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Abstract—A new method for solving the multiple instance
learning (MIL) problem, which is based on ideas of the black-
box model prediction explanation, is proposed. The explanation
aims to show instances (pixels, patches) which have the highest
contribution into the image (bag) classes and to automatically
annotate instances in bags. Three ideas behind the method are
used. First, the surrogate black-box model is implemented as
the Siamese neural network which is trained on pairs of whole
images. Second, patches in each image are changed by using their
dynamic fill or noise. Third, noisy images are compared with the
original image by using the Siamese neural network such that
Euclidean distances between outputs of the network depending
on the noise level form a shape function for every patch. The
shape function is interpreted from its contribution into the image
class. Numerical experiments with the real Breast Cancer Cell
Segmentation dataset illustrate the method.

I. INTRODUCTION

Many applied real-life machine learning problems can be

successfully performed in the framework of the Multiple

Instance Learning (MIL) [1]. MIL was introduced for drug

activity prediction [2], and it aims to train a model using a

set of weakly labeled data. In the original MIL, a training

set consists of bags, labeled as positive or negative; and each

bag includes many instances, whose labels are unknown. From

the above statement of MIL, it can be regarded as a type

of weakly supervised learning which covers many machine

learning problems. Several surveys consider various MIL

problem statements related to different applications, including

medical imaging and diagnosis, tracking, computer vision,

system safety, etc. [1], [3]–[8].

At the present time, there exist many MIL methods solving

MIL tasks in their different statements, for example, the

citation-kNN [9], mi-SVM and MI-SVM [10], the Multiple

Instance Learning Convolutional Neural Network [11]–[13],

Deep Attention Multiple Instance Survival Learning [7], MILD

[14], ProtoMIL [15]. This is a small part of all MIL methods

and models developed in the last years.

One of the important applied areas, where MIL can be

viewed as a main and inherent tool, is the computational

histopathology. The histopathology is a significant part of

the disease approval because it aims to detect whether can-

cer exists or no. A common approach to the computational

histopathology is the generation of digital images from glass

microscope slides and then obtaining meaningful information

from the images. The histology images are very large and often

represented as a set of small parts (patches, cells). If to use the

machine learning terminology, every histology image with a

label indicating a disease, for example, cancer or non-cancer,

can be viewed as a “bag” consisting of patches extracted from

the image which are referred to as “instances”. Depending on

prior information available about labels of patches or whole

images, four learning scheme are proposed [16]: the supervised

learning when patches are annotated by the pathologist, for

example, as cancerous or normal; the weakly supervised learn-

ing when image-level annotations are available, but patches

of each image have to be annotated by a learning algorithm,

but not by the pathologist; the unsupervised learning as a

worse case when no labels are available for patches as well

as for whole images; the transfer learning aiming to transfer

knowledge from a source domain, for example, with annotated

data, to another target domain, for example, with unannotated

data.
We pay attention on the weakly supervised learning, i.e.,

we assume that bags (images) have class labels, but instances

(individual segments, patches, subsets) do not. This type of

learning is very common in medicine practice. It should be

noted that the lack of labels for instances is a key peculiarity

of MIL. From this point of view, MIL can be regarded as a type

of the weakly supervised learning problem. A huge number

of methods and models have been proposed in order to solve

the problem of the instance annotation in the computational

histopathology. These methods are comprehensively studied

and discussed in several survey papers [6], [16]–[18].
We propose a new method which is based on ideas of

the black-box model prediction explanation. Many new ex-

planation methods have been developed in the last years

due to requirements to explain the machine learning model

predictions [19]–[23]. The problem is that most powerful

machine learning models, for example, deep neural networks,

are very complex. They are actually black boxes. Therefore, an

explanation component has to be supplemented these models

in order to give a user to understand the corresponding model

predictions [24].
However, by applying the explanation, we are pursuing

a double object. First, we aim to show features (pixels,

patches) which have the largest contribution into the image

class (cancer/non-cancer or malignant/benign). But the most

important object is to use the explanation to automatically

annotate instances in images. In order to solve the above tasks,

we propose the following scheme.

1) A surrogate black-box model implemented as the

Siamese neural network [25], [26] is trained on whole

images (bags).
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2) Each bag is divided into a grid of patches which are

changed by using their dynamic fill or noise. The

procedure of the image fill is similar to the algorithm

“Hide-and-Seek” [27], but not the same. As a result,

we get new bags which are compared by means of the

trained Siamese neural network with the initial “clean”

bags. Results of comparison are distances between em-

beddings (outputs of the trained Siamese neural network)

obtained for each “clean” bag and the corresponding

changed noising bags.

3) By using the distances, we construct shape functions

which show how the distance between embeddings de-

pends on the noise values. The noise is defined by the

image dynamic filling.

4) A rapid change of a shape function constructed for a

patch indicates that the corresponding patch is important

and is annotated in accordance with a class of the whole

bag containing this patch.

It is important to note that the proposed scheme can be

applied to various weakly supervised MIL problems. But we

illustrate it on the histology images. We do not claim that the

proposed method outperforms many existing approaches (see,

for example, [28]). Its performance depends on the considered

dataset. However, our numerical experiments show that it is

comparable with other methods and can be applied to many

problems. Moreover, its tuning may lead to outperforming

results.

In summary, the following contributions are made in this

paper:

1) We propose a new explanation and annotation MIL

method in terms of the computational histopathology.

2) The method is illustrated by means of numerical exper-

iments with real histological data.

The paper is organized as follows. A brief introduction

to MIL, the Hide-and-Seek approach and to Siamese neural

networks can be found in Section 2. The proposed method

and the algorithm implementing it are described in Section 3.

Numerical experiments are provided in Section 4. Concluding

remarks can be found in Section 5.

II. PRELIMINARY

A. MIL

It is supposed in MIL that bags, for example, images in

a data set have class labels; however, instances (individual

segments, patches, subsets) do not. The lack of labels for

instances is a key peculiarity of MIL. From this point of

view, MIL can be regarded as a type of the weakly supervised

learning problem.

Let X be a bag defined as a set of feature vectors

X = {x1, ...,xm}. Each instance (i.e. feature vector) xi in

feature space X can be mapped to a class by some process

f : X → {0, 1}, where the negative and positive classes

denoted as y1, ..., ym correspond to 0 and 1, respectively. Val-

ues y1, ..., ym remain unknown during training. Generally, the

number of instances N can vary for different bags. However,

for simplicity purposes, we will assume that the number of

instances m is the same for all bags. We will denote bags by

capitals and instances by bold letters.

One of the important assumptions accepted in the MIL

stems from the fact that all negative bags contain only negative

instances, and that positive bags contain at least one positive

instance [1]. Hence, the bag classifier g(X) is defined by

g(X) =

{
1, ∃x ∈ X : f(x) = 1,
0, otherwise.

(1)

It should be noted that the above rule is not a unique one.

Sometimes, a threshold θ can be introduced to define the bag

classifier g(X), i.e., there holds

g(X) =

{
1, θ ≤ ∑

x∈X f(x),
0, otherwise.

(2)

Taking into account that the problem is the weakly su-

pervised learning, different goals exist to train the classifier

g(X). In particular, three types of the classification problems

can be pointed out [5]: (1) global detection which identifies

a class of every instance in a bag (a histology image); (2)

local detection aims to identify some subsets of interest, for

example, cancerous patterns from a patch xi belonging to the

bag X; (3) global and local detection aims to detect whether an

image has a pattern of a class of interest, for example, cancer,

and also to identify the location where it occurs within an

image.

We mainly solve a task corresponding to the first type of

the classification problem. However, the proposed method is

simply extended on the second and the third types.

B. Hide-and-Seek approach

An interesting approach to get the accurate classification

performance called Hide-and-Seek was proposed by Singh and

Lee [27]. According to this approach, an image is divided

into a grid of patches. The image patches are hidden during

training such that the model seeks the relevant object parts

from remaining elements of the image. If some patches are

randomly removed from an image, for example, with a dog,

then there is a possibility that the dog’s face, which is the most

discriminative, will not be visible to the model. In this case,

the model must seek other relevant parts like the tail and legs

in order to do well on the classification task.

The idea to hide patches can be applied to quite different

problems, namely, to explanation of the image patches and to

constructing shape functions explaining each patch. Suppose

there is a trained black-box model predicting one of two

classes corresponding to an input feature vector. It is assumed

that the probability of the class will be smaller when a patch

is hidden. By the patch dynamic fill, we can get different

probabilities of each class.

C. Siamese neural networks

The Siamese neural network realizes a non-linear embed-

ding of data [29]. It consists of two identical subnetworks

with shared parameters. Every subnetwork models a function
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f(X) of input feature vector X = (x1, ..., xn) ∈ R
n, which

maps X to embedding vector h = (h1, ..., hD) ∈ R
D in a

low-dimensional space.

If there are two feature vectors xi and xj being similar

(dissimilar), then the Euclidean distance d(hi,hj) between the

output vectors should be as small (large) as possible. In order

to train the Siamese neural network with the above property,

a specific loss function should be used. One of the functions

is the contrastive loss function defined as:

l(Xi, Xj , zij) =

{
‖hi − hj‖22 , zij = 0,

max(0, τ − ‖hi − hj‖22), zij = 1,
(3)

where τ is a predefined threshold which is regarded as a tuning

parameter; zij is the indicator function taking the value 0, if

vectors Xi and Xj are similar, and value 1 otherwise.

Hence, the total loss function is of the form:

LSiam(W ) =
∑

(i,j)∈K

l(Xi, Xj , zij) + μR(W ). (4)

where R(W ) is a regularization term added to improve gener-

alization of the neural network; W is the matrix of the neural

parameters; μ is a hyper-parameter which controls the strength

of the regularization; loss functions l are summed over all pairs

of input vectors.

We apply the Siamese neural network in order to implement

the black-box model. It should be noted that the Siamese

neural network has been used in the problem of the histopatho-

logical image classification [7]. However, Yao et al. [7] used

the Siamese neural network to learn features from different

phenotype clusters. Moreover, the Siamese network has been

used in self-supervised multi-instance learning for autonomous

driving [30] to improve the learning generalization. In our

case, the Siamese neural network has two goals. First, it is used

to increase the training set due to considering pairs of images

and to perform the back-box model. However, the main goal

of the Siamese neural network is to study how the distance

between embeddings, corresponding to images and obtained

by two identical neural networks, is changed with dynamic

fill of patches of one of the images. The distances are used

for constructing the shape functions characterizing the impact

of the corresponding patches on the class of the whole image

and, in fact, providing their interpretation. If the distance is

rapidly changed, then we can conclude that the corresponding

patch is important and can be annotated depending on the

considered class of the whole image.

III. THE PROPOSED METHOD

Suppose that there are N bags X1, ..., XN with labels

Y1, ..., YN . Every bag consists of m patches. Let us consider

the scheme given in the introductory section in detail in order

to describe the proposed method.

1) In order to use an explanation method, we need to

have a black-box surrogate model whose prediction is

explained. The black-box model solves the supervised

learning task, namely, classification task. For simplicity

purposes, we consider the binary classification when two

classes are defined by the bag classes (cancer and non-

cancer). The main difficulty of training the black-box

model is that bags may have a very large dimensionality,

for example, the number of pixels in the corresponding

images, whereas the number of bags may be very small.

Therefore, it is difficult to construct an accurate classifier

under the above conditions. At the same time, we do not

need to implement the accurate classifier. It is important

for us to study how predictions are changed when

bags are under noise in the form of dynamic fill of

some patches of the bag, for example, how probabilities

of cancer or non-cancer are changed under the noise.

Nevertheless, the classifier can be improved if we take

the Siamese neural network as the black-box model and

consider distances between predictions corresponding to

“clean” bag and noisy bag. In this case, the distance

is determined not for bags, but for the corresponding

embeddings. In fact, distances play the role of probabil-

ities in this scheme. Moreover, to train the network, we

use pairs of bags instead of single images. As a results,

the number of training examples significantly increases.

In sum, the Siamese neural network is trained on pairs

of bags. Then it is tested by using pairs consisting

of a bag and its noisy variants. Suppose that X is a

tested bag, and X(t) are its noisy variants depending

on parameter of the noise t ∈ T . The set T will

be defined below. Then by using the trained Siamese

neural network, we determine the distances d(t,h,h(t)),
where h and h(t) are embeddings corresponding to X
and X(t), respectively. The distances as a function of t
produce a set of shape functions for every bag.

2) In order to implement the procedure of dynamic fill

of each bag, we partially use ideas behind the algo-

rithm “Hide-and-Seek” [27]. However, in contrast to this

algorithm, we propose the following procedure whose

final goal is to construct shape functions of distances

d(t,h,h(t)). Each bag is divided into a grid of m
patches. Each patch makes to be dynamically noisy in

accordance with the expression ct = tco + (1 − t)cb,

where c is the noisy color value; co is the original

“clean” patch color value; cb is the black color value;

t ∈ [0, 1] is a noisy parameter which controls the color

change of the patch. It should be noted that the above

expression for the color values is applied to every pixel

of the analyzed patch because co is different inside

the original patch. It can be also seen from the above

expression that we get images X(t) with the noisy

patch having color ct. The color value ct is the linear

combination of the black color value and the original

color values of every pixel in the patch. By using the

trained Siamese neural network, the bag X is compared

with the bag X(t) with the noisy patch through the

distance between the corresponding embeddings h and

h(t). The comparison result is the distance d(t,h,h(t))
as a function of t. Distances indicate how the noisy
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patch changes the original image. If this change is

significant, then we can say that the corresponding patch

is important. The distances by different t ∈ [0, 1] can be

viewed as a shape function for the selected patch. The

shape function with the largest change corresponds to

the important patch. This implies that the next step is to

select a shape function with the largest change.

3) After using the Siamese neural network and the pro-

cedure of dynamic fill of each patch in the analyzed

bag, we have m shape functions (one function for each

patch). To make decision whether a patch with the

corresponding shape function is important for explaining

the bag label “cancer”, we have to consider how rapidly

the shape function is changed. The rapid change of

the shape function says that small changes of noise

significantly change the class of the bag. This implies

that the patch impacts on the class of the bag, and it is

important. On the other hand, if the shape function of a

patch is slowly changed, then the patch is not important

because its change does not impact on the class of the

bag. Therefore, one of the ways for annotating patches

is to measure how rapidly the shape function is changed.

There are several ways to solve this task. We have the

original patch by t = 1 and d(1,h,h) = 0, and we

have the black patch by t = 0 and the largest distance

d(0,h,h(0)). A simple way for analyzing changes of the

shape function is to approximate it by a linear function

d∗(t) = at + b. Then coefficient a can be regarded as

the quantitative measure of the patch impact. It should

be noted that t takes a finite number s of values, i.e.,

we obtain s colors of the analyzed patch. Therefore,

we have s distances for every patch at t1, ..., ts. Hence,

coefficient a and bias b in the linear approximation

can be obtained by solving the simplest optimization

problem mina,b
∑s

i=1 (ati + b− d(t,h,h(ti)))
2
. As a

matter of fact, the linear approximation is one of the

procedures which are very simple and can be used for

analyzing shape functions.

4) In sum, after computing coefficients a1, ..., am for all

patches of the bag and their normalizing, we construct a

heatmap illustrating importance of features. If to intro-

duce a threshold ω for normalized coefficients a1, ..., am
as a tuning parameter, then the obtained heatmap also

shows the classes of each patch, namely, the i-th patch

belongs to class “cancer” if |ai| ≥ ω, otherwise it

belongs to class “non-cancer”.

Algorithm 1 can be viewed as a formal scheme for com-

puting the weights and shape functions.

A testing scheme of the Siamese neural network is depicted

in Fig. 1. Pairs of bags consisting of the “clean” image and

images with a single noisy patch are fed to the network

input. The patch is dynamically filled with colors defined by

tco + (1 − t)cb. Four points t1 = 0, t2 = 0.33, t3 = 0.66,

t4 = 1, four corresponding noisy images, and four pairs of

input data are used to construct the shape function for the

Algorithm 1 The algorithm of the image explanation and the

patch annotation

Require: Training set of bags with labels

{(X1, Y1), ..., (XN , YN )}, Xi = {x(i)
1 , ...,x

(i)
m },

parameters τ , ω, s.

Ensure: Classes of patches y1, ..., ym
1: Train the Siamese neural network on annotated bags (large

images) (X1, Y1), ..., (XN , YN ) with parameter τ
2: for j = 1, j ≤ N do
3: for i = 1, i ≤ m do
4: Select the i-th patch from the j-th bag

5: for k = 1, k ≤ s do
6: Compute c = tkco + (1− tk)cb for every pixel of

the i-th patch and get the image Xj(tk) with noisy

patch

7: Test the Siamese neural network with the pair

of images (Xj , Xj(tk)) and compute the distance

d(tk,hj ,hj(tk)) between the corresponding net-

work outputs

8: end for
9: Solve the optimization problem

minaji,bji

∑s
k=1 (ajitk + bji − d(tk,h,h(tk)))

2

10: if |aji| ≥ ω then
11: Patch x

(j)
i is annotated as “cancer”

12: else
13: Patch x

(j)
i is annotated as “non-cancer”

14: end if
15: end for
16: end for

patch. Distances between embeddings corresponding to the

pairs produce the shape function shown in Fig. 1. Linear

approximation allows us to get coefficient a which indicates

how the analyzed patch is important. A large absolute value

of a says that the patch is important.

IV. NUMERICAL EXPERIMENTS

In order to study the proposed method, we use the Breast

Cancer Cell Segmentation dataset [31] which consists of 58

histopathology images with expert annotations. Images are

used in breast cancer cell detection with associated ground

truth data available. The dataset aims to validate methods for

cell segmentation and their classification. The dataset can be

downloaded from https://www.kaggle.com/andrewmvd/breast-

cancer-cell-segmentation.

Each image from the Breast Cancer Cell Segmentation

dataset has the size 896× 768 pixels and is divided into 672
patches of size 32×32. It can be seen from the dataset that the

number of images is very small in order to train a black-box

classifier. However, we use the Siamese neural network which

allows us to form many pairs of images. Moreover, we aim to

study how the distance between “clean” and noisy images is

changed for different noise values. It turns out that this small

dataset allows us to get correct explanations and annotations
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Fig. 1. The Siamese neural network testing and constructing the shape function of distances by using pairs of bags consisting of the “clean” image and noisy
images

TABLE I AN EXAMPLE OF THE ARCHITECTURE OF THE BLACK-BOX

SIAMESE NEURAL NETWORK

1 Convolution layer 5× 5; input: 3 channels; output: 32 channels
2 Parametric ReLU activation
3 MaxPooling layer 2x
4 Convolution layer 5× 5; input: 32 channels; output: 64 channels
5 Parametric ReLU activation
6 Global Average Pooling to 4× 4× 64 tensor
7 Linear layer with PReLU activation; input: 4× 4× 64; output: 256
8 Linear layer with PReLU activation; input: 256; output: 256
9 Linear layer with PReLU activation; input: 256; output: embedding

of instances. An architecture of the black-box Siamese neural

network is shown in Table I.

Examples of shape functions computed for two bags are

shown in Fig. 2. 672 shape functions corresponding to 672
patches are illustrated in each picture. One can see that values

of all functions by t = 1 are equal to 0. This is due to the fact

that patches by t = 1 are not noisy, and the pair of patches,

which is fed to the Siamese neural network, consists of two

identical images. At the same time, one can see from Fig. 2

that the black patch in an image (t = 0) produces different

distances between embeddings. Most functions have small

changes of distances. They are located at the bottom of the

coordinate quadrant. However, there are a few functions that

stand out from most functions. They actually correspond to

important patches which significantly impact on the predicted

class of the whole image. The linear approximations of these

functions corresponding to important patches have the largest

values of coefficients a.

Four randomly selected pairs of pictures illustrating the true

mask (the left picture in each pair) and the corresponding

heatmap obtained by using the proposed method (the right

picture in each pair) are shown in Fig. 3. One can see from Fig.

3 that the heatmaps clearly indicate the cancer cells (patches),

Fig. 2. Examples of instance shape functions for two random bags

and their locations coincide with the corresponding masks.

We compare the proposed method with the well-known

method proposed by Yamamoto et al. [28]. This method uses

a typical scheme of several methods. First, an autoencoder is

trained on all patches of all available bags in order to get a

low-dimensional representation (embedding) of the patches.

Second, the embeddings are divided into some number of

clusters by using, for example, the k-means clusterization

method. Third, for every cluster, probabilities of the cancer and

non-cancer patches are computed. This procedure consists in

determining the proportion of patches that belong to cancerous

images among all patches in the cluster and the proportion

of patches belonging to non-cancerous images. Fourth, the

obtained probabilities are compared with a threshold, and

decisions are made for patches about their class in accordance

with results of the comparison. This is a very simple and

efficient method. However, its accuracy strongly depends on

the number of bags and the number of clusters. A small

number of clusters leads to the low sensitivity of the method

because quite different patches may be in the same cluster. On

the other hand, a large number of clusters leads to inaccurate

probabilities. Moreover, it is difficult to make decisions when

probabilities of cancerous or non-cancerous patches are close

to 0.5. It should be noted that embeddings of patches do
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Fig. 3. Four pairs of pictures illustrating the true mask (the left picture in
each pair) and the corresponding heatmap (the right picture in each pair)

not take into account neighboring patches which may impact

on the classification. Fig. 4 illustrates F-score measures of

two methods as functions of threshold ω. The first method is

proposed by Yamamoto et al. [28]. It is depicted by the line

with square markers. Since the method does not depend on

ω, its F-score is constant. The proposed method is depicted

by the line with triangle markers. One can see from Fig.

4 that the proposed method provides outperforming results

in comparison with the method [28] for some values of

the threshold. The largest value of F-score for the proposed

method is 0.71 whereas the method [28] provides the F-score

equal to 0.64.

It should be noted that the obtained results are valid for

Fig. 4. F-score measures of two methods by different values of threshold ω

the Breast Cancer Cell Segmentation dataset which is very

small. It is impossible to train a machine learning model by

using only 58 images of size 896 × 768. The model [28]

tries to overcome this difficulty by using low-dimensional

representation of patches. However, computing the probabil-

ities of the cancer and non-cancer patches in clusters can

be also regarded as a classification problem for which 58
images can provide only inaccurate results. The proposed

method overcomes the problem of small dataset by using the

Siamese neural network and the weakly supervised learning.

Moreover, the proposed method does not try to classify pairs of

images. It computes distances between embeddings of images.

It could seem that embedding may hide some important

information, for example, information about the neighboring

patches. However, in contrast to embedding obtained by means

of the autoencoder [28], the Siamese neural network considers

each whole image, and outputs of the network take into

account all image information.

V. CONCLUSION

A new approach for solving the MIL problem by using

the explanation methods has been proposed. The following

advantages can be pointed out. First of all, the method deals

with small datasets due to usage of the Siamese neural

network. We train the network to solve the weakly supervised

classification problem, but we use it to study how the distance

between embeddings of the corresponding “clean” and noisy

bags depends on the noise level. This implies that we do

not need to train a powerful network to get desirable shape

functions. Second, the method also allows us to explain why

each analyzed image belongs to one of the classes. If we look

at heatmaps given, for example, in Fig. 3, then we see areas of

important patches. Moreover, it can be seen from the heatmaps

that some areas are close to explained patches, and a doctor

can pay attention to these areas in order to state a more correct

diagnosis. Third, the proposed method has many ways to be

extended and modified. For example, the linear approximation

has been used to analyze shape functions and to select the
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most important patches. However, different approaches can

be applied to implement this procedure. We have used a

specific scheme for producing noisy patches which are the

linear combination of the black color value and the original

patch. This scheme was used due to its simplicity because

this procedure has to be repeated many times. However, many

other schemes can be applied to implement the algorithm

“Hide-and-Seek”. These schemes as well as the analysis of

shape functions are directions for further research.

ACKNOWLEDGEMENT

The research results have been obtained in December of

2021. This work is supported by the Russian Science Foun-

dation under grant 21-11-00116.

REFERENCES

[1] M.-A. Carbonneau, V. Cheplygina, E. Granger, and G. Gagnon, “Multi-
ple instance learning: A survey of problem characteristics and applica-
tions,” Pattern Recognition, vol. 77, pp. 329–353, 2018.

[2] T. Dietterich, R. Lathrop, and T. Lozano-Perez, “Solving the multiple
instance problem with axis-parallel rectangles,” Artificial Intelligence,
vol. 89, pp. 31–71, 1997.

[3] J. Amores, “Multiple instance classification: review, taxonomy and
comparative study,” Artificial Intelligence, vol. 201, pp. 81–105, 2013.

[4] B. Babenko, “Multiple instance learning: Algorithms and applications,”
University of California, San Diego, Tech. Rep., 2008.

[5] V. Cheplygina, M. de Bruijne, and J. Pluim, “Not-so-supervised: A
survey of semi-supervised, multi-instance, and transfer learning in
medical image analysis,” Medical Image Analysis, vol. 54, pp. 280–296,
2019.

[6] G. Quellec, G. Cazuguel, B. Cochener, and M. Lamard, “Multiple-
instance learning for medical image and video analysis,” IEEE Reviews
in Biomedical Engineering, vol. 10, pp. 213–234, 2017.

[7] J. Yao, X. Zhu, J. Jonnagaddala, N. Hawkins, and J. Huang., “Whole
slide images based cancer survival prediction using attention guided deep
multiple instance learning network,” Medical Image Analysis, vol. 65,
no. 101789, pp. 1–14, 2020.

[8] Z.-H. Zhou, “Multi-instance learning: A survey,” National Laboratory
for Novel Software Technology, Nanjing University, Tech. Rep., 2004.

[9] J. Wang and J.-D. Zucker, “Solving the multiple-instance problem: A
lazy learning approach,” in Proceedings of the seventeenth international
conference on machine learning, ICML, 2000, pp. 1119–1126.

[10] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support vector ma-
chines for multiple-instance learning,” in Proceedings of the 15th inter-
national conference on neural information processing systems, NIPS’02.
MIT Press, Cambridge, MA, USA, 2002, pp. 577–584.

[11] O. Kraus, J. Ba, and B. Frey, “Classifying and segmenting microscopy
images with deep multiple instance learning,” Bioinformatics, vol. 32,
no. 12, pp. i52–i59, 2016.

[12] M. Sun, T. Han, M.-C. Liu, and A. Khodayari-Rostamabad, “Multiple
instance learning convolutional neural networks for object recognition,”
in International conference on pattern recognition (ICPR), 2016, pp.
3270–3275.

[17] M. Hagele, P. Seegerer, S. Lapuschkin, M. Bockmayr, W. Samek,
F. Klauschen, K.-R. Muller, and A. Binder, “Resolving challenges in
deep learning-based analyses of histopathological images using expla-
nation methods,” Scientific Report, vol. 10, no. 6423, pp. 1–12, 2020.

[13] X. Wang, Y. Yan, P. Tang, X. Bai, and W. Liu, “Revisiting multiple
instance neural networks,” Pattern Recognition, vol. 74, pp. 15–24, 2018.

[14] W. Li and D. Yeung, “MILD: Multiple-instance learning via disambigua-
tion,” IEEE Transactions on Knowledge and Data Engineering, vol. 22,
no. 1, pp. 76–89, 2010.

[15] D. Rymarczyk, A. Kaczynska, J. Kraus, A. Pardyl, and B. Zielinski,
“ProtoMIL: Multiple instance learning with prototypical parts for fine-
grained interpretability,” Aug 2021, arXiv:2108.10612.

[16] C. Srinidhi, O. Ciga, and A.L.Martel, “Deep neural network models
for computational histopathology: A survey,” Medical Image Analysis
Volume 67, January 2021, 101813, vol. 67, p. 101813, 2021.

[18] J. van der Laak, G. Litjens, and F. Ciompi, “Deep learning in histopathol-
ogy: the path to the clinic,” Nature Medicine, vol. 27, pp. 775–784, 2021.

[19] A. Arrieta, N. Diaz-Rodriguez, J. D. Ser, A. Bennetot, S. Tabik, A. Bar-
bado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila,
and F. Herrera, “Explainable artificial intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible AI,” In-
formation Fusion, vol. 58, pp. 82–115, 2020.

[20] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box models,”
ACM computing surveys, vol. 51, no. 5, p. 93, 2019.

[21] R. Guidotti, A. Monreale, D. Pedreschi, and F. Giannotti, “Principles of
explainable artificial intelligence,” in Explainable AI Within the Digital
Transformation and Cyber Physical Systems. Springer, Cham, 2021,
pp. 9–31.

[22] X. Li, H. Xiong, X. Li, X. Wu, X. Zhang, J. Liu, J. Bian, and
D. Dou, “Interpretable deep learning: Interpretations, interpretability,
trustworthiness, and beyond,” Mar 2021, arXiv:2103.10689.

[23] C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong,
“Interpretable machine learning: Fundamental principles and 10 grand
challenges,” March 2021, arXiv:2103.11251.

[24] A. Holzinger, G. Langs, H. Denk, K. Zatloukal, and H. Muller, “Caus-
ability and explainability of artificial intelligence in medicine,” WIREs
Data Mining and Knowledge Discovery, vol. 9, no. 4, p. e1312, 2019.

[25] J. Bromley, J. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore,
E. Sackinger, and R. Shah, “Signature verification using a siamese time
delay neural network,” International Journal of Pattern Recognition and
Artificial Intelligence, vol. 7, no. 4, pp. 737–744, 1993.

[26] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’05), vol. 1. IEEE, 2005, pp. 539–546.

[27] K. Singh and Y. Lee, “Hide-and-seek: Forcing a network to be metic-
ulous for weakly-supervised object and action localization,” in IEEE
International Conference on Computer Vision (ICCV). IEEE, 2017,
pp. 13 524–3533.

[28] Y. Yamamoto, T. Tsuzuki, and J. Akatsuka, “Automated acquisition
of explainable knowledge from unannotated histopathology images,”
Nature Communications, vol. 10, no. 5642, pp. 1–9, 2019.

[29] S. Roy, M. Harandi, R. Nock, and R. Hartley, “Siamese networks:
The tale of two manifolds,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), vol. 2, 2019, pp. 3046–3055.

[30] K. Chen, L. Hong, H. Xu, Z. Li, and D.-Y. Yeung, “Multisiam:
Self-supervised multi-instance siamese representation learning for au-
tonomous driving,” Aug 2021, arXiv:2108.12178.

[31] E. Gelasca, J. Byun, B. Obara, and B. Manjunath, “Evaluation and
benchmark for biological image segmentation,” in IEEE International
Conference on Image Processing. IEEE, Oct 2008, pp. 1816–1819.

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 108 ----------------------------------------------------------------------------


