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Abstract—Head pose estimation is used in a variety of human-
computer interface applications, like stare tracking, driving
assistance, impaired assistance, and entertainment. Advances in
convolutional neural networks have a considerable improvement
in the performance of head pose estimation. However, difficulties
in capturing well-labelled head pose data and differences in the
facial features of different persons make them difficult to use.
This work proposes a meta-learning based technique for head
pose estimation problem in BIWI head pose dataset. An approach
to learning latent representation of head pose features using
variational autoencoder is implemented. Then a fast, adaptable
head pose estimator is trained using meta-learning in a few-shot
settings. Model agnostic meta-learning (MAML) algorithm has
been deployed for training a head pose estimator. Mean Average
Error (MAEavg) of 7.33 is achieved in predicting head pose
angles in one-shot settings. After meta-training, the optimized
model is used to analyze fast adaptation in a test set that has
been separated from the BIWI head pose dataset. We begin
with the trained network’s optimum parameters and optimize
the inner loop for quick adaptation. The optimized model can
predict accurate head poses using as few as 10 gradient descent
steps in the unseen set of tasks sampled from the test set.

I. INTRODUCTION

In recent years, a lot of progress has been made in the field

of internet of things, robotics, image processing, augmented

reality, and human-machine interaction. The advancement in

gaze tracking, driving assistance and impaired assistance re-

quires a robust head pose estimation system. A well-built head

pose estimation is generally used for understanding human

attention [1], their social interactions, and behavior [2] and has

been widely researched and explored in the cognitive psychol-

ogy and neurophysiology communities. A driver assistance

system might use head pose estimate to decelerate the vehicle

while pedestrians are unaware of the vehicle’s presence in self-

driving vehicles [3]. The need of good head pose estimators

is not limited to these domains. Significant applications have

been made in surveillance and anomaly detection, human-

computer interaction, and crowd behavioral dynamics study

[4]. Head pose estimation is a difficult problem to solve in “in-

the-wild” settings, such as extreme orientations, illumination

variation, varying resolution, and the presence of hairs on the

face and makeup.

Traditional image processing based methods acquired some

success in estimating head pose. Methods such as Histogram

of Oriented Gradients (HOG) [5] successfully estimated the

head orientation from images and videos. Most of these meth-

ods are based on discriminative/landmark-based or parameter-

ized appearance based models. Despite being good estimators

of head pose’s angles, novel machine learning approaches have

been proposed because of their flexibility and robustness to

extreme head pose changes.

Convolutional Neural Networks (CNN) have been an effi-

cient and most popular choice to develop robust head pose

estimators [6]–[8]. The high efficiency of CNN’s is highly

reliant on training a network with a large number of well-

annotated instances of head pose data with a variety of

visual variations. A well-annotated large head pose dataset is

challenging to obtain in many cases. Also, a good head pose

estimator should achieve the same proficiency as CNN’s by

rapidly understanding and adapting from fewer examples and

continuing to adapt as more evidence becomes available.

Meta-learning is an alternative paradigm in which a learning

model acquires experience across numerous learning episodes

from a variety of related tasks. Then it uses the knowledge

gained to improve its learning performance in future. Meta-

learning algorithms are supposed to address these challenges

using a few-shot learning settings [9]. Meta-learners learn a

new task from limited amount of data. This ‘learning-to-learn’
can result in a range of benefits, including increased data and

compute efficiency. Meta-learning is more similar to human

and animal learning [10], where learning techniques improve

with time.

In this article we present a meta-learning-based approach for

head pose estimation. We propose a framework to estimate

head poses using very few calibration samples. It consists

of: i) Face detection from head pose images using multi-

task cascacaded convolutional neural network (MTCNN) [11]

ii) learning a latent representation of human faces using a

variational autoencoder [12] iii) use latent features to a train a
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meta-learner using a model-agnostic meta-learning algorithm

(MAML) [13] iv) adapt to new faces with good performance

using very few samples. Our head pose estimation framework

was evaluated using the in-the-wild BIWI head pose dataset

[14]. The proposed framework successfully adapted to new

faces using a few samples (k ≤ 9) to produce accurate head

pose estimates.

II. RELATED WORKS

Some early methods for estimating head pose are based on

appearance template methods [15], [16], which used image-

based comparison metrics. Detector arrays-based method was

developed for frontal face detection [17]. Instead of directly

comparing images to templates, it used a detector trained

on many images using supervised learning algorithms to

detect head pose. Geometric models [18] used facial key-

points to compute the head pose. The primary constraint

of this technique is landmark detection [19]–[22]. Nonlinear

regression methods were developed to detect head poses by

learning a nonlinear function that can map an image space

to one or more head pose directions [23]. High dimensional

image data were handled by principal component analysis

(PCA) such as in [24], [25], whereas neural networks [26]

were used for learning nonlinear functions. Classification-

based methods were also developed to estimate head pose

using discretized sets of head poses. Such methods used

random forest algorithms [27], [28], multi-task learning [29],

and neural networks [26] to classify head poses.

Osadchy et al. [30] proposed a real-time CNN-based ap-

proach for head pose estimation. Their CNN architecture is

similar to LeNet-5 [31] but has more feature maps. In 2014,

Ahn et al. [32] developed a network using four convolution

layers and two fully connected layers for head pose estimation

in the BIWI head pose dataset. Other proposed methods use

RGB images along with the depth information as seen in

literature [33], where GoogleLeNet [34] was used to train

the model. Venturelli et al. [35] proposed a shallow network

with five convolutional layers and three fully connected layer

with improved performance. Ruiz et al. [26] used ResNet50

architecture with three mean squared error (MSE) and cross-

entropy loss for each head pose angles as evaluation metrics.

Recent work on head pose estimation has been proposed by

Patacchiola [36] on Prima and AFLW datasets.

The above-stated literature with CNN-based methods gives

excellent head pose estimation results but requires a lot of

training samples to find the best estimator, lack generalization

in the unknown task, and have poor adaptation to a new set

of task. Finn et al. [13] have proposed a model-independent

algorithm for meta-training. Any model that utilizes gradient

descent is compatible with model-agnostic meta-learning. Sun

et al. [9] have proposed meta-learning as a framework that can

perform well on few-shot learning setup. The basic idea is to

learn how to adapt a base-learner to a new task with only a

few labeled samples by using a large number of identical few-

shot tasks. Antoniou et al. [37] have introduced methods to

train a meta-learning algorithm such as model agnostic meta-

learning (MAML) for adapting to tasks such as regression

and classification. Park et al. [38] have proposed a novel

architecture for few-shot gaze estimation using meta-learning.

They have used very few calibration samples for training a

meta-learner for person-specific gaze estimation. Their method

also can adapt to any new person with much more accuracy in

gaze estimation. Most of the research for head pose estimation

is based on CNN-based learning models. This work uses a

meta-learning based method that learn how to learn accurate

head pose using very few examples. In the framework of meta-

learning, we cast head pose estimation as a multi-task problem,

with each subject treated as a new task for the meta-learner.

Fig. 1. Illustration of head pose estimation architecture using meta-learning.
The cropped faces are sent to representation learning framework where a
variational autoencoder generates latent embeddings. The embeddings are then
passed into a meta-learning framework which uses a head pose estimator
network to estiamte the head pose angles.

III. METHOD

An MTCNN network is used to detect and crop the faces

from the BIWI head pose dataset. The cropped faces are

then sent to a representation learning network comprising a

simple variational autoencoder (VAE) network. The variational

autoencoder learns the important features from training images

and generates 200 latent features of each training sample.

Generating latent representations of head poses allows us to

design a simpler network for meta-training. A simple deep

neural network is designed to train a meta-learner using

Model-Agnostic Meta-Learning (MAML) [13] algorithm.
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The datasets used, preprocessing of data, the architecture of

proposed framework, and model evaluation strategy are briefly

discussed in the following subsections.

A. Dataset

Well-known BIWI head pose [14] benchmark dataset is

used for training a meta-learner using MAML for head pose

estimation. The BIWI head pose dataset comprises of 15,678

images of 20 subjects. A depth image that corresponds to an

RGB image with a size of 640 × 480 pixels is provided, along

with annotations for head pose angles. The head pose change

ranges approximately ±75◦ in yaw, ±60◦ in pitch and ±50◦

in roll. Each image’s ground truth is given in the form of the

3D position and rotation of the head. Fig 2 shows samples

from BIWI head pose dataset.

Fig. 2. Example of images from Biwi head pose dataset [39]

Because of the large size of RGB images and unnecessary

background objects, the faces of subjects were detected and

cropped using MTCNN [11] model and stored separately for

training and testing the meta-learner. 10581 cropped images

from fifteen subjects were used to train a meta-learner, and

2638 images from the remaining five subjects were used to

test the model performance. Images with very occluded back-

grounds, multiple objects and extreme poses were removed

when detecting the faces using MTCNN [11].

B. Experimental Testbench

All the experiments in this article are performed using

Python 3.8.0. We used PyTorch and PyTorch Lightening [40]

for experimenting with the architecture. Ray Tune [41] library

is used for hyperparameter tuning and neural-architectural-

search (NAS) [42]. The Google Colab platform is used to train

the variational autoencoder and meta-learning model. OpenCV

[43] library is used extensively for image processing tasks in

the experiments.

C. Proposed Architecture

In this article, we propose a three-stage architecture for head

pose estimation i.e. Face detection, Representation learning
and Meta-learning. Fig 1 shows the proposed head pose

estimation network architecture using meta-learning. Each

stages in head pose detection are discussed below.
1) Data pre-processing:

a) Face Detection: It is challenging to detect face and

face alignment from images in varying unconstrained en-

vironment. Varying lighting conditions, visual variations in

human faces and extreme head pose variations are the major

challenges to detect face properly from the images. It requires

face detection, localization and computation of bounding box

coordinates to get the exact coordinates of face. Face detection

is one of the most essential process in the proposed architec-

ture hence, we used a multi-task cascaded convolutional neural

network (MTCNN) [11] to detect faces and get their bounding

box coordinates.

Fig. 3. Architecture of MTCNN for face detection

Fig 3 shows the architecture of the MTCNN [11] network.

RGB images are sent to three stages in MTCNN, i.e., P-Net,

R-Net and O-Net. The O-Net layers outputs face classification,

bounding box regression and facial landmarks. Using MTCNN

[11], we get cropped faces of size 128× 128 which we use to

train our representation learning framework.
b) Data Normalization: Cropped images were normal-

ized to get all pixel values in the range of 0 and 1. The cropped

images were scaled to a new range using a min-max scaler

before feeding into the representation learning framework.
2) Representation Learning Framework: Representation

learning seeks to obtain a usable representation of data. This

is also known as feature learning since it is capable of

learning relevant characteristics of the data. In this work,

representation learning was utilized after the face detection

process to get the latent features from cropped images. The

representation learning framework should be able to preserve

the facial and head pose features of the training samples. For

this, we can use any representation learning methods, but we

focus on implementing variational autoencoders (VAE) since

VAE’s link representation learning to generative modeling, i.e.,

they make it possible to create valuable data from scratch.

Fig 5 shows the basic architecture of representation learning

framework using a variational autoencoder.

For each input image x, an encoder is defined as E : x
→ z and a decoder D : z → x̂ such that D(E(x)) = x̂. In

this work, a variational autoencoder model efficiently learns

the important features from training images and provides 200

latent features. The encoder comprises of five convolution
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Fig. 4. Basic architecture of meta learner network for head pose estimation

layers with LeakyReLu as an activation function. The dropout

rate of 0.25 and a stride of size two has been considered to

construct an encoder. The kernel size of three has been used for

all the convolution layers except the last one in which kernel

size of one is considered. The results of convolutional layers

are flattened by a Flatten layer. The encoder results in 200

latent embeddings. The decoder comprises a linear layer that

receives 200 features and does a linear transformation to get

4096 features. Four ConvTranspose2D layers are added having

LeakyReLu as an activation function. The ConvTranspose2D

layers have a stride of two, kernel size of three, and a dropout

rate of 0.25. The last ConvTranspose2D layer reconstructs

output images of size 128 × 128. After training 50 epochs,

we got the latent representations z of size 200, which will be

input to our meta-learner. The number of filters, kernel size,

and dropout rates of convolution layers were considered as

hyperparameters for the variational autoencoder which were

optimized during hyperparameter tuning.

Fig. 5. The basic architecture of variational autoencoder (VAE)

3) Meta-Learning Framework: Model-agnostic meta-

learning (MAML) [13] is a model-agnostic and task-agnostic

algorithm capable of training model parameters quickly for

fast adaptation to new tasks. The beauty of this algorithm is

that it learns new tasks quickly by using very few gradient

updates in the model.

Algorithm 1 Model-Agnostic Meta-Learning for Head pose

estimation

Require: D(τ) : distribution over tasks (human faces)

Require: α, β : learning rates

1: Randomly initialize parameter ω
2: while not done do
3: Sample batch of task Ti ∼ D(τ)
4: for all Ti do
5: Evaluate ∇ωLTi(fω) with respect to K samples

6: Calculate adapted parameters using gradient de-

scent: ω
′
= ω − α∇ωLTi

(fω)
7: end for
8: Update ω ← ω − β∇ωΣTi∼D(τ)LTi(fω′ )
9: end while

As observed in Algorithm 1, a model fω is considered with

parameters ω having τ number of tasks. The model fω is

trained using tasks Ti taken from distribution D(τ), taking

only K samples at a time. This training resulted in a robust

few-shot learner, which can now be used to generalize new

samples taken from the entirely new task set Ti. The model

fω is regularly updated to minimize loss Lτi for task set Ti.

The proposed head pose estimator uses a model trained

using MAML [13] algorithm. We consider M as a head pose

estimation model and then after training, this estimator learns

the optimal weights ω∗. Once the model M learns ω∗ it is said

to be optimized. In other words, the model M∗
ω is fine-tuned

with very few examples of a new person P which was never

seen during model training and can generalize to validation

examples of same person. For learning optimal weights ω∗,

we need to setup a few-shot learning setup. For this we created
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meta-training (Dtrain) and meta-testing (Dtest) subset of non-

overlapping subjects from the entire set of subjects D. In

each meta training step t, a person ptrain is selected from

Dtrain. A meta training sample by random sampling is created

for the selected person defined as ptrain = {Strain
s , Strain

q }.

The subset Strain
s = {(zi, gti)} where i ranges from 1 to k

training examples is called the support set and subset Strainq =

{(zj , gtj)} where j ranges from 1 to m examples of the same

person is called query set. The latent representation of head

poses z, and ground truth of head pose angles gt were used in

meta training. The parameters k and m are generally chosen

small (≤ 20) in few shot settings. The mean absolute error

(MAE) in predicting yaw, pitch, and roll, is used as a cost

function during gradient update.

Meta-learning starts by computing loss for support set Strain
s

and updating weights ωt at step t using few gradient steps and

learning rate α as shown below.

ω
′
t = f(ωt) = ωt − α∇Losssptrain(ωt) (1)

The mean absolute error (MAE) in computing head poses

angles is given by:

Loss =
1

n

n∑

i=1

|gti − ŷi| (2)

where n is the number of samples in the support set Strains ,

gti are the ground truth of head poses angles, and ŷi are the

predicted head poses angles.

Using these updated weights ω
′
t, we now compute loss for

validation set Strainq at step t. The gradients are computed with

respect to original weights ωt and using a learning rate β.

Finally, the weights ωt are updated to minimize the validation

loss, as shown below.

ωt+1 = ωt − β∇Lossqptrain(f(ωt)) (3)

The algorithm continues until the weights are converged to

optimal weights ω∗.

4) Fast Adaptation: Once we learn ω∗, our model is also

optimized to M∗
ω and can be used to adapt on unseen examples.

Sample a person ptest from test set Stest. We fine tune our

model M∗
ω using k sample images from Stest

s to adapt to new

examples faster as shown below.

ωptest = ω∗ − α∇Losssptest(ω∗) (4)

Finally we test performance of fast adaptation using sample

images in validation set Stestq .

The 200 latent features were passed through a linear layer

that outputs 1000 features. The result of the linear layer

was then passed through three densely connected layers, each

resulting in 1000 features. The output from the third hidden

layer was sent to fully connected linear layer that outputs the

three head poses angles. LeakyReLU with a negative slope of

0.1 was taken as activation function in the model. The dropout

rate of 0.25 was used during meta-training. Fig 4 shows the

proposed architecture used for meta training. This regression

model predicts the yaw, pitch, and roll angles.

D. Hyperparameter Tuning

The hyperparameters for meta-learner and variational au-

toencoder were tuned using Ray Tune [41], particularly grid

search based approach. The meta-learning hyperparameters α
and β were chosen 0.01 respectively, and the number of inner

gradient steps was selected as ten. A dropout rate of 0.25

was selected while training the meta-learner. The learning

rate and the dropout rate for the variational autoencoder were

selected as 0.001 and 0.25, respectively. The number of filters,

kernel size, and dropout rates of convolution layers has been

searched using grid search based approach as a part of neural-

architectural-search (NAS) [42]. Stochastic Gradient Descent

(SGD) was used as an optimizer to train the network.

E. Model Evaluation

1) Mean Squared Loss: Mean squared error (MSE) is a

metric to compute the average squared differences between

original and predicted values. Mean squared error is computed

as,

MSE =
1

n

n∑

i=1

||Si − Ŝi||2 (5)

where Si is the original input images, and Ŝi is the recon-

structed output image. The pixel-wise mean squared error is

computed during representation learning using a variational

autoencoder to produce latent embeddings.

2) Mean Absolute Error: Mean Absolute Error (MAE) is a

well-known performance metric used to compute the similarity

between two sets. It computes differences between ground

truth head pose angles and predicted head pose angles. MAE

is defined as,

MAE =
1

n

n∑

i=1

|yi − ŷi| (6)

where yi are the ground truth head pose angles yaw, pitch and
roll and ŷi is the predicted head pose angles.

3) Mean Average Error: The average of three mean abso-

lute errors in predicting Euler’s angles is taken as the final

score to evaluate the proposed model. It is used to assess the

overall performance of the proposed architecture in predicting

Euler’s angles (yaw, pitch, and roll) for head poses. Mean

average error is computed as:

MAEavg =
yawmae + pitchmae + rollmae

3
(7)

where yawmae, pitchmae and rollmae are the mean absolute

errors in predicting yaw, pitch and roll angles respectively.

F. Result and Analysis

1) Representation Learning: Input images of size 128×128
are trained using a representation learning pipeline to generate

latent embeddings. When training a variational autoencoder for

200 epochs, the latent embeddings of size 200 were created

for input images. Pixelwise mean squared loss is computed
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Fig. 6. Original and reconstructed images using variational autoencoder during representation learning in BIWI head pose dataset

Fig. 7. Pixel wise reconstruction loss using a variational autoencoder (VAE)
in terms of mean squared error(MSE)

to evaluate the performance of variational autoencoder for

representation learning.

The reconstructed images of BIWI head pose dataset using

representation learning are shown in Fig 6. Fig 7 shows

the loss during regenerating original images from latent

embeddings by a variational autoencoder. We can see that

the mean squared error (MSE) in regenerating the pixels is

decreasing with increasing epochs. Fig 8 shows the loss of

Kullback–Leibler divergence (KL-Divergence) during repre-

sentation learning. While training a VAE, reconstruction loss

is initially given more privilege, making the KL divergence

loss small. Hence, the KL-Divergence loss starts with a low

value initially and increases gradually with the model training

[44]. After a few epochs of training, the reconstruction loss

decreases and KL-divergence loss increases, thus balancing

Fig. 8. KL Diveregence Loss during representation learning

the total loss in a variational autoencoder. The total loss of

the variational autoencoder is combined reconstruction and

KL-divergence loss, as shown in Fig 9. The representation

learning step produced latent features of size 200, which were

then used to train a meta learner.

2) One-shot settings: One sample from each of five differ-

ent subjects are selected at random to create a support and

query set to train MAML in one-shot settings. The support

set is used for training, and the query set is used to fine-

tune the network parameters. Model performance has been

evaluated using Mean Absolute Error (MAE) to predict head

pose angles. After training the meta learner using the MAML

algorithm for 250 episodes with the meta batch size of 64, we

successfully predicted the Euler angles for head poses with

a mean average error (MAEavg) of 7.33. Fig 10 shows the

meta training and validation loss in terms of MAE.
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Fig. 9. Total Loss during representation learning. Total loss decreases and
stabilizes along with training the variational autoencoder.

Fig. 10. Training and validation loss in one-shot settings using MAML

3) Fast adaptation: To analyze fast adaptation by the

proposed meta learner, a test set was used that has never been

seen during training the network. The optimized parameters

during training meta-learner were taken as starting parameters

for analyzing fast adaptation. Since,this is a new unseen task

to adapt for the meta-learner, we only optimize the inner loop

for adaptation to a new domain. We used ten inner steps for

fast adaptation. Mean average error in predicting head poses in

the unseen task was found out to be 7.33 in one-shot settings.

Mean absolute error of 8.54, 8.64, and 4.83 was achieved

for predicting yaw, pitch and roll, respectively. The optimized

model generalizes well to an unseen set of tasks using only a

few gradient updates.

Fig 11 shows the ground truth and predicted head pose

angles in BIWI head pose dataset.

IV. CONCLUSIONS

This article proposed a method to use the meta-learning

technique for the head pose estimation problem. The use of

one-shot settings for training a meta learner encourages meta

Fig. 11. Ground truth and predicted head pose angles. The red axis
corresponds to the front of the face, while the green axis points down and the
blue axis points to the side.

learning-based techniques for head pose estimation as they

require less volume of labeled training data. Furthermore,

implementation of representation learning before training a

meta learner resulted in a more simpler network to predict

head poses angles. The results show that the proposed method

predicted correct Euler’s angles with a mean average error

(MAEavg) of 7.33 in one-shot settings in the BIWI head

pose dataset. The model successfully adapted to completely

new, previously unseen test samples from the BIWI dataset

and correctly predicted Euler’s angles with only ten gradient

descent updates. The results shows that the meta-learning

based method can be used to effectively estimate head poses

in few-shot settings.

This work has room for lots of improvements. The more

simplified methods such as Almost No Inner Loop (ANIL)

[45], can be used instead of MAML to get improved perfor-

mance in head pose estimation. Similar approach can be used

to analyze meta-learning capabilities on other popular head

pose datasets which can be structured in few-shot settings.

Furthermore, the proposed method can find application in

realtime head pose estimation in videos.

Meta-learning-based techniques has several limitations

when we encounter diverse task distributions. In the real world,

task distribution is often multi-modal, making it challenging

for meta-learners to optimize. Furthermore, task families are

required for meta-training using few-shot settings. Many head

pose datasets doesn’t have task families, making meta-learning

based methods difficult to be used for head pose estimation.
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