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Abstract—The article describes a proposal of an algorithm for
Persistent Volumes auto-scaling in a container orchestration
system - Kubernetes. Auto-scaling stands for
decreasing/increasing target resources depending on some load.
In case of horizontal Volumes scaling, we vary the number of
Volumes, while in the vertical case we vary the size of each
Volume. Also we introduce mixed scaling that includes both:
horizontal and vertical as sub steps to reach a desired state. It is
proposed to choose from the methods above based on free storage
capacity of Kubernetes cluster and its nodes. Approaches
described in the article allow to use persistent storage resources
in an efficient way without manual interaction with Kubernetes
cluster.

I. INTRODUCTION

Many modern companies use multi-machine associations as
infrastructure and computing resources, for example: Amazon,
Facebook, Google and others. Currently, containerization is
gaining popularity [1], while classical virtualization is used less
and less [2]. A Container is a software product wrapped in an
environment (for example, an image of Linux distribution) that
includes all of its dependencies. This approach is very
convenient for transporting and deploying applications.
Kubernetes is open source software for automating the
deployment, scaling and management of containerized
applications [3]. To work with Kubernetes, it is required to set
up an environment — Kubernetes cluster. The cluster is a set of
computers connected by Kubernetes-related software to make a
united computational resource.

To dive into Kubernetes and make further reading
understandable, there are some Kubernetes abstractions:

e Pod is a kind of logical unit that includes one or more
containers [4]. Containers in Pod share a common
space: storage volumes and networking stack.
Containers are combined into Pod to provide specific
functionality. Typically, there is only one main-process
container in Pod. Other containers are usually called
sidecars and placed near the main container to do
ancillary work. For example, one Pod can contain a
container-server and a container that collects logs from
this server.

o Persistent Volume (PV) is a volume abstraction
representing a portion of the disk space available to a
node. PV can be mounted to a Pod container for
persistent storage of information [4].

e Persistent Volume Claim (PVC) is a request for
dynamic allocation of Persistent Volume of a certain
size in a running Kubernetes cluster [4].

o Stateful Set is an abstraction over Pod that introduces
special resources for easy management of Pods that
require Persistent Volumes. In Stateful Set specification
users can describe desired state of stateful application:
needed containers, volumes and number of replicas.
Then Kubernetes uses the provided specification and
creates a bunch of Pods and Persistent Volume Claims
for these Pods [4].

e Container Storage Interface (CSI) is a specification
that provides interfaces for Storage management in
Kubernetes [5]. Basically, it is responsible for creating,
deleting, mounting, extending of Persistent Volumes
based on Persistent Volume Claims. Implementation of
CSI always relates to a storage provider. It can be local
physical drives installed on a node or a storage system
that is placed outside the cluster. So there are a lot of
CSI implementations made by different storage
providers.

Term auto-scaling usually refers to scaling of applications
or their number [6]. Kubernetes already has in-built methods
for application auto-scaling. But there are also some problems
related to scaling of volumes. When users plan storage
capacity for their applications it is often difficult to predict the
load on the system and how much storage space is required, so
space is allocated with a margin. This leads to inefficient use
of resources, and the reserved storage space is idle. On the
other hand, we have the opposite problem. Nowadays
applications continuously generate data for storing, for
example in the IoT sphere. This puts a huge load on the
underlying databases [7]. When the persistent free space
allocated to the application is running out, this can lead to the
failure of the entire application, so the cluster administrator is
forced to monitor such situations and manually add storage
space as needed.

In order to overcome these difficulties, we introduce an
algorithm of volumes auto-scaling. Proposed algorithm
contributes to the efficient use of storage resources and
automatically expands volumes as needed. We have also
developed a prototype implementation of volumes auto-scaling
that covers expansion cases. The results of the work reflect how
much human resources such an approach can save.
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The article is structured as follows. The second section
contains the overview of existing auto-scaling solutions
developed for Kubernetes. Based on the related works and
community needs we introduce our solution in the third section.
Then there are several paragraphs that describe one part of our
algorithm in detail, including basic implementation and
evaluation of the obtained results.

II. RELATED WORKS

At the time of this writing, no work has been found related
to autoscaling volumes. However, it is worth considering
existing approaches to autoscaling other Kubernetes cluster
resources.

A. Horizontal Pod Autoscaler (HPA)

Horizontal Pod Autoscaler offers mechanisms to scale the
number of Pods based on various metrics [8]. Users provide
desired values for metrics they want to observe in HPA. After
that HPA Controller watches for metrics source, compares
actual values to the desired ones and performs scaling. To
simplify, the desired number of Pod replicas is counted
according to the following formula:

i cm
r=Ccrs—

dm
where dr is the desired number of Pod replicas, c¢r — current
number of replicas, cm — current value of metric, dm — desired
value of metric.

There are several types of metric sources. HPA can use
built-in metrics — usage of CPU and RAM, provided by metric-
server. Also users can create custom metrics related to
Kubernetes objects or refer to external metrics that do not relate
to Kubernetes at all.

B. Vertical Pod Autoscaler (VPA)

The other autoscaling controller created by the Kubernetes
community is Vertical Pod Autoscaler. This controller adjusts
Pod resource limits according to incoming load [9]. It
manipulates CPU and memory requests of the watched
application. Vertical Pod Autoscaler is easy to configure since
its configuration requires only operating mode and application
to watch. Default operating mode can set proper resource limits
to Pods on startup and also regulate limits on the running Pods.
But such changes require restart of all Pod’s containers. Thus
the main disadvantages of the solution are possible downtime
and not considering cluster available resources, so Pods can be
stuck in pending state after VPA recommendation. Also, VPA
is not compatible with Horizontal Pod Autoscaler, and they are
not able to work together.

C. Cluster Autoscaler (CA)

Cluster Autoscaler performs autoscaling of a completely
different kind. It works like an automatic horizontal scaling
algorithm for cluster nodes. Cloud provider user setups Cluster
Autoscaler with node pool — the source of computational
resources for the cluster. The further process is automatic:
dependent on cluster status and resource requests of running
Pods, CA adds or removes nodes from the Kubernetes
cluster [10]. The implementation of CA is highly infrastructure
driven, so Kubernetes provides only interfaces and
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implementations of basic algorithms for CA. The rest of the
implementation relies on cloud providers.

Common autoscalers, used in Kubernetes clusters, were
reviewed. But none of them specializes in working with stateful
applications, especially in scaling of applications’ storage
capacity in dependence of consumption.

III. GENERAL ALGORITHM OF VOLUMES AUTO-SCALING

The main idea behind the volumes auto-scaling algorithm is
to calculate the current storage consumption of an application,
compare it to the threshold set by the user and perform scaling
if necessary. We split scaling into two opposite steps:
expansion and shrinkage. The criterion for when to start
expanding is simple: if the percentage of storage consumption
is greater than a predetermined threshold, then the expansion
must be performed. The starting point for shrinkage is slightly
more complicated. We have another threshold for users to set
called the minimal threshold. But it’s too rushly to perform
scaling down as soon as the volumes consumption is less than
the minimum threshold. This can lead to problems, for
example, at the start of the application, when it does not yet
store any persistent data. Or to unexpected shrinkage during
abrupt deletion of data, for example, during dropping database
tables. In order to solve mentioned issues, we have introduced
one more configurable variable named the shrink check period.
This variable means how long must elapse to make the
following shrinkage procedure possible. Thus, by setting the
period value according to the data writing load profile of a
particular application, the problem of when to start volumes
shrinking can be effectively resolved. The summary of the
above is represented on the algorithm (Fig. 1).

Storage consumption check for a particular application
should occur on a Kubernetes cluster every N seconds or be
triggered by pressure events of persistent memory. We call our
proposed solution as Volume Autoscaler in the manner of auto-
scaling algorithms, developed for the other resources by the
Kubernetes community.

We assume the following limitations in our work. Firstly,
we compute the general consumption percent for all volumes of
an application. Because we consider that a volume auto-scaling
algorithm is required for persistent applications that are able to
switch to another volume, if the current one is full, or distribute
the load on the volumes evenly. Anyway, there is a possibility
to implement Volume Autoscaler in the way when it watches
not all application volumes, but their subset. The second
restriction is that we assume all application volumes to be the
same size. The Volume Autoscaler algorithm is designed to
work with all volumes in the same manner. As it’s been said
our target audience is the developers of persistent applications,
such as Cloud Storages [11], they usually set up a batch of
equal persistent volumes to their application replicas for storing
data. Also such restriction allows to simplify the algorithms for
calculating the possibility of scaling.

IV. VOLUMES EXPANSION ALGORITHM IN DETAIL

Let us review the volumes expansion algorithm in detail.
We do not dive into volumes shrinkage since it can be done in
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a similar way, but in the opposite direction. Also we consider
the

pod = GetPod()

| volumes = GetVolumesOfPod(pod) |

|

\mnsumpm’on = GelPercemONoiumesConsumption(vofum)|

consumption >= threshold es—»| PerformExpansion()

consumprtion <= min_threshold
&& ElapsedEnoughTime(
shrink_check_period)

es—»| PerformShrinking()

A 4

End

Fig. 1. One iteration of the volume auto-scaling main algorithm.

automatic volumes expansion problem as more important,
because lack of free persistent memory can lead to application
crashes. In accordance with the problem being solved,
expansion should be done when the application does not have
enough space to store data. In that situation we have several
ways to perform expansion. Basically, it can be done vertically
or horizontally.

In terms of volumes, vertical expansion means increasing
volumes' sizes without changing their count (Fig. 2). To change
volume size in Kubernetes, it’s needed to change a size of the
corresponding Persistent Volume Claim. But this feature is
available only if CSI installed to a cluster implements it, since
the feature is not mandatory for matching CSI specification.
The only open question is how much to increase the size of the
volumes in case of a lack of free space. To do this, we
introduce a special variable expansion coefficient, the value of
which must be set by the user when configuring the Volume
Autoscaler. This is due to the fact that the expansion coefficient
parameter strongly depends on the specifics of the application,
on how quickly it runs out of storage space. So, the current
volume size is multiplied by the expansion coefficient, and we
get the new desired volume size.

Horizontal expansion is about increasing volumes count
without touching their sizes. To create volumes for containers
in Kubernetes dynamically, it is needed to create new Persistent
Volume Claims and attach them to the running Pod. It requires
Pod restart and re-creation, since we change its specification
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and add new volumes to Pod’s containers. In order to count the
new number of volumes, we use the same expansion
coefficient, we discussed above. From a user perspective the
described approach looks like the following (Fig. 3).

. —volume inside which is running out of free space

9 —vertically expanded volume

VolumeAutoscaler
Custom Resource
Selector: app=va
Thresheld: 90% VolumeAutoscaler
ExpansionCoef 2.0 Controller
M
Worker Node A
Pod 1
Labels: app=va
Storage Capacity

About to be out of persistent memory

VolumeAutoscaler
Custom Resource

Selector: app=va
Threshold: 90% VolumeAutoscaler
P Coef. 2.0 Controller

Worker Node A |||

Pod 1
Labels: app=va

Performed vertical scaling. Volumes expanded
Fig. 2. The result of vertical expansion from a user perspective

We prefer vertical expansion over horizontal because it may
reduce downtime of an application. The fact is that horizontal
expansion always requires application restart. At the same time,
the vertical one may not require the restart at all, and can be
performed on a running Pod. It happens when CSI installed to a
cluster supports a so-called feature — online expansion [5]. Let
us give an example of how it works in the case of using Logical
Volume Manager in CSI. LVM is a Linux subsystem designed
to create volumes abstractions over physical hard drive/drives.
When we change volume size in PVC, CSI detects it and
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performs an ex of corresponding Logical Volume placed on the
Linux node via LVM utility /vextend [12].

. —volume inside which is running out of free space

9 - added after horizontal expansion volume

VolumeAutoscaler
Custom Resource
Selector: app=va

Threshold: 90% VolumeAutoscaler
ExpansionCoef 20 Controller
Worker Node A | |
Pod 1
Labels' app=va
Storage Capacity

About to be out of persistent memory

VolumeAutoscaler
Custom Resource

Performed horizontal scaling. Volume count expanded

Fig. 3. The result of horizontal expansion from a user perspective

After that CSI triggers extension of the file system installed on
the Logical Volume, that is specific for the used file system.
Thus the volume size can be increased without Pod re-creation.

Possibility to execute vertical or horizontal volumes
expansion depends on available storage capacity in a
Kubernetes cluster. For example, in one physical drive layout
we are able to perform only vertical expansion because a
system has enough space on existing drives but it doesn't have
excess drives. We assume that we place volume to a drive one
to one to avoid the single point of failure problem [13]. On the
other hand, there could be a situation when the system has
several free drives but there is no available capacity on drives
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occupied by volumes. Then only horizontal expansion is
possible.

To sum up, it’s important to know available persistent
capacities on a cluster and layout of physical devices which are
underlying the capacities. But by default, Kubernetes doesn’t
provide an API to check available capacity. Some CSI vendors
afford their own API for these purposes [14]. In this paper we
do not bind to a particular CSI vendor and introduce a volumes
auto-scaling approach without implementation details. So, in
the algorithm of choosing the expansion mode we use an
abstract function GetFreeCapacities that returns a platform
agnostic list of free capacities (Fig. 4). After that, we count
possible expansion coefficients for every type of expansion in
order of priority. If we find an expansion type which satisfies
the given expansion coefficient, then we execute it. If a cluster
has no capacity for any expansion, then we raise the “Not
Enough Capacity” notification to a user.

recieve current
volumes

free_capacities = GetFreeCapacities()

PerformVerticalExpansion(
volumes, expansion_coef)

T Possibl 1sion(

free_capacilies) >= expansion_coef

PossibleHorizontal Expansion(volumes;
free_capacities) >= expansion_coef

PerformHorizontal Expansion(|
volumes, expansion_coef)

yes

PossibleMixedExpansion(volumes;
ee_capacities) >= expansion_coef

PerformMixedExpansion(

volumes, expansion_coef)

| SendNotEnoughCapacityEvent() ‘

i
Fig. 4. Algorithm of executing certain expansion type, chosen based on
available storage capacity on a cluster

Expansion algorithm (Fig. 4) also includes so-called mixed
expansion. It is one more expansion type, we introduce in this
paper. In some cases, a Kubernetes cluster does not have
enough available storage capacity to satisfy the given
expansion coefficient. For example, if the system has four
storage devices each of 1.5Gb. Observed application has three
volumes on them. Each volume is placed onto a separate device
and has a size of 1Gb. Expansion coefficient set by a user is
2.0. When free persistent memory runs out in volumes, Volume
Autoscaler tries to perform expansion. But neither horizontal
nor vertical expansion cannot provide the desired expansion
coefficient. In that situation vertical expansion is able to
multiply volumes size by 1.5, while horizontal guarantees only
coefficient of 1.33. That is where we offer a mixed expansion
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that consists of two steps: vertical and horizontal. If we
combine both types of expansion in the described example, it’s
possible to reach the desired expansion coefficient 2.0. First,
vertical scaling is carried out, in which all three volumes of the
application occupy 1.5 Gb each. After that Volume Autoscaler
adds one more volume of 1.5 Gb size to the last free storage
device. Thus, Volume Autoscaler increased volume size from
3Gb to 6Gb and got expansion coefficient 2.0 (Fig. 5).

V. STATEFULSET BASED IMPLEMENTATION OF VOLUMES
EXPANSION

There are several ways to implement the Volume
Autoscaler algorithm. The first possibility is to create a new
workload resource such as Deployment or StatefulSet from
scratch and control Pods directly. But in our prototype we use
Kubernetes StatefulSet as a secondary underlying resource to
perform volumes expansion. With that way our controller
shouldn’t create Pods and Persistent Volume Claims directly,
all needed actions are performed on Pod template and PVC
templates of StatefulSet [4]. It’s a straightforward solution to
demonstrate the working of the proposed algorithm. But such a
solution is not production-ready because usually in practice
there is a need to scale volumes for a particular Pod. And using
StatefulSet with several Pod replicas it’s impossible to control
volumes of individual Pod. So, we use StatefulSet with one Pod
replica for our proof of concept.

The Volume Autoscaler accepts configuration from users.
Configuration includes observable application, threshold and
expansion coefficient. As far as our controller is Kubernetes-
native, we introduce Volume Autoscaler Custom Resource
Definition. This is a special way to register a new type of
custom resource in Kubernetes [15]. After registration users are
able to create Volume Autoscaler custom resources to give
instruction to our algorithm on how to work with their
applications. The example of Volume Autoscaler custom
resource is presented on Listing 1.

Let us slightly overview StatefulSet based implementation
of volume expansion. The first thing our controller must do is
to identify free space left in a volume. It is possible to use
Kubernetes kubelet metrics exposed to Prometheus. The second
possible, but security risky option is to connect to the needed

Pod’s container and use linux utilities to count free storage
space. After counting the consumption, we compare it to the
given threshold and start expansion if needed. The vertical
expansion with StatefulSet basis is presented on Algorithm 1.

Listing 1 VolumeAutoscaler specification

apiVersion: volume.scaling.com/vlalphal

kind: VolumeAutoscaler

metadata:
name: volume-autoscaler-example
namespace: vatest

spec:
expansionCoefficient: 2.0
targetStatefulSet: autoscaler-test
threshold: 90

Algorithm 1 StatefulSet based vertical expansion

0: Collect all PVCs related to StatefulSet;

1: Update size of PVCs with the desired value;

2: Make updated specification of StatefulSet with new
size in PVCs template;

3: It’s impossible to update StatefulSet spec because the
spec is immutable. So delete StatefulSet in orphan mode
to leave its Pod running;

4. Re-create StatefulSet with updated specification.

For the horizontal expansion the algorithm is presented
on Algorithm 2.

Algorithm 2 StatefulSet based horizontal expansion

0: Make updated specification of StatefulSet with new
number of PVCs and mounts for them in Pod template;

1: It’s impossible to update StatefulSet spec because it’s
immutable. So delete StatefulSet in orphan mode to
leave its Pod running;

2: Re-create StatefulSet with updated specification;

3: Delete running Pod to restart it with new number of
volumes;

4: StatefulSet controller re-creates Pod with attaching old
and new volumes automatically.

T STEP1: Vertical T STEP2: Horizontal
1.5 GB 1.5 GB 1.5 GB 1.5GB 1.5GB 1.5GB
Capacity (Capacity Capacity Capacity Capacity Capacity
I N | D I R @ \
v1 |GB v1 |GB 15GB 1568 15GB 156GB
) olume olume Volume Volume Volume Volume
Target Expansion Coef. 2.0
Possible Horizontal: 1.33 5= - = =2 | & <4 K 4
et e 1.5GB 1.5GB 1.5GB 15GB 15GB 15GB
Foesinla Mind 240 C-apacity C-apacity c-apacity (fapacily (fapacily c-apacity
) 5 - >
1GB 15GB 15GB 15GB
Volume Volume Volume Volume
- v b b 2

Fig. 5. Mixed expansion in action
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Undoubtedly, this prototype is not free from shortcomings.
In addition to those already mentioned, there is a danger in
orphan deletion of a StatefulSet, since this operation is not
atomic and contradicts the Kubernetes concept that the
StatefulSet specification is immutable. But such the
implementation of the algorithm proposed in the paper is
enough to demonstrate its functional capabilities and gather
results.

VI. RESULTS OF VOLUME AUTOSCALER IN USE

For our tests we prepared StatefulSet with one replica of the
busybox application. This application has three Persistent
Volume Claims, i.e., three volumes. Each volume has a size of
1Gb. Let us consider the time that is required for manual
horizontal and vertical expansion with coefficient 2.0. And also
we measure the time spent by Volume Autoscaler for the same
operations. We keep track of time from the moment when it’s
become required to perform expansion, to the moment when all
expansion actions are done, and the application is running with
scaled up volumes. To measure the elapsed time for manual
tests, we just use a timer. Naturally, such measurements have a
large error, since the result depends on the specific person
performing the task. Therefore, we took the average of several
calculations, and our executor was an experienced Kubernetes
administrator. In addition, in the current experiment, the error
is not very important. The results of experiments are presented
in Table I.

TABLE 1. TIME SPENT FOR ONE EXPANSION ITERATION

Time of horizontal Time of vertical
expansion expansion
(from 3 volumes to 6 (from 1Gb volumes to
volumes), s 2Gb volumes), s
Manual 122 80
Volume 52 34
Autoscaler

The main note here is that the Volume Autoscaler algorithm
is designed to automatically track, when an application runs out
of storage space, and to expand volumes at that point. So, the
time spent by Volume Autoscaler to the expansion itself does
not matter so much. On the other hand, for now in Kubernetes
the administrator needs to monitor that situation manually or
create an alert system to receive notifications when persistent
memory is running out. Assume an abstract situation when the
application requires more persistent memory each hour. In this
case, the administrator will spend 122 seconds per hour for
horizontal expansion and 80 seconds for vertical one. At the
same time, let the administrator spend 1 hour per month on
maintenance, updating and configuring Volume Autoscaler. Let
us extrapolate this situation to the annual time period and build
a graph of time that’s needed to administrator to operate
different solutions (Fig. 6).

According to the graph, using the Volume Autoscaler can
save a huge amount of time and human resources. And this is
despite the fact that the experiment does not take into account
that with each subsequent manual expansion, the administrator
must spend more time, because he has to deal with more and
more volumes.
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Fig. 6. Time taken by the administrator to maintain the expansion of volumes
for various time intervals

VII. CONCLUSION

In this article we have introduced a new algorithm of
automatic volume scaling in Kubernetes. We made an
overview of the proposed algorithm and also analyzed in detail
the part related to the expansion of volumes. To demonstrate
the Volume Autoscaler potential we have implemented a
lightweighted StatefulSet based version of expansion scenario.
Indeed, in the experimental part, we were able to demonstrate
how much resources the proposed automation can save.

Persistent applications can either reduce or increase the load
on volumes. To use storage resources efficiently, cluster
administrators need to constantly respond to this. Volume
Autoscaler just helps to cope with this problem, while
minimizing labor costs. With the right algorithm setup, the
application will not crash when there is not enough permanent
memory, and physical devices will not be occupied by the
application aimlessly.

Our future plans include the development of the entire
algorithm, including volume shrinking. In addition, the
implementation based on StatefulSet has a number of described
disadvantages, so it is necessary to work out approaches that
solve these problems. Probably, Volume Autoscaler should
work with Pods directly, bypassing standard Kubernetes
controllers.
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