOSED LOSS FUNCTION. MPJPE AND P-MPJPE ARE CALCULATED OVER
THE ENTIRE TEST DATA SET

Alpha Initial learning rate MPJPE P-MPJPE
80 2 .107° 44.24 34.62
100 2 .107° 44.24 34.62
200 2 .107° 44.22 34.61
1000 2 -.107° 44.20 34.60
5000 2 -107° 44.20 34.60
10000 2 .107° 44.20 34.60

100000 2 .10°° 44.20 34.60

The table above shows the positive dynamics of changes in
metrics with an increase in the coefficient.

Moreover, additional experiments were carried out to test
the stability of the algorithm. The stabilities verification
consisted in carrying out 5 experiments with different seeds.
The obtained results showed that the algorithm is stable. The
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training pipeline was restarted five times with different
random seeds. The standard deviation for final results does not
exceed 1073, so we assume the convergence is stable. Further
stability analysis requires additional hardware resources.

C. Results

Before training the model with the novel loss function, the
best hyperparameters (learning rate and batch size) were
selected.

1) Dependency of the quality of the model on the value of the
coefficient: In this section we represent graphs that illustrate
the dependency of the quality on the coefficient alpha. The
names of the following paragraphs are built according to the
following principle. First, the metric is given, then the data set,
which is used to evaluate the quality of the model. For all the
graphs below, the y-axis is the metric, and the x-axis is
coefficients on a logarithmic scale.
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Experimental results show that the value of the target
metric improves as the coefficient increases. Moreover, the
majority of experiments show monotonous improvement.
Improvement occurs both on the train set and on the test set.
Thus, this kind of improvement shows that increasing the
contribution of the penalty has a positive effect on the
performance of the model. We observethis trend for both
metrics (MPJPE, P-MPJPE) and all test sets (full test set, S11,
S9). Though, for some actions (e.g. SittingDown) target metric
slightly increases. It might happen due to the occlusion and
requires further investigation.

2) Comparison with PoseFormer: In this section we
represent the comparison between the original PoseFormer and
our solution. We obtained improvement of the performance for
the majority of the actions represented in the dataset. We
report all actions for both metrics (MPJPE and P-MPJPE) in
Table III and Table IV respectively. The last row is the
average metric on the test set.

TABLE III. COMPARISON OF THE RESULTS OF THE BEST MODEL WITH
POSEFORMER BY MPJPE METRIC ON THE ENTIRE TEST DATASET AND FOR ALL

ACTIONS
PoseFormer Our
Dir 41.5 41.4
Disc 44.8 44.7
Eat 39.8 39.7
Greet 42.5 42.5
Phone 46.5 46.4
Photo 51.6 51.6
Pose 42.1 42.1
Purch 42.0 41.8
Sit 53.3 53.3
SitD 60.7 60.8
Smoke 45.5 45.4
Wait 43.3 43.3
WalkD 46.1 45.9
Walk 31.8 31.7
WalkT 32.2 32.4
Aver 44.3 44.2

Table III shows that model quality is improved on eight
actions, worsened on two actions and is not affected on the
other five actions. Moreover, we were able to improve the
metric on such difficult actions as WalkDog and Smoking. The
model’s quality worsened on SittingDown and WalkTogether.

As a result, we were able to outperform average
performance of the model from [1] on the entire test dataset
(average value) and for the majority of actions (calculated
individually) and yield the best result 44.2mm as shown in
Table III.

Table IV shows that the proposed model improved on 4
actions, stayed the same on 9 actions and worsened on 2
actions. In terms of P-MJPE we didn't obtain any improvement
of average performance of the model from [1] on the entire
test dataset. Nevertheless, the quality increased for actions
Directions, Discussion, Phoning and Purchases, as shown in
Table IV.

More specific details (e.g the metric changes for different
actions) are presented in Tables V-X in the Appendix section.
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TABLE IV. COMPARISON OF THE RESULTS OF THE BEST MODEL WITH
POSEFORMER BY P-MPJPE METRIC ON THE ENTIRE TEST DATASET AND FOR

ALL ACTIONS
PoseFormer Our
Dir 32.5 324
Disc 34.8 34.7
Eat 32.6 32.6
Greet 34.6 34.6
Phone 35.3 35.2
Photo 39.5 39.5
Pose 32.1 32.2
Purch 32.0 31.9
Sit 42.8 42.8
SitD 48.5 48.5
Smoke 34.8 36.4
Wait 32.4 32.4
WalkD 353 353
Walk 24.5 24.5
WalkT 26.0 26.0
Aver 34.6 34.6

V. CONCLUSION

Qualitative analysis shows that presence of the privileged
information leads to stable improvements of MPJPE and P-
MPIJPE metrics. The proposed approach does not require any
additional information during the inference stage and does not
increase the complexity of the HPE solution. Moreover, it is
flexible and can be used with any baseline model, including
future state-of-the-art approaches.

VI. FURTHER RESEARCH

The analysis of the proposed solution shows potential in
additional analysis of the solution, especially in presence of
additional information. Human body proportions might be
passed as additional information to the model input. This
hypothesis requires additional study. Also benchmark several
models with the proposed LUPI approach and compare results.

REFERENCES

[1] C. Zheng, S. Zhu, M. Mendieta, T. Yang, C. Chen, and Z. Ding, “3d
human pose estimation with spatial and temporal transformers”, in
Proc. IEEE International Conference on Computer Vision (ICCV),
2021, pp. 11656-11665.

C. Wang, Y. Wang, A.L. Yuille, “An approach to pose-based action
recognition”, CVPR, 2013, pp.915-922.C. Wang, Y. Wang, A.L.
Yuille, “An approach to pose-based action recognition”,
CVPR, 2013, pp.915-922.

Z. Liang, X. Wang, R. Huang, L. Lin, “An expressive deep model for
human action parsing from a single image”, IEEE International
Conference on Multimedia and Expo (ICME), 2014, pp.1-6.

N.G. Cho, A.L. Yuille, SSW. Lee, “Adaptive occlusion state
estimation for human pose tracking under self-occlusions”, Pattern
Recognition, 2013, pp. 649-661.

(2]

B3]

[4]

[5] B. Xiao, H. Wu, Y. Wei, “Simple baselines for human pose
estimation and tracking”, ECCV, 2018.

[6] L. Pishchulin, M. Andriluka, P. Gehler, B. Schiele, “Poselet
conditioned pictorial structures”, CVPR, 2013, pp. 588-595.

[71 Y. Yang, D. Ramanan, “Articulated human detection with flexible

mixtures of parts”, IEEE transactions on pattern analysis and machine
intelligence, 2012, pp. 2878-2890.

A. Toshev, C. Szegedy, “Deeppose: Human pose estimation via deep
neural networks”, CVPR, 2014, pp. 1653-1660.

X. Fan, K. Zheng, Y. Lin, S. Wang, “Combining local appearance
and holistic view: Dual-source deep neural networks for human pose
estimation”, CVPR, 2015, pp. 1347-1355.




PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

J. Carreira, P. Agrawal, K. Fragkiadaki, J. Malik, “Human pose
estimation with iterative error feedback”, CVPR, 2016, pp. 4733-
4742.

X. Sun, B. Xiao, F. Wei, S. Liang, Y. Wei, “Integral human pose
regression”, ECCV, 2018, pp. 529-545.

J.J. Tompson, A. Jain, Y. LeCun, C. Bregler, “Joint training of a
convolutional network and a graphical model for human pose
estimation”, NeurIPS, 2014.

X. Chen, A.L. Yuille, “Articulated pose estimation by a graphical
model with image dependent pairwise relations”, NeurIPS, 2014.

W. Yang, W. Ouyang, H. Li, X. Wang, “End-to-end learning of
deformable mixture of parts and deep convolutional neural networks
for human pose estimation”, CVPR, 2016, pp. 3073-3082.

S.E. Wei, V. Ramakrishna, T. Kanade, Y. Sheikh, “Convolutional
pose machines”, CVPR, 2016, pp. 4724-4732.

H. Isack, C. Haene, C. Keskin, S. Bouaziz, Y. Boykov, S. Izadi, S.
Khamis, “Repose: Learning deep kinematic priors for fast human
pose estimation”, arXiv:2002.03933, 2020.

J. Wang, X. Long, Y. Gao, E. Ding, and S. Wen, “Graph-pcnn: Two
stage human pose estimation with graph pose refinement,” arXiv
preprint arXiv:2007.10599, 2020.

H. Zhang, H. Ouyang, S. Liu, X. Qi, X. Shen, R. Yang, J. Jia,

[19]

[20]

[21]

[22]

(23]

[24]

“Human pose estimation with spatial contextual information”, arXiv
preprint arXiv:1901.01760, 2019.

A. M. Lehrmann, P. V. Gehler and S. Nowozin, "A Non-parametric
Bayesian Network Prior of Human Pose," 2013 IEEE International
Conference on Computer Vision, 2013, pp. 1281-1288.

V.Vapnik, R.Izmailov, “Learning using privileged information:
similarity control and knowledge transfer”, The Journal of Machine
Learning Research, vol. 16, pp. 2023-2049.

C. Tonescu, D. Papava, V. Olaru and C. Sminchisescu, "Human3.6M:
Large Scale Datasets and Predictive Methods for 3D Human Sensing
in Natural Environments," IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 36, no. 7, pp. 1325-1339.

D. Pavllo, C. Feichtenhofer, D. Grangier and M. Auli, "3D Human
Pose Estimation in Video With Temporal Convolutions and Semi-
Supervised Training," CVPR, 2019, pp. 7753-7762.

R. Liu, J. Shen, H. Wang, C. Chen, S. -c. Cheung and V. Asari,
"Attention Mechanism Exploits Temporal Contexts: Real-Time 3D
Human Pose Reconstruction," CVPR, 2020, pp. 5064-5073.

T. Chen, C. Fang, X. Shen, Y. Zhu, Z. Chen and J. Luo, "Anatomy-
Aware 3D Human Pose Estimation With Bone-Based Pose
Decomposition," IEEE Transactions on Circuits and Systems for
Video Technology, 2021, vol. 32, no. 1, pp. 198-209.

TABLE V. COMPARISON OF OUR MODEL’S RESULTS BY MPJPE METRIC ON THE ENTIRE TEST DATASET AND FOR ALL ACTIONS

Alpha

80 100 200 1000 5000 10000 100000

Photo 51.58 51.57 51.56 51.55 51.55 51.55 51.56
Purch 41.97 41.95 41.92 41.86 41.87 41.85 41.84
Smoke 45.49 45.48 45.47 45.45 45.45 45.45 45.45
Phone 46.45 46.45 46.43 46.42 46.42 46.42 46.41
Pose 42.10 42.10 42.10 42.10 42.09 42.10 42.10
Sit 53.30 53.30 53.30 53.32 53.31 53.32 53.33
Wait 43.32 43.31 43.29 43.27 43.26 43.26 43.26
WalkD 46.05 46.04 46.00 45.96 45.96 45.95 45.94
Disc 44.80 44.79 44.77 44.74 44.74 44.73 44.73
WalkT 32.35 32.35 32.35 32.36 32.35 32.36 32.37
SitD 60.72 60.72 60.73 60.74 60.74 60.75 60.76
Eat 39.75 39.74 39.72 39.71 39.70 39.70 39.69
Greet 42.51 42.50 42.49 42.47 42.47 42.47 42.47
Dir 41.46 41.45 41.43 41.40 41.39 41.39 41.39
Walk 31.77 31.76 31.72 31.68 31.67 31.66 31.65
Aver 44.24 44.24 44.22 44.20 44.20 44.20 44.20

TABLE VI. COMPARISON OF OUR MODEL’S RESULTS BY P-MPJPE METRIC ON THE ENTIRE TEST DATASET AND FOR ALL ACTIONS

Alpha

80 100 200 1000 5000 10000 100000

Photo 39.49 39.48 39.48 39.48 39.48 39.49 39.49
Purch 31.97 31.96 31.95 31.92 31.92 31.91 31.90
Smoke 36.44 36.44 36.42 36.41 36.41 36.40 36.40
Phone 35.28 35.27 35.25 35.23 35.23 35.22 35.21
Pose 32.17 32.17 32.17 32.16 32.15 32.15 32.15
Sit 42.80 42.79 42.79 42.79 42.79 42.79 42.79
Wait 32.42 32.42 32.40 32.39 32.39 32.38 32.38
WalkD 35.31 35.31 35.31 35.30 35.30 35.30 35.29
Disc 34.80 34.79 34.78 34.76 34.76 34.75 34.75
WalkT 25.97 25.98 25.99 26.01 26.01 26.02 26.02
SitD 48.51 48.51 48.52 48.52 48.52 48.53 48.53
Eat 32.56 32.55 32.55 32.56 32.56 32.56 32.56
Greet 34.62 34.62 34.61 34.59 34.59 34.59 34.59
Dir 32.47 32.47 32.46 32.45 32.45 32.45 32.45
Walk 24.51 24.51 24.50 24.48 24.48 24.48 24.47
Aver 34.62 34.62 34.61 34.60 34.60 34.60 34.60
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TABLE VII. COMPARISON OF OUR MODEL’S RESULTS BY MPJPE METRIC ON THE S9 SUBJECT AND FOR ALL ACTIONS

Alpha

80 100 200 1000 | 5000 | 10000 [ 100000
Photo 52.58 | 5257 | 5255 | 52.55 | 5254 | 52.55 52.56
Purch 4312 | 4311 | 43.09 | 43.07 | 43.07 | 43.07 43.06
Smoke | 4631 | 4631 | 4629 | 4628 | 4627 | 4628 46.27

Phone 49.48 49.47 49.46 49.46 49.45 49.45 49.45
Pose 39.33 39.33 39.32 39.33 39.32 39.33 39.33
Sit 58.95 58.94 58.95 58.97 58.96 58.97 58.98
Wait 42.46 42.46 42.46 42.46 42.45 42.46 42.46
WalkD 43.95 43.95 43.94 43.93 43.92 43.93 43.93
Disc 46.06 46.06 46.05 46.03 46.03 46.03 46.02
WalkT 35.12 35.11 35.10 35.10 35.09 35.10 35.10
SitD 64.07 64.07 64.07 64.07 64.06 64.07 64.07

Eat 36.47 36.45 36.41 36.35 36.35 36.33 36.32
Greet 45.20 45.21 45.22 45.23 45.22 45.23 45.24
Dir 41.40 41.39 41.38 41.36 41.35 41.35 4135
Walk 34.43 34.42 34.38 34.33 34.32 34.31 34.30
Aver 45.26 45.26 45.24 45.23 45.23 45.23 45.23

TABLE VIII. COMPARISON OF OUR MODEL’S RESULTS BY P-MPJPE METRIC ON THE S9 SUBJECT AND FOR ALL ACTIONS

Alpha
80 100 200 1000 [ 5000 | 10000 | 100000
Photo 3953 | 39.53 | 39.53 | 39.54 | 3954 | 39.54 39.55
Purch 3263 | 3262 | 3261 | 3260 | 3261 | 3260 32.60
Smoke | 37.12 | 37.11 | 37.10 | 37.08 | 37.08 | 37.08 37.07
Phone 37.07 | 37.07 [ 37.06 | 37.06 | 37.05 [ 37.05 37.05
Pose 3134 | 3134 | 3135 | 3135 | 3135 3135 3135
Sit 4917 | 4917 | 49.17 | 4917 | 4918 | 49.18 49.18
Wait 32.63 | 32.63 | 32.64 | 32.64 | 3264 | 3264 32.64
WalkD | 3424 | 3424 | 3425 | 3426 | 3426 | 34.26 34.27
Disc 36.16 | 36.16 | 36.15 | 36.15 | 36.15 | 36.15 36.15
WalkT | 28.02 | 28.03 | 28.05 | 28.07 | 28.06 | 28.07 28.08
SitD 48.84 | 4885 | 4885 | 4885 | 4885 | 4885 48.85
Eat 29.93 | 29.92 | 29.90 | 29.87 | 29.87 | 29.87 29.85
Greet 36.55 | 3656 | 3657 | 3658 | 3657 | 3658 36.58
Dir 3319 | 33.19 | 33.18 | 33.18 | 33.8 | 33.18 33.18
Walk 2653 | 2653 | 26,52 | 2650 | 26.50 | 26.50 26.50
Aver 3553 | 3553 | 3553 | 3553 | 3553 | 3553 35.53

TABLE IX. COMPARISON OF OUR MODEL’S RESULTS BY MPJPE METRIC ON THE S11 SUBJECT AND FOR ALL ACTIONS

Alpha
80 100 200 1000 [ 5000 [ 10000 [ 100000
Photo 5051 | 5051 | 50.50 | 5048 | 5049 | 50.49 50.48
Purch 4043 | 4041 | 4035 | 4026 | 4027 | 40.24 4021
Smoke | 4411 | 44.10 | 4408 | 4406 | 4406 | 44.06 44.06
Phone | 4332 | 4331 | 4329 | 4327 | 4327 | 4327 4327
Pose 4588 | 4588 | 45.88 | 45.87 | 4587 | 4587 45.87
Sit 4485 | 4485 | 44.86 | 4487 | 4487 | 4488 44.89
Wait 4425 | 4424 | 4419 | 4414 | 4414 | 4413 4412
WalkD | 49.61 | 4959 | 4951 | 49.40 | 4941 | 4938 4934
Disc 4191 | 4190 | 4186 | 41.78 | 4178 | 41.77 41.75

WalkT 29.38 29.38 29.39 29.42 29.41 29.42 29.43
SitD 56.81 56.81 56.84 56.87 56.86 56.88 56.89

Eat 43.68 43.67 43.68 43.71 43.70 43.72 43.72
Greet 39.31 39.30 39.26 39.20 39.20 39.19 39.17
Walk 28.46 28.44 28.40 28.37 28.37 28.36 28.35

Dir 41.65 41.64 41.61 41.55 41.54 41.53 41.51

Aver 42.94 42.94 42.91 42.88 42.88 42.88 42.87
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TABLE X. COMPARISON OF OUR MODEL’S RESULTS BY P-MPJPE METRIC ON THE S11 SUBJECT AND FOR ALL ACTIONS

Alpha

80 100 200 1000 5000 10000 100000

Photo 39.44 39.44 39.43 39.42 39.42 39.42 39.42
Purch 31.08 31.08 31.05 31.00 31.00 30.99 30.98
Smoke 35.30 35.30 35.29 35.27 35.27 35.27 35.27
Phone 33.42 33.40 33.37 33.33 33.33 33.32 33.31
Pose 33.29 33.29 33.28 33.26 33.25 33.25 33.24
Sit 33.27 33.26 33.25 33.25 33.25 33.25 33.25
Wait 32.19 32.18 32.15 32.12 32.12 32.11 32.10
WalkD 37.14 37.13 37.10 37.06 37.06 37.05 37.04
Disc 31.67 31.66 31.63 31.57 31.58 31.56 31.55
WalkT 23.76 23.77 23.79 23.80 23.80 23.81 23.81
SitD 48.11 48.11 48.13 48.14 48.14 48.14 48.15
Eat 35.70 35.70 35.73 35.77 35.77 35.79 35.80
Greet 32.33 32.32 32.29 32.24 32.25 32.23 32.22
Walk 22.00 21.99 21.97 21.96 21.96 21.96 21.95
Dir 30.14 30.14 30.11 30.08 30.07 30.07 30.06
Aver 33.26 33.25 33.24 33.22 33.22 33.21 33.21
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