
Generating Visualizations of Ontologies in the
Logic Graphs Language

Vasiliy Kuryshev, Ildar Baimuratov, Vladislav Shmatkov, Dmitry Mouromtsev
ITMO University

Saint Petersburg, Russia
{vk937937, baimuratov.i, shmatkovvlad, d.muromtsev}@gmail.com

Abstract—We analyze the existing ontology visualization tools.
Our analysis shows that there is no tool that represents the
semantics of logical operations in ontologies, as Ch. S. Pierce’s ex-
istential graphs do for first order logic. Previously, we developed
Logic Graphs – a semantic-oriented visual language for ontolo-
gies, complete with respect to OWL DL. The goal of this research
is to develop a tool for generating ontology visualizations in Logic
Graphs. This tool parses an ontology to extract classes and their
properties, converts ontology classes to their descriptions in DOT
format, and builds graphical representations of ontology classes
from DOT descriptions. Ontology visualization in Logic Graphs
facilitates the users perception of ontologies, and provides the
possibility of diagrammatic reasoning.

I. INTRODUCTION

Visualization helps to work with ontologies and to study

their features, because representation of an ontology as a set

of graphic primitives is perceived much easier than textual

information. Currently, there is a large number of ontol-

ogy visualization services [1]–[3], However, they are mainly

focused on the expressiveness and readability of graphical

representation [4], [5].

Compare VOWL (Visual Notation for OWL Language)

[6] and OnotoGraf [7] or any other most popular ontology

visualization services such as with Peirce’s existential graphs

[8]. The existing ontology visualization services only denote
logical operations using arbitrary graphical primitives, which,

in fact, is just replacing one language with another, while

existential graphs reflect the semantics of operations. The latter

characteristics of existential graphs, firstly, actually facilitates

the perception of ontologies by users, and secondly, provides

the possibility of diagrammatic reasoning.

However, existential graphs are defined for predicate logic,

while ontologies are based on description logics. In this regard,

based on existential graphs, we have developed a new visual

language for ontologies, and called it Logic Graphs [9], [10]. It

is complete with respect to the OWL DL ontology description

language and reflects the semantics of logical operations in

ontologies. Until now, there has been no tools for visualization

of ontologies in the Logic Graphs language. This article

presents a method for generating visual representations of

ontologies in Logic Graphs and an application that implements

this method.

As a result, unlike the existing ontology visualization tools,

our solution allows i) visualizing complex logical expressions,

and ii) representing semantics of logical relations. Due to

correct and semantical visualization of logical expressions, our

solution facilitates the usage of ontologies both by non experts,

because perceiving semantics of logical relations requires

no specific knowledge, and by ontology experts, because

it provides the possibility of diagrammatic reasoning over

ontologies. Our solution is especially relevant for ontologies

that are rich in complex axioms. Such ontologies are used, for

example, in requirements modelling.

II. RELATED WORK

A. Existing ontology visualization tools

There are numerous ontology visualization services. They

are reviewed in [1]–[3]. For each tool, we examined its ability

to represent the semantics of logical operations. Consider

several most popular services to demonstrate the analysis

performed.

One of the most popular ontology visualization languages is

VOWL [6]. According to its authors, VOWL is a well-specified

visual language for a user-oriented representation of ontolo-

gies. It defines graphical depictions for most elements of OWL

language that are combined to a force-directed graph layout.

VOWL aims for an intuitive and comprehensive representation

that is understandable for users that are not ontology experts.

VOWL is implemented as two tools: ProtégéVOWL [11] – a

plugin for the ontology editor Protégé [12], and WebVOWL

[13] – a standalone web-application.

Consider an axiom (1), which states that a vegan and not a

vegetarian is a person that eats only plants and not a person

that eats only plants or dairy. Fig. 1 provides its visualization

in WebVOWL. As can be seen, WebVOWL does not seem to

represent this axiom correctly. First, it is not full, as it does not

represent the elements of the intersection of the axiom except

for the first one, second, it does not represent the semantics of

this intersection itself, as the intersection is represented only

with a pictogram of a Venn diagram for intersection. Only

a person that is familiar with Venn diagrams can understand

there is an intersection, but even this kind of person can not

define which classes are intersected.

Another visualization service, OntoGraf [7], provides vari-

ous automated layouts for the structure of ontology visualiza-

tion, supports a number of relationships: subclass, individual,

domain/range of object properties, and equivalence. It is im-

plemented as a Protégé plugin. Fig 2 provides a visualization

of the axiom (1) in OntoGraf. Again, it does not represent the

axiom correctly, because it does not depict the intersection.

Moreover, it misleadingly claims that a vegan and not a

vegetarian is equivalent to a plant.

__PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

V egan and not vegetarian ≡ Person � ∀eats.P lant � ¬(Person � ∀eats.(Plant �Dairy)), (1)

Fig. 1. Axiom (1) in WebVOWL

Fig. 2. Axiom (1) in OntoGraf

We are not going to represent the whole survey, as it is

outside the scope of this research. The result is, no ontology

visualization tools have been found that would properly rep-

resent logical operations.

B. Semantic-oriented visual languages

Unlike existing ontology visualization tools, there are

semantic-oriented visual languages for representing logical ex-

pressions. As an example, consider Ch. S. Pierce’s existential

graphs (EG) [8]. In an EG, there are propositions placed on

a sheet of assertion. A proposition can be negated by placing

it into a shaded area. If two propositions are on the sheet of

assertion, they are both true, therefore, their conjunction is also

true. Having a negation and a conjunction makes it possible to

express any complex proposition. Thus, the graphic primitives

of existential graphs represent the semantics of propositional

operations. As an example, consider an existential graph for

the expression “If it rains, it is cold” in Fig. 3. It states that

the situation when it rains, but it is not cold is impossible.

Fig. 3. Existential graph for “If it rains, it is cold”

Fig. 4. Axiom (1) in Logic Graphs

Based on existential graphs, we developed a visual language

for ontologies, and called it Logic Graphs (LG) [9], [10]. It is

semantic-oriented, similar to existential graphs, and complete

with respect to OWL DL language. The syntax of LG for a

fragment of OWL language corresponding to ALC description

logic is provided in Table I, where C,C1, C2 are concepts, R
– a role, and a and b are individuals.

Similar to the existential graphs, the space on which the

graph is located is called the assertion space, it denotes the

universe of objects. A rectangle denotes a concept, that is, a

set of objects of the universe that have a certain property.

Shading denotes negation – a set of objects that do not

have the specified property. Concepts can be nested within

each other. The outer rectangle denotes a set of objects that

have the properties of all inner rectangles. For details about

representation of other operations see [10].

As an example, consider representation of the axiom (1)

in Logic Graph in Fig 4. It reflects that a vegan and not a

vegetarian is an intersection of a person, of a nothing that eats

anything except for plants, and of a nothing that is a person

and does not eat anything, which is not plant, or dairy.

However, for now, there is no tools for visualization of

ontologies in the Logic Graphs language.

III. GENERATING LOGIC GRAPHS FOR ONTOLOGIES

This section describes the method of generating LG for

ontologies we developed and its software implementation. The

method consists of three main steps:

1) ontology parsing;

2) conversion;

3) graph building.

__PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

-- 132 --

TABLE I. LOGIC GRAPHS FOR ALC

1 C 2 ¬C

3 C1 � C2 4 C1 � C2

5 C1 � C2 6 C1 ≡ C2

7 ∃R.C 8 ∀R.C

9 a : C 10 (a, b) : R

Fig. 5. Package diagram

Further subsections discuss more details about each of the

steps.

The architecture of the application can be seen in the

package diagram in Fig. 5. As can be seen, it matches the

main steps of the method proposed. Python was used as the

development language.

A. Ontology parsing

The first stage is ontology parsing. The parser extracts data

from an ontology and transform it into Python classes. For

class diagram of the application see Fig. 6.

The data extraction pipeline is the following:

1) The parser receives an ontology in rdf format as input.

2) Ontology classes are extracted using regular expressions.

3) Class properties including logical operations are ex-

tracted from the class with the depth-first search algo-

rithm (DFS) [14]. An example of extracting data from

a class of the Pizza ontology [15] is shown in Fig. 7.

4) After extracting data from the ontology, instances of the

corresponding Python classes are created.

For more details, see diagram in Fig. 8.

The depth-first search algorithm allows building a traversal

of a directed or undirected graph, which places all vertices

accessible from the initial vertex. The idea is to move from

the starting vertex in a certain direction, along a certain path,

until we reach the end of the path (the desired vertex). If the

end of the path is reached, but it is not the desired destination,

then we return back (to the point of divergence of the paths)

and follow a different route. In this way, all elements and

properties of an ontology class are extracted.

B. Conversion

This component is intended to convert instances of the

Python class describing classes of an ontology to instances of

the Python class describing nodes of Logic Graphs and further,

to nodes descriptions in DOT format [16]. The description of

the Python class of nodes is shown in the listing below:

c l a s s Node :

def i n i t (s e l f , name ,

f l a g n e g a t i o n = F a l s e) :

s e l f . name = name

s e l f . node = ’ node ’ + s t r (

N u m b e r E l e m e n t S t a t i c . n o d e c n t)

N u m b e r E l e m e n t S t a t i c . n o d e c n t += 1

s e l f . f l a g n e s t e d = F a l s e

__PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

-- 133 --

Fig. 6. Class diagram

Fig. 7. Parsing CheesyPizza class of the Pizza ontology

__PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

-- 134 --

Fig. 8. Parsing algorithm

s e l f . f l a g n e g a t i o n =

f l a g n e g a t i o n

def s t r (s e l f) :

re turn ’ Node ’ + s e l f . name

As can be seen, this class contains properties of a Logic

Graphs node: an original name of the ontology class, a

unique name of the node, which is used to generate the DOT

file, a flag that indicates whether the node is nested into

another node, and a flag that indicates whether the complement

operation is applied to the node.

Regarding conversion of ontology classes to Logic Graphs

nodes, logical operations are divided into three types, which

are given in Table II. The CheesyPizza class of the Pizza

ontology is used to illustrate conversion. As a result, this

component outputs the descriptions of the ontology classes

and their logical operations in DOT format.

Fig. 9. Graph building algorithm

C. Graph building

Graphs representing classes of an ontology in the Logic

Graphs language are formed by generating graphs from their

descriptions in the DOT format using recurrent traversal. The

algorithm for constructing the graphs is as follows:

1) reading a DOT file that was obtained in the previous

step;

2) passing the file data to the Graphviz [17] library to build

a graph;

3) saving the resulting graph in PDF file.

For more details, see diagram in Fig. 9.

As can be seen, the algorithm for constructing a graph is

quite simple. This is due to the Graphviz graph visualization

library that has rich functionality. It is sufficient to load the

correct description of the graph in DOT format to get the

visualization. Also, the functionality of this library allows

drawing nested nodes, which is one of the key reasons for

using this library, since the Logic Graphs language contains

nested elements.

As an example of the resulting graph, consider the class

’American’ from the Pizza ontology, see Fig. 10. The most

demonstrative is representation of the axiom (2). The graph

for the american pizza class reflects a universal restriction

and disjunctions from the axiom, showing that american pizza

is not a subclass of objects that have no tomatto, peperoni

sausage or mozzarella toppings. Thus, our solution generates

correct visualizations of ontologies on the Logic Graphs

language. Considering computational costs, it required 8.64

seconds with AMD Ryzen 5 2600 and 10.03 MB RAM to

generate all graphs for the pizza ontology, containing 801

axioms.

__PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

-- 135 --

TABLE II. CONVERSION OF ONTOLOGY CLASSES TO LOGIC GRAPHS NODES

Type Example of description in DOT Example of graphic representation
Node (Class)

node 100 [
l a b e l =” P i z z a ” ,

s t y l e = f i l l e d ,
f i l l c o l o r = whi te ,
c o l o r = b l a c k

]

Arrow
(Universal
restriction,
Existential
restriction,
Subclass)

node 101−>node 102 [
l t a i l =node 102
l h e a d =node 102
l a b e l =” hasTopping ”

]

Nested node
(Intersection,
Union)

s u b g r a p h c l u s t e r 8 7 {
node [

shape = r e c o r d] ;
s t y l e = f i l l e d ;
l a b e l = ” ” ;
c o l o r = b l a c k ;
f i l l c o l o r = w h i t e ;

] ;
node 100 [

l a b e l =” P i z z a ” ,
s t y l e = f i l l e d ,
f i l l c o l o r = whi te ,
c o l o r = b l a c k

] ;
node 101 [

l a b e l =”” ,
s t y l e = f i l l e d ,
f i l l c o l o r = whi te ,
c o l o r = b l a c k

] ;
}

Fig. 10. Generated graph for American pizza

American � ∀hasTopping.(MozzarellaTopping � PeperoniSausageTopping � TomatoTopping) (2)

__PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

-- 136 --

IV. CONCLUSION

We analyzed the existing ontology visualization tools and

concluded that there is no tool that represents the semantics of

logical operations in ontologies, as Ch. S. Pierce’s existential

graphs do for first order logic. Therefore, we developed a

tool for generating a visualization of ontologies in Logic

Graphs – a semantic-oriented language, complete with respect

to OWL DL. The workflow of this tool consists of three steps:

i) ontology parsing for extracting ontology classes and their

properties, ii) conversion of ontology classes to their descrip-

tions in DOT format, iii) and building graphical representations

from DOT descriptions. As a result, our application generates

a PDF file with graphical representation on the Logic Graphs

language for each class in an ontology. These visualizations

facilitate the users perception of ontologies, and provide the

possibility of diagrammatic reasoning.

REFERENCES

[1] F. Antoniazzi and F. Viola, “Rdf graph visualization tools: a survey,” in
2018 23rd Conference of Open Innovations Association (FRUCT), 2018,
pp. 25–36.

[2] M. Dudáš, S. Lohmann, V. Svátek, and D. Pavlov, “Ontology visualiza-
tion methods and tools: a survey of the state of the art,” The Knowledge
Engineering Review, vol. 33, 07 2018.

[3] M. F. Joseph and R. Lourdusamy, “Feature analysis of ontology vi-
sualization methods and tools,” Computer Science and Information
Technologies, vol. 1, no. 2, 2020.

[4] I. Baimuratov and T. Nguyen, “Non-empirical metrics for ontology
visualizations evaluation and comparing,” CEUR Workshop Proceedings,
vol. 2744, 2020.

[5] I. Baimuratov, T. Nguyen, R. Golchin, and D. Mouromtsev, “Developing
non-empirical metrics and tools for ontology visualizations evaluation
and comparing,” Scientific Visualization, vol. 12, no. 4, pp. 71–84, 2020.

[6] S. Lohmann, S. Negru, F. Haag, and T. Ertl, “Visualizing ontologies
with VOWL,” Semantic Web, vol. 7, no. 4, pp. 399–419, 2016.

[7] OntoGraf. [Online]. Available: https://protegewiki.stanford.edu/wiki/
OntoGraf

[8] C. Peirce and J. Sowa, “Existential graphs: Ms x 514 by charles sanders
peirce with commentary by john f. sowa.”

[9] D. Mouromtsev and I. Baimuratov, “Logic graphs: A complete visual-
ization method for logical languages based on ch. s. peirce’s existential
graphs,” CEUR Workshop Proceedings, vol. 2344, no. 12, pp. 1–10,
2019.

[10] T. Nguyen and I. Baimuratov, “Logic graphs: Complete, semantic-
oriented and easy to learn visualization method for owl dl language,”
CEUR Workshop Proceedings, vol. 2893, 2020.

[11] ProtégéVOWL, vOWL Plugin for Protégé. [Online]. Available:
http://vowl.visualdataweb.org/protegevowl.html

[12] Protégé, web-based Visualization of Ontologies. [Online]. Available:
https://protege.stanford.edu/

[13] WebVOWL, web-based Visualization of Ontologies. [Online]. Available:
http://vowl.visualdataweb.org/webvowl.html

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, ser. Second Edition. MIT Press and McGraw-Hill, 2001,
a Wiley-Interscience Publication, (Example for books).

[15] Pizza. [Online]. Available: https://protege.stanford.edu/ontologies/pizza/
pizza.owl

[16] DOT, graph description language. [Online]. Available: https://graphviz.
org/doc/info/lang.html)

[17] Graphviz. [Online]. Available: https://graphviz.org/

__PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

-- 137 --

