PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

Performance Analysis of the Database
of Telecommunications

Michal Kvet,

Linda Majerc¢iakova
University of Zilina
Zilina, Slovakia
majerciakova@stud.uniza.sk

Antoine Gibhardt
CESI Ecole d'Ingénieurs
Bordeaux, France

In this article, we will explain and describe the different
steps of implementing a database, the generation of the
data, and the operations we did on them. Furthermore,
this project has for objective to highlight the different
performance fluctuations and what they are linked to.

1. INTRODUCTION

Over the years, the amount of data has been growing
exponentially. Every new system and device produce data that
must be processed and analysed. Moreover, the amount of data
is not the only problem. The scalability of the system is also an
issue. When there is that much fluctuation in the amount of
data processed, the conception of the Databases architecture
has to be adapted and optimized. These changes raise new
problems and new questions about the concept of databases
and how to interact with them [1], [2], [3].

In this article, we will mainly discuss the processes we’ve
been through to create a functional and exploitable database.
The main purpose is to create an environment in which we can
do request and exploit the data in different ways. That way, we
will be able to do a performance analysis bases on a multi
factors modification.

To begin with, we created a Data Model that highlights the
relations between the different tables and how they are
connected. This Data model also allows us to create the SQL
script used to generate the tables, their indexes, and relations.
Then, we generated random data with a Java script. This way,
we can start interacting with the database and its data. It was
crucial to generate a fair amount of data so that we could
simulate a real-life situation. In the end, we did different
operations while changing the process or the variables. This
allowed us to see the performance differences and to
understand how to use a database more efficiently nowadays.

Performance of the processing is crucial, whereas the
database system layer forms the main background managing
and manipulating data. Multiple structures can form data layer.
Section 2 deals with the main performance aspects by
referencing existing streams. Section 3 deals with the database
analysis. The used data model is introduced in section 4.
Section 5 highlight the individual operations done on the data
level. The main contribution of the paper is in section 6,
proposing performance analysis and results.

Luka Miljkovi¢
University of Belgrade
Belgrade, Serbia

Wassim Bouhtout
ECE Paris-Lyon
Paris, France

II. RELATED TECHNIQUES

Data in the database can be formed by various techniques. In
general, relational database systems are still very often used.
They are based on the entities and relationships in the logical
sphere, represented by the database tables physically. Each
table is delimited by the unique identification of the object —
the primary key, which must be unique, as well as minimal.
Data are inserted in the bulk operations, supervised by the
transactions ensuring atomicity, consistency, isolation, and
durability. Thus, online transaction processing (OLTP) is the
core element of relational database technology [1]. To limit
anomalies and reflect storage demands by reducing duplicate
tuples, data structure normalization is performed, secured by
the referential integrity dividing the data attributes into
particular tables [2]. Thus, one of the elements to ensure
performance is just the structure itself. The opposite system of
the relational systems is formed by the analytical processing
layer (OLAP), by which priority is given to data retrieval.
Normalization is not so strict, focusing on the pre-calculated
values stored in the fact table as a dominant table,
interconnected by multiple dimension tables [4], [5].

In any system, one side of the corridor is related to the data
retrieval process to ensure consistency, as well as complexity,
reliability, and timely availability. Index structures form the
separate access layer, mostly formed by the B+tree indexes,
whereas they do not regrade with the data amount extension.
Moreover, they are rather wide than high, so the traverse path
is extended in a minimal manner with a significant increase in
data. Other indexing techniques are bitmaps (mostly used in
OLAP) or hash indexes if the relevant hash function can be
found and identified [2], [5].

Although indexes provide satisfactory solutions for data
retrieval, it is impossible to specify all suitable sets in the
system. The main limitation is related to the data manipulation
operations changing the content of the tables. Namely,
changes must be applied in the indexes during the transaction.
Therefore, the transaction itself cannot be ended before all
changes are incorporated into the index set, which can be
really demanding. Suppose, that the B+tree index is always
balanced [3] . In the following part, emphasis is made on the
data retrieval methods. The sequential table scanning method
takes each block of the table from the database storage and
shifts it to the memory for evaluation. It brings the limitation
related to the empty blocks, fragmentation, etc [1], [2], [3], [7].

ISSN 2305-7254

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

Vice versa, index usage identifies relevant data block sets in
the first phase by getting address lists of them. Then, only
those that hold a particular value to be processed in the result
set are loaded and evaluated. As a result, the data block
amount is strongly limited by increasing the overall
performance [9]. Moreover, storage demands and sources are
significantly lowered, offering wide techniques of parallelism.
Related to the performance, even if the index is not suitable
for the query, relevant blocks can be identified by focusing on
the data fragmentation and empty blocks if the Update
operation stream is high. The Master index can be referenced
to focus on the blocks instead of the rows themselves [9].
Finally, when dealing with performance, there are two aspects
related to physical storage. The first perspective is associated
with the block size [9]. By default, each block can hold 8KB
of data. However, by changing the storage granularity, either
for the tables or indexes, a significant performance increase
can be reached. The second perspective is associated with
partitioning, by splitting the table set into multiple parts,
operated by the local or global indexes [8], [9], [10].
Non-relational databases are also forming the relevant part of
the information processing. However, the integrity is not so
strict in that case, and transaction support is limited to strongly
focus on the data amount to be handled. It reduces the time
processing demands for the individual operations at the cost of
possible inaccuracies, which, however, are not significantly
related to the enormous amount of time-varying data to be
handled, processed, and evaluated.

III. DATABASE ANALYSIS

Before creating the data model itself, it is necessary to find
out what data needs to be stored and the relationships between
them.

By analyzing the existing systems, we found that the most
important attributes are the called and calling phone number,
call start time and call type. These attributes are stored in
tables for the call, phone number, and customer. It was also
necessary to solve the relationship between the called and
calling number, which we solved by creating a table. This
allowed the caller to call several numbers at once, which can
be called a group call [6].

In the analyzed databases, the company and country of
customer’s phone number were stored as attributes. We
decided that they would be separate tables [6].

The analyzed databases also lacked a roaming solution. We
solved this problem and included the tables for roaming and
the roaming country in our database [6].

IV. DATA MODEL

A. Country

This table represents countries and is defined by the
attributes:

id_country (Primary Key): The id of the country.
country_name: The name of the country.

prefix: country telephone codes.

currency: Currency of the country.

B. Company

This table corresponds to the different operators of each
country in the country table and is defined by the attributes:

e id company (Primary Key): The id of the company.

e id country (Foreign Key): The country id corresponds to
that of the country table.

e company name: The name of the company.

C. Client

This table corresponds to the client of the operators in the
operator table and is defined by the attributes:

e id client (Primary Key): The id of the client.
e first name: Client’s first name.

e last name: Client’s last name.

e Dbirth date: Client's birthday.

D. Phone Number

This table corresponds to the telephone number of the
customers and is defined by the attributes:

e id number (Primary Key): The id of the phone number.

e id client (Foreign Key): The id client corresponds to that
of the client table.

e id company (Foreign Key): The id company corresponds
to that of the company table.

e number of phone: The number phone of the client.

e pin: The pin code of the phone number.

E. Call Type

This table corresponds to the different types of possible
communications such as: calls, sms, viber. And is defined by
the attributes:

e id type (Foreign Key): The id of the communication type.
e type name: The name of the type.
e fee: The fee which is associated with the type.

F. Roaming Zone

This table corresponds to the roaming zones belonging to
each country and is defined by the attributes:

e id zone (Primary Key): The id of the zone.

e id country number (Foreign Key): The id of the country in
the country table to which the zone belongs.

e name zone: The name of the zone.

e sms fee: The fee associated with each character of a text
message for the roaming zone.

e call fee: The fee associated with minutes of a call for the
roaming zone.

G. Zone country

This table corresponds to the membership of each country
to the zones of the other countries and is defined by the
attributes:

e id country (Composite Primary Key): The id of the
country belonging to the roaming zone.

146

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

e id zone (Composite Primary Key): Id of the roaming zone.

H. Call

This table corresponds to the calls, messages and viber calls
of each client and is defined by the attributes:

e id call (Primary Key): The id of the call.

id type (Foreign Key): The id of the
communication (call,sms,viber).

id number from (Foreign Key): The caller's number id
which corresponds to the id in the number phone table.

id _zone (Foreign Key): The roaming zone’s id which
corresponds to the id in the roaming zone table.

start time: The date and time of the sending of the
call/sms.

end_time: The date and time of the end of the call (it is null
for a sms).

sms_text: The text of the sms (it is null for a call or viber
call).

total_fee: Total fees of the communication.

type of

1 Call To

This table allows us to indicate the recipients of the calls or
sms and is defined by the attributes:

e id number (Composite Primary Key): id number of the
recipient which corresponds to the id in the number phone
table.

id call (Composite Primary Key): id of the call which

corresponds to the id in the call table.

phone_number client
lg= id_number NumDer(7.0) NN (PR, g= id_client Number(5.0) NN (PK)
le= id_client Number(6.0) NN (Fi) | .| stname varchar230) nn
le= id_company Number(4.0) NN (FK) last_name Varchar2(50) NN
number_of_phone Varchar2(15) NN birth_date Date NN
pin Long raw NN }
o i
| [cal fo 0
| 1 a= id_number Number(7.0) NN (PFK) J
| | lg= id_call Number(10.0) NN _(PFK)
T
: s -
company <l
le= id_company NUmber(4.0) NN (PK) o= id_call NUmDEr(100) NN (PK)
le= id_country Number(3,0) NN (FK) o= id_type Number(2.0) NN (FK)
company_name _Varchar2(50) NN o= id_number_from Number(7.0) NN (FK)
= id_zone Number¢4,0) (FK)
start_time Date NN
4 K - -
1 |
country |
la= id_country Number(3.0) NN (PK) | _total fee Real NN A
country_name Varchar2(50) NN Lo — — — — — q 7 !
prefix varchar2(5) NN |
currency varchar2(30) NN & ﬁg |
roaming_zone |
o= id_zone Number(4.0) NN (PK)
9= id_country_number Numoer(30) NN (FK) |
name_zone Varchar2(30) NN |
sms_fee Real NN |
call_fee Real NN |
C Zone_country 0
4= id_country Number(3.0) NN (PFK) !
la= id_zone Number(40) NN (PFK) call_type |
= id_type Number(20) NN (PK) Los
type_name Varchar2(30) NN
fee Real NN

Fig. 1. Data model

V.DATA INSERTION

The data generation was done from a java code that was in
charge of generating a text file containing all the sql insertion
queries.

To do this, we have created classes corresponding to each
class, then in the main class, we have created for each table
arraysList of the same type as the table containing all entries
that will be inserted into the table [9][10].

147

Once the arrayslist of each table have been filled, we have
made a script that allows to record each entry in the sql table.

A. Generation of countries

For the generation of the country, I took in the internet a
csv file which contains more than one hundred countries with
both the name of the country and the currency associated to
the country. For the prefix of each country, we derive it by
putting “+” with a number which is 100 plus an
incrementation for each country.

For each entry, the id of the country is incremented.

B. Generation of companies

As for the country table, I took on internet a csv file which
contains a list of operator companies in which each operator is
associated with a country

For each entry, the id of the company is incremented.

C. Generation of clients

As previously, I took in internet 2 csv files, one containing
a list of first name and another one which contain a list of last
names. Then for each client I took randomly a first name from
the list of first name and last name from the list of last names.

For the birth date, we generate a random date between 1930
and 2022

For each entry the id of the client is incremented.

D. Generation of phone numbers

For each client we took randomly a company from the
arraylist of companies, and we generate randomly a number
with the prefix of the county of the company, in order to
generate a number phone.

For each entry the id of the phone number is incremented.

E. Generation of Call Type

We generate 3 communication types which are: call, sms,
viber.

For each entry the id of the call type is incremented.

F. Generation of Roaming Zone and Zone Country

For each country we created 3 roaming zone in the arraylist
of roamingzones, and then for each other countries we put
them randomly in one of the 3 roaming zone created in the
arraylist of zone country.

For each entry of roaming zone, the call fee and sms fee is
choose randomly and the id of the roaming zone are
incremented.

G. Generation of Call and CallTo

We created 100 000 call and for each one we took
randomly a number phone, a call type, and a roaming zone
which belong to the country of the number phone, then we
compute the total fee thanks to the fee in roaming zone table
the longer of the call or message and also the fee in call_type

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

table. And then for each of these calls we generate between
one and 3 recipients in the CallTo table.

For each entry the id of the call is incremented.

VI. PERFORMANCE EVALUATION

After creating the data model and creating and filling the
database, we started working with the database. We created
partitions, indexes, and examined their impact on execution.
We also examined the effect of different queries.

A. Partitions

Horizontal partitioning is convenient for database
optimization when some table contains a large number of
records. In that case, records can be divided into several
groups called partitions according to a certain criterion that we
specify when creating a table. This allows the partition to be
accessed directly so that queries are executed faster and more
efficiently [7] [8].

In our model, the call table has the most records (100.000),
so we decided to perform horizontal partitioning over it and
test whether performance is improving. The criterion for
determining the partition is the duration of the call. However,
as this attribute does not exist in the call table, a virtual
column call duration is created which is calculated by
subtracting the start time and end time attributes and
multiplying the obtained result by 1440. The obtained result
represents the number of call minutes. For text messages, the
call duration is set to 0, ie the start _time and end_time are the
same, so that they can be included in the partitions. One of the
disadvantages of horizontal partitioning is that it cannot
include null values in the scope of the criteria.

Finally, we created a range partitioning and divided the data
into 4 partitions, where the partitions for calls approximately
the same size:

1. text messages (33403 records)

2. short calls - values for call duration less than 25 minutes
(22902 records)

3. Medium length calls - values for call duration between
25 and 50 minutes (23239 records)

4. long calls - values for call duration over 50 minutes
(20434 records)

It’s proven that horizontal partitioning is good for query
execution efficiency when we know exactly from which
partition, we want to get certain data. The following pictures
show the difference in costs and query execution time between
queries that use where statement and queries in which we
know which partition we are accessing.

select id_number_from
from call
where call _duration > 0 and call_duration < 25;

148

[Script output ® ‘D Query Result * T Explain Plan *
& soL &

0.821 seconds

COST
34699
34699
34699

OPERATION
-4 SELECT STATEMENT
-4 PARTITION RANGE
&8 TABLE ACCESS
=¥ Filter Predicates
- CALL_DURATION>0

CARDINALITY
553
553
553,

Fig. 2. Result of simple query without use partition

select id_number_from
from call PARTITION(small calls);
[l script output x 153 Query Result * T Explain Plan *
&+ so0 @

OPERATION
=4 SELECT STATEMENT

-4 PARTITION RANGE
. [FH TABLE ACCESS

0.122 seconds

cosT i
275
275
2751

CARDINALITY
22002
22902
22002

Fig. 3. Result of simple query with use partition explicitly

Also for some complex queries:

select count(*)
from call ¢
join phone_number pn
on(c.id_number_from = pn.id_number)
Jjoin company co on(pn.id_company = co.id_company)
Jjoin country ct on(co.id_country = ct.id_country)
where ct.id_country = 1 and c.call duration > 50;

(=l script output |[> query Result x | & Explain Plan *
*sa @

OPERATION
@ SELECT STATEMENT
4 SORT
&P NESTED LOOPS
P NESTED LOOPS

2D MERGE JOIN

. =-F8 TABLE ACCESS

: =-G¥ Filter Predicates

: CO.ID_COUNTRY=1

| =W BUFFER

&4 PARTITION RANGE
=B TABLE ACCESS
=G Filter Predicates

H C.CALL_DURATION=50

=08 NDEX 1
&-O'th Access Predicates
C.ID_NUMBER_FROM=PN.ID_NUMBER
B T4BLE ACCESS 1
=G Filter Predicates
- PN.ID_COMPANY=CO.ID_COMPANY

0.151 seconds

CARDINALITY cosT OBJECT_NAME

282

282
282
281
5 COMPANY.

276
276
276 CALL

20434
20434
20434

0PK_PHONE NUMBER

1 PHONE NUMBER

Fig. 4. Result of complex query without use partition

select count (*)
from call partition(big_calls) ¢
join phone_number pn
on (c.id_number_from = pn.id_number)
join company co
on (pn.id_company = co.id_company)
Jjoin country ct on (co.id_country = ct.id_country)

where ct.id_country = I;
OPERATION CARDINALITY
&0 SELECT STATEMENT

&-& SORT
-4 NESTED LOOPS
-4 NESTED LOOFS
-4 MERGE JOIN
. =FH TABLE ACCESS
i =0 Filter Predicates
L €O.ID_COUNTRY=1
- = BUFFER
&1 PARTITION RANGE 20449 275
: -8 TABLE ACCESS 20449 275
-8 INDEX 1 0
=0 Access Predicates
C.ID_NUMBER_FROM=PN.ID_NUMBER
&8 TABLE ACCESS 1 1
=-G% Filter Predicates
FHN.ID_COMPANY=C0.ID_COMPANY

COST
281

281
281
280

[

20449 275

Fig. 5. Result of a simple query with use partition explicitly

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

However, horizontal partitioning has not performed well in
queries when we do not know which partition we are
accessing. For example, if we executed the same complex
query over a table that has partitions, the execution cost would
be higher than if the query was executed over a table that has
no partitions, but in some cases, execution time would be
reduced.

select count(*)
from call
| where EXTRACT (year FROM start _time) = 2021;
& soL @

OPERATION CARDINALTTY
S SELECT STATEMENT 1
=-f SORT 1
. =8 TABLE AcCESS 25265
= Q¥ Filter Predicates
- EXTRACT(YEAR FROM INTERNAL_FUNCTION(START_TIME))=2021

0.058 seconds

COST (
176

176¢

Fig. 6. Result of executing query when table is not partitioned

& 5oL @ 0.114 seconds

OFERATION CARDINALITY cosT |

=4 SELECT STATEMENT 1 1099
&-{ SORT 1

- PARTITION RANGE

= BB TABLE ACCESS
=0 Filter Predicates
EXTRACT(YEAR FROM INTERNAL_FUNCTION(START_TIME))=2021

1000
1000

1099
1099

Fig. 7. Result of executing query when table is partitioned

B. Indexes

We then examined the effect of indexes on the database.
We created several selects to examine the impact of indexes
on performance. The main factors for comparison are cost and
time.

First, we created a query that order all phone numbers in the
United States by the number of calls from that number. There
was created 3 indexes for select:

select country_name, number_of phone,
count (id_call) as num_of calls
from call ph_call
join phone_number ph_num
on (ph_call.id number from = ph_num.id _number)
Jjoin company using (id_company)
join country co_from using (id_country)
where co_from.country_name = 'United States'
group by id_country, country _name,
id_number, number_of phone, currency
order by num_of calls desc;
For table ‘country’ was created index:

create index ind_countryl
on country (country_name, id_country;
For table ‘phone_number’ was created index:

create index ind_phone_numl
on phone_number
(id_number, id_company, number_of phone);

Last index was created for table ‘call’:

create index ind_calll on call (id _call, id number_from).

149

After the creation of the indexes, the system used these
indexes and the cost decreased from 1101 to 102, the total
execution time of the order also decreased.

50U HotSpot | 3,063 seconds
OPERATION OBJECT_NAME OPTIONS
@0 SELECT STATEMENT
-4 SORT CORDER BY
= @ HASH GROLP BY
-} NESTED LOOPS
[NESTED LOOPS
- NESTED LOOPS
P MERGE J0TM CARTESIAN
= TABLE ACCESS COUNTRY FULL

=¥ Filter Predicates

CO_FROM,COUNTRY_NAME="United States'

SORT

ALL

FULL
PHOME_MUMBER. BY INDEX ROWID
PK_PHONE_MNUMBER. UNIQUE SCAN

=@ BUFFER
£ @ PARTITION RAMGE

R TaBLE ACCESS
-0 INDEX
E}cﬁ Access Predicates
: PH_CALL.ID_NUMBER_FROM=PH_NUM.ID_NUMBER
PK_COMPANY UNIQUE 5CAN

-0 INDEX

-t Access Predicates
L PH_MUM.ID_COMPANY=COMPANY.ID_COMPANY
E}m TAELE ACCESS COMPANY BY INDEX ROWID
=¥ Filter Predicates
COMPANY,ID_COUNTRY =CO_FROM.ID_COUNTRY

Fig. 2. Explain Plan without the use of indexes

50U HotSpot | 2,975 seconds

OPERATICN OBJECT_NAME OPTIONS
(- #% SELECT STATEMENT
&-4f SORT ORDER BY
-4 HASH GROLP BY
=P NESTED LOOPS
[MESTED LOOPS
&+ NESTED LOOPS
- MERGE J0IN CARTESIAN
(- 0<8 INDEX IND_COUNTRY1 RANGE SCAN

-t Access Predicates
CO_FROM.COUNTRY_MAME="United States’

- BUFFER SORT
48 INDEX IND_CALL1 FAST FULL SCAN
=8 INDEX IND_PHOME_MUM1 RAMNGE SCAN

2O Access Predicates
PH_CALL.ID_NUMBER_FROM=PH_NUM.ID_NUMBER
PK_COMPANY UNIQUE SCAN

-2 INDEX
Bt Access Predicates
PH_MUM.ID_COMPANY=COMPANY . ID_COMPANY
E}m TABLE ACCESS COMPANY BY INDEX ROWID
=¥ Filter Predicates
: COMPANY,ID_COUNTRY=CO_FROM.ID_COUNTRY

Fig. 3. Explain Plan using indexes

Then, we used 4 indexes for select, which write the number
of sent SMS messages for each country:

select country_name, count (id_call) as call _count
from call cll
join phone_number pn
on (pn.id_number = cll.id_number_from)
Jjoin company using (id_company)
Jjoin country using (id_country)
join call type using (id_type)
where type_name = 'Sms'
group by id_country, country_name;

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

There was used index ‘ind countryl’ for table ‘country’.
For table ‘call_type’ was created index:

create index ind_typel on call type (type_name, id_type);
For table ‘phone number’ was created index:

create index ind_phone num?2
on phone_number (id_number, id_company).

Last index was created for table ‘call’:

create index ind_call2

on call (id_call, id number_from, id_type).

After using of the indexes, the performance time decreased
many times and the cost decreased from 1101 to 111.

A SOL HotSpot | 210,432 seconds
OPERATION OBJECT_NAME OPTIONS
=+~ @ SELECT STATEMENT
 HasH GROUP BY
(=P NESTED LOOPS
- NESTED LOOPS
P4 NESTED LOOPS
-} NESTED LOOPS
- P MERGE J0IN CARTESIAM
BB TaBLE AccEsS COUNTRY FLLL
@ BUFFER SORT
[@0 PARTITION RANGE ALL
B TABLE ACCESS CALL FLLL

[TaBLE ACCESS
-4 INDEX
(I Access Predicates
- PN.ID_MUMBER=CLL.ID_NUMBER_FROM
COMPANY BY INDEX ROWID

PHONE_MUMBER BY INDEX ROWID
PK_PHOME_MNUMBER UNIQUE SCAN

=B TABLE ACCESS

A ¥ Fiter Predicates

COMPANY.ID_COUNTRY =COUNTRY,ID_COUNTRY

=048 INDEX PK_COMPANY UNIQUE SCAN

-t Access Predicates

: PN ID_COMPAMY =COMPANY,ID_COMPANY
PK_CALL_TYPE UMNIQUE SCAN

048 INDEX
=i Access Predicates
CLL.ID_TYPE=CALL_TYPE.ID_TYPE
9@ TABLE ACCESS CALL_TYPE
-3 ¥ Filter Predicates
: CALL_TYPE.TYPE_NAME='Sms'

BY INDEX ROWID

Fig. 4. Explain Plan without the use of indexes

Lastly, an index was created for select, which finds all
clients whose last name starts with 'FRI":

select first_name, last_name
from client

where substr (last_name, 1, 3) = 'FRI';
There was created index for table ‘client’:

create index ind_clientl
on client (substr (last_name, 1, 3), first_name, last_name);

150

A QL HotSpot | 22,875 seconds
OPERATICN OBJECT_NAME OPTIONS
(- @0 SELECT STATEMENT
-4 SORT GROUP BY NOS...
[NESTED LOOPS
NESTED LOOPS
€] NESTED LOOPS
[NESTED LOOPS
P4 MERGE 10IN CARTESIAN
-8 INDEX IND_COUNTRY1 FULL 5CAN
=+ BUFFER SORT
! -0 INDEX IND_CALL2 FAST FULL SCAN
-0 INDEX IND_TYPE1 RANGE SCAN
- Access Predicates
B/ AND
CALL_TYPE. TYPE_NAME='Sms"
CLL.ID_TYPE=CALL_TYPE.ID_TYPE
-0 INDEX IND_PHONE_NUMZ2 ~ RANGE 5CAN
-t Access Predicates
b PN.ID_NUMBER =CLL.ID_NUMBER_FROM
-2 INDEX PK_COMPANY UNIQUE SCAN
-5 Access Predicates
- PN.ID_COMPANY =COMPANY.ID_COMPANY
= TABLE AccEsS COMPANY BY INDEX ROWID
Ot Filter Predicates
------ COMPANY.ID_COUNTRY=COUNTRY.ID_COUNTRY

Fig. 5. Explain Plan using indexes

After using the index, the cost was reduced from 15 to 2.
Instead of a full table scan, index range scan was used, and the
query execution time was also reduced.

' SQL HotSpot | 2,832 seconds
CPERATION CBJECT_NAME |OPTIONS
- @ SELECT STATEMENT

=B TABLE ACCESS CLIENT FLILL

. = F Fiter Predicates

: SUBSTR{LAST_MNAME, 1,3)="FRI

Fig. 6. Explain Plan without the use of indexes
s 5QL HotSpot | 1,366 seconds
CPERATICHN OBJECT_MAME OPFTIONS
- @ SELECT STATEMENT

063 INDEX IND_CLIENT1 RANGE SCAM

=-F i Access Predicates
CLIEMT.5YS_NCO00058="FRI'

Fig. 7. Explain Plan using indexes

C. IN and EXISTS clauses

In the next step, we compared the performance of the IN
and EXISTS clauses. The clauses were compared for smaller
and larger sub-query results.

We first compared clauses where the result of the subquery
is relatively small. It is a select that find all companies located
in France. We made EXISTS clause as:

select *
from company co
where exists
(select *
from country cou
where country_name = 'France'
and co.id_country = cou.id_country);

Then we made IN clause:

select * from company
where id_country in
(select id_country
from country
where country_name = 'France');

In terms of time, the IN clause was faster than EXIST
clause.

aP SQL HotSpot | 2,212 seconds

OPERATION OBJECT_NAME OPTIONS
=40 SELECT STATEMENT

(-] NESTED LOGPS
. =P NESTED LOOPS
[TaBLE Access COMPANY FULL
-0¢8 INDEX PK_COUNTRY UNIQUE SCAN
=+ Access Predicates

‘e COJID_COUNTRY =COU.ID_COUNTRY

TABLE ACCESS COUNTRY BY INDEX ROWID
=¥t Filter Predicates

- COUNTRY_NAME="France'

Fig. 8. Explain Plan of EXISTS clause

P 50L HotSpot | 1,975 seconds

OPERATION OBJECT_NAME OPTIONS
- @0 SELECT STATEMENT

=>4 NESTED LOOPS
-} NESTED LOOPS
R TaBLE AccESS COMPANY FULL
=28 INDEX PK_COUNTRY UNIQUE 5CAN
=40 s Access Predicates

[ID_COUNTRY =ID_COUNTRY

TABLE ACCESS COUNTRY BY INDEX ROWID
=4 ¥ Filter Predicates

- COUNTRY_NAME ='France'

Fig. 9. Explain Plan of IN clause

We then compared the clauses if the result of the subquery
was relatively large. Select query finds all calls that belong to
the United States. EXISTS clause is:

select *
from call Il
where exists (select *

from phone_number pn

Jjoin company using (id_company)

Jjoin country using (id_country)
where country_name = 'United States'
and ll.id_number_from = pn.id_number);

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

IN clause look like:

select *
from call
where id_number_from in
(select id number
from phone_number
join company using (id_company)
Jjoin country using (id_country)
where country_name = 'United States');

In this case, there was a change and the EXISTS clause was
faster in terms of time.

' SQL HotSpot | 3,168 seconds

COPERATION OBJECT_NAME OPTIONS
- @ SELECT STATEMENT
- view WM_MIWYW 2
-0 HASH UNIQUE
=[] NESTED LOOPS

MNESTED LOOPS

MNESTED LOOPS

N MER.GE JOIN CARTESIAN
9@ TAELE ACCESS COUNTRY FULL
=¥ Fiter Predicates

- COUNTRY,COUNTRY_NAME="United States’

- BUFFER SORT
5 PARTITION RANGE ALL
R TaBLE AccESs cALL FULL

E}m TABLE ACCESS PHOME_MUMBER. BY INDEX ROWID

=08 INDEX PK_PHONE_NUMBER. UNIQUE SCAN

20t Access Predicates
‘o LL.ID_NUMBER_FROM=PN,ID_NUMBER

-8 INDEX PK_COMPANY UNIQUE SCAN

E}Gﬁ Access Predicates

[PMN.ID_COMPAMNY =COMPANY.ID_COMPANY
E’m TABLE ACCESS COMPANY BY INDEX ROWID
¥ Filter Predicates
Fe COMPANY.ID_COUNTRY =COUNTRY.ID _COUNTRY

Fig. 10. Explain Plan of EXISTS clause

s s5QL HotSpot | 3,376 seconds

OPERATION OBIECT_NAME OPTIONS
-4 SELECT STATEMENT
& view WM_NWVW_2
- HASH UNIQUE

-] NESTED LOOPS
=[] NESTED LOOPS
NESTED LOOPS
P MERGE 101N CARTESIAN
- TABLE ACCESS COUNTRY FULL
=¥ Filter Predicates

b COUNTRY.COUNTRY_NAME="United States'

=@ BUFFER SORT
- @ PARTITION RANGE ALL
------ [EH TaBLE ACCESS CALL FLLL
R TaBLE ACCESS PHOME_MUMBER. BY INDEX ROWID
-0 INDEX PK_PHONE_NUMBER. UNIQUE SCAN

2 Access Predicates

[ID_NUMBER._FROM=PHOME_NUMBER..ID_MUMBER.
-8 INDEX PK_COMPANY UNIQUE 5CAN

E}O'm. Access Predicates

“er’ PHOME_NUMBER.ID_COMPANY=COMPANY,ID_COMPANY
= TABLE ACCESS COMPANY BY INDEX ROWID
O Filter Predicates
------ COMPANY,ID_COUNTRY =COUNTRY.ID_COUNTRY

Fig. 11. Explain Plan of IN clause

151

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

VII. CONCLUSION

In this article we wanted to describe creation and then
examination of database for telecommunications.

We were able to create a database using a data model. To
create the architecture of a database, using a visual tool to
create it help understanding what relations are important to
improve the systems efficiency.

Moreover, we generate random data to import it into the
database. This allowed us to interact with the database and
more importantly, with its data.

Finally, we could do several experiments by interrogating
the database in different ways. We could do a performance
analysis that showed us what are the more efficient ways of
using a database and how to optimize the processes.

Our experiments show that if we know in advance which
parts of the table we will access frequently, it is good to use
partitions. Horizontal partitions greatly improve performance.
However, if we need access to the parts where the partitioning
is broken, the performance is much worse.

We have also found that using indexes is very beneficial.
Not only for simple queries but also for more complex ones in
which multiple tables are accessed.

In the question of IN and EXISTS clauses, we concluded
that it mainly depends on the sub-query. If the sub-query is
smaller, it is preferable to use the IN clause, and if it is larger,
it is better to use the EXISTS clause.

So, we can say that when creating and using a database, it
also depends on how we use it. Then we can use the right
partitions, indexes, and clauses to be able to work with the
database efficiently.

[In the future, emphasis will be done on the data distribution
in the multiple domain cloud storage.

152

ACKNOWLEDGMENT

This publication was realized with support of the
Operational Programme Integrated Infrastructure in frame of
the project: Intelligent systems for UAV real-time operation
and data processing, code ITMS2014+: 313011V422 and co-
financed by the European Regional Development Found.

REFERENCES

[1] Bryla, B.: Oracle Database 12¢c The Complete Reference, Oracle Press,
2013, ISBN —978-0071801751

[2] Burleson, D. K.: Oracle High-Performance SQL Tuning, Oracle Press,
2001, ISBN - 9780072190588

[3] Dudas A., Skrinarové J, Vesel E.: Optimization design for parallel coloring
of a set of graphs in the High-Performance Computing. In: Proceedings of
2019 IEEE 15th International Scientific Conference on Informatics. pp 93-
99. ISBN 978-1-7281-3178-8.

[4] Duda$ A., Skrinarova J.: Edge coloring of set of graphs with the use of
data decomposition and clustering . In: IPSI Transactions on internet
research: multi-, inter-, and trans-disciplinary issues in computer science
and engineering. special issue, Selected topics in computer science. Vol.
16, no. 2 (2020), pp. 67-74. ISSN 1820-4503.

[5] Delplanque, J., Etien, A., Anquetil, N., Auverlot, O.: Relational database
schema evolution: An industrial case study, IEEE International
Conference on Software Maintenance and Evolution, ICSME 2018, Spain,
2018, pp. 635-644

[6] Mandal, S., Maji, G.: Integrating Telecom CDR and Customer Data from
Different Operational databases and Data warehouses into a Central Data
Warehouse for Business Analysis, India, 2016

[7] Eisa, 1., Salem, R., Abdelkader, H.: A fragmentation algorithm for storage
management in cloud database environment, Proceedings of ICCES 2017
12th International Conference on Computer Engineering and Systems,
Egypt, 2018

[8] Kvet, M. (2019). Complexity and Scenario Robust Service System Design.
In Information and Digital Technologies 2019: conference proceedings,
Zilina, 2019, ISBN 978-1-7281-1400-2, pp. 271-274.

[9] Kvet, M.: Managing, locating and evaluating undefined values in relational
databases. 2020

[10] Steingartner, W., Eged, J., Radakovic, D., Novitzka, V.: Some
innovations of teaching the course on Data structures and algorithms. In
15th International Scientific Conference on Informatics, 2019.

