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Abstract—The paper solves the scientific problem of
developing a method algorithm for the study of nonlinear
dynamic systems. To increase the accuracy and speed of
calculations, the paper proposes an algorithm for the hybrid
method of transformations for the study of nonlinear
mathematical models of a polynomial structure. The paper
presents a method of polynomial transformations for the study of
systems with three degrees of freedom, a study of a nonlinear
vibration protection system with three degrees of freedom is
carried out. The paper presents a hybrid numerical-analytical
method for the analysis of nonlinear mathematical models of a
general polynomial structure, which makes it possible to study
systems with controlled accuracy while reducing the resource
intensity of calculations. The method introduces additional
complex exponential variables, formulas for calculating the
transformation coefficients and the transformed system are
presented. An analytical solution is constructed for the
transformed system in the resonant and nonresonant cases. For
the economical calculation of the right parts of the polynomial
structure, formulas are presented and it is proposed to apply
Pan's scheme with preliminary processing of the coefficients. The
developed algorithm of the method of polynomial
transformations makes it possible to construct an approximate
analytical solution, taking into account the nonlinear components
of higher degrees of the polynomial. The proposed algorithm of
the method makes it possible to study the dynamic characteristics
of the object under study, special cases of subharmonic,
polyharmonic regimes, determine extreme regimes, and
resonance with controlled accuracy. The above algorithm is
implemented in the created software package using the modern
object-oriented programming language C#. The proposed
method makes it possible to carry out a qualitative and
quantitative analysis of models of dynamic systems.

1. INTRODUCTION

When operating various dynamic systems and mechanisms
in real time, an urgent scientific problem is the creation of
effective methods for analyzing normal and extreme operating
modes of the studied technical objects. Therefore, it is
necessary to develop methods and algorithms that allow
solving the set scientific problem for a wide range of technical
objects of a polynomial structure.

To construct an analytical solution, a simplification of the
studied nonlinear equation is wused, for example, the
linearization of equations, which leads to significant errors in
the model under study and incorrect formulation of the original
modeling problem. For some particular cases, exact solutions
of nonlinear equations are known, for example, for the Riccati
and Bernoulli equations. However, most nonlinear models
cannot be converted to equations with a known solution
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without losing the qualitative properties of the model. Exact
solutions are not known for most nonlinear mathematical
models of complex technical systems with many degrees of
freedom.

Traditional approximate analytical methods, such as the
method of a small parameter, method of Van Der Pol, method
of Krylov—Bogolyubov, and averaging have a number of
disadvantages and limitations that lead to qualitatively incorrect
results of the analysis of nonlinear models [10,11]. It is
necessary to develop approximate analytical methods and
numerical methods of the required accuracy and low
complexity for the analysis of nonlinear models of a general
polynomial structure with constant and periodic parameters.

Section II provides an overview of recent work on systems
analysis methods. Section III presents a transformation method
for studying dynamical systems. Section IV presents the
algorithm of the hybrid transformation method. Section V
presents an assessment of the effectiveness of the hybrid
transformation method. Section VI presents an estimate of the
complexity of the transformation method. Section VII presents
the results of the practical application of the method to the
study of vibration protection systems. Section VIII
CONCLUSION presents the main results of the work.

II.  RELATED WORKS

We present a review of modern methods for the analysis of
nonlinear dynamical systems in recent scientific papers. The
work [1] presents two additive Runge-Kutta methods with
fourth and fifth order accuracy. The methods are tested for the
Van der Pol and Kaps problems on singular perturbations. The
paper [2] proposes a two-stage method for fitting stiff models
of ordinary differential equations to experimental data using
polynomial approximation. The paper [3] proposes a new
method for calculating second-order initial problems for
ordinary differential equations using a nonlinear interpolation
function. The paper [4] presents a numerical method for
solving linear ordinary differential equations based on a
posteriori quasi-Newtonian method. The paper [5] presents a
new method for solving a wide class of problems involving
ordinary and partial differential equations based on the spline
collocation method. The work [6] proposes a quantum
algorithm for linear ordinary differential equations, based on
the so-called spectral methods, alternative to finite difference
methods, which approximate the solution. In [7], the Robin
method is studied as a development of the iterative Picard
method for solving differential equations. In [8], an algorithm
was proposed that allows one to find interval estimates for
solutions with a given accuracy based on a kd-tree over a space
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formed by interval initial conditions for ordinary differential
equations. In [9], a new implemented numerical method based
on the scheme of the third-order Runge-Kutta method was
proposed. When operating devices and mechanisms in
real time, it is necessary to apply effective methods to calculate
emerging extreme modes and eliminate them in a timely
manner. Also, for industrial operation, processors with low
performance are used. Therefore, methods should be used that
allow efficient calculation of modes using optimal computing
resources. The method of transformations proposed in the work
allows one to determine such extreme regimes, to investigate
subharmonic, polyharmonic regimes, and to determine
resonance. Under subharmonic modes, free oscillations include
harmonics, the frequencies for which are an integer number of
times greater than the fundamental frequency. In polyharmonic
modes, the harmonic force contains several harmonics. For
technical systems, an extreme operating mode can occur during
overload, start-up, acceleration, acceleration, and braking of the
engine. In the extreme operating mode, abrupt changes in phase
variables occur, which occur, for example, under the condition
of the coincidence or multiplicity of the natural frequencies of
the system and the frequency of the external disturbance. An
extreme regime is a regime in which the rigidity of a system of
ordinary differential equations increases. When solving such
problems by standard numerical methods, the integration step
should be reduced by an order of magnitude in order to identify
jumps and points of a removable discontinuity of the first kind.
For technical systems, an extreme operating mode occurs under
adverse factors and conditions that go beyond the normal
operating mode. The extreme mode for a nonlinear model of a
technical system in many cases can be represented by
subharmonic, superharmonic, polyharmonic oscillations,
parametric and autoparametric resonances, relaxation or
discontinuous oscillations. Among the traditional numerical
methods for solving differential equations of a polynomial
structure, the family of Runge—Kutta methods with an adaptive
step is most used. The application of higher-order Runge—Kutta
methods requires significant computational costs at each stage
of calculations.

III. A TRANSFORMATION METHOD FOR STUDYING EXTREME
AND STANDARD MODES OF DYNAMIC SYSTEMS

Let us write the studied nonlinear system of three second-
order differential equations in matrix form:

1 g+ Bg+Cq =2H,cos(wt)+2H,sin(wt )+ O
4 Vi oo Vy Vi V4 Vs 2 Vg oo Vpoe Vg
2 heos(@n)" sin(@n) ¢, 4, 4, 4", ;"

The non-linear parts for the three differential equations are
represented by polynomials of the fourth degree. Let us
assume that system (1) satisfies the conditions of Picard's
theorem on the existence and uniqueness of a solution to the
Cauchy problem for a system of ordinary differential
equations. By the conditions of Picard's theorem, the right side

of  the F(1,0) defined the

set R ={(£,0) /|t —1,| < ¢:0 -0, = max|g, —q,,| < c,} .
F(1,Q) continuous on the set R for #,Q and for any (£,0,),

system on
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(1,0,) set R the Lipschitz condition is satisfied Q:
F(1,0,)-F(1,0,)< LO, - 0,, where L — Lipschitz constant.

The right nonlinear part of the system, including the second,
third and fourth powers, in general, can contain 486
components defined by the vector index.

vector of variables,

Here g¢=[g,.9..9.] required

Q=[q,q2q3q,q2q'3]r — vector of phase variables, B,C —

constant nondegenerate square matrices of the third order, 7 —
identity matrix.

To write the non-linear part, a vector index with integer non-
negative components is used:

v =y, yv v vy ), |V| =V, +V, Fotv, 0<V, <4,
Constant column vectors with real coefficients are represented
as: H, :[hll’hZI’hSI]T JH, = [hlzvhzz’hsz]r Jh, :[h]vah2v5h3v:|r

We assume that the characteristic matrix equation
Det[[ A +BA+ C] =0 has complex conjugate roots
/”LS,Z_,S =3,4,...,8 with small negative real parts. We assume
hl/

that the nonlinear components <1 small.

We introduce complex conjugate variables to write
periodic functions:

x =exp(iot) u x,=X =exp(—iot), A,=%io.

We write the periodic functions in new variables:
cos(ot) = %(x1 +x,) u sin(wt)= %(x, -x,).
i

In accordance with the main stages of the method of
polynomial transformations presented in the work of G.I.
Melnikov [10], we will perform: bringing the system of
nonlinear differential equations with constant and periodic
parameters to normal form, linear transformation, polynomial
transformation and solution of the autonomous transformed
System.

Let us bring system (1) with the addition of complex
conjugate variables to the normal form:

Y 4 Vi Vo V3 Va Vs Ve Vg Vg
X = PX+Z:M:2 X 07X X, T X X ()
.
where X =[xx,4,4,4,6:4:45] -
Next, we perform a linear transformation:
Y=LX, 3)
to reduce the linear part to a diagonal form:
Y 4 v Vi Ve Vs Ve Ve
V=AY 43 B I vy Y v (4)
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At the stage of linear transformation, we find a nonsingular
matrix L . Complex coefficients of the nonlinear part p,

systems (4) are found by rearranging the terms in the sum (2)
after a linear transformation (3).

Matrix A has a diagonal

A =diag[ A, Ays.s 2] (5)

=1..,s=1..,4

with complex conjugate roots A,¢ = A, |,

At the next stage, a polynomial transformation 1is
performed up to fourth-order terms, inclusive:

S_wv

4
Vs =Zgt+ Z\v\:za" Z

V2 V3 Ve Vs Ve V1 V8 —
222,020z, 2z s =3,...,8,

(6)

where @’ desired conversion coefficients.

The introduced additional complex conjugate variables are
not transformed y; =z,,s=12.

As a result of the polynomial transformation, we obtain a

system of the form:

4
s S ViV V3 Ve Vs Ve V1 Vs
Zg = Agzg +Z‘V‘:2qul 2y 232y 25726 29 Zg s

(7

where ¢’ — the coefficients of the transformed system, which

are calculated for special values of the vector index according
to the iterative formula presented in [11].

Imagine the derivation of formulas for determining
unknown coefficients. To shorten the notation, we introduce
the notation:

Vi S Y Ve Vs Ve Y s —
2" =222z, 2.2 2 Z° Z—(21,22,23,24,25,26,27,28).

Let us represent the system (4) in the variables Z of the
transformation (6).

. 4 v
Vs =Asys + B (V)= Az + 4 3, a2+ B(Z)
when designating non-linear parts P .

Let's differentiate (6).

o=ty @l (2, ®)

where (Z")’ = ZVZizlvkzk'lz'k .

Taking into account the formula for the transformed
system (7), we represent the derivative.

(z7)= sz;‘/kzkil (lkzk +Z[l‘:2quv) =

v 8 v 8 -1 4 krzv
Z Zkzlﬂkvk +Z Zkzlvkzk ZM:Z VZ
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Let us perform a substitution in (8) of expressions for the
derivative and formula (7).

. 4 s 4 s 8

Vg =Agzg + ZMZZ WA zM:z(av A k:/“kvk)"'
8 4 Srrv -1 4 krzu

Zksz:M:z a,2'v,z, ZM:Z‘L,Z )-

Equating the resulting expression for yg in system (4) in
variables Z we get the equality:

Agzg + /%va‘:zafzv +P,(Z)=

Az + Z;‘:z A +Z;‘:2(afzvzizl/1kvk) +.
8 4 v _ 4 .

2@y WA 2 07

After simplifying the equality, we obtain formulas for
determining unknown coefficients:

z;‘:ﬂfZV + Z;‘:z(afzv (Zi:/lk‘/k — A )) +
Yol 0203 L2 = R (2)

To determine the transformation coefficients and the
transformed system, we equate the coefficients at the same
powers Z, solve the system of algebraic equations.

In accordance with the method of polynomial
transformations, the special values of the vector index at s are
found as integer non-negative solutions of the equations:

AVi+ AV, o+ v, — A, =0,
VitV oty =234, s=3,....8

Instead of complex conjugate roots 4, with small real

parts, we take the imaginary parts for which we can write the
equality:

(vi=vy ) Im(A))+(vs = v, ) Im (A, +(vs = v ) Im( A ) +
(v, =vg)Im(A,)—Im(2,)=0 '

We equate the coefficients of the transformed system to
zero for non-singular values of the vector index, and equate
the coefficients of the transformation to zero for special values
of the vector index. The coefficients of the transformed system
are calculated at special values of the vector index, and the
transformation coefficients are calculated at non-special values
of the vector index.

Let's move on to new complex conjugate variables:
zg = usexp(itlmls ),s =3,..,8

The transformed system (7) in new variables is
presented in an autonomous form:

4
. S Vi Vy Vi Vao Vs Ve Vqo Vg
g =ugReds + E et 7 5 U U U

v

)

Uy =Uy Us =Ug Uy =U
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At the next stage, we solve the autonomous system.

Let us perform an exponential change of variables to pass to a
system with real coefficients:

ug = pgexp(iby) (10)
We represent system (9) as:
Dy = psRel, +Z‘ - P p Re(qfexp(Ae)),
(an

ZM , AR v7”“Im(q‘fexp(Ae)),
Ae:z(@,(vl—v2)+...+07(v7—v8)—95).

For finding p, u 6, it is necessary to solve a system of
six differential equations for s =3,5,7 , because

 =piexp(i6,).u;, = prexp(£i6,),

s =pyexp(i0,) .

The first two equations for s =1,2 are the complement of
the system by the introduced complex conjugate variables
Z, =exp(ii t .

To determine the stationary solution, we equate the right-
hand sides of (9) to zero and find the solution to the nonlinear
system of algebraic equations:

Red, + Sul W=
ugRelg ZH A u u w us u g uy v (12)
9S:335,

In variables (10), we represent the system of equations for
determining the stationary solution (12) in the form:

psRed, = Z\ e o +V"Re(qfexp(Ae)),
ZM zpv,wz *V*Im(qfexp(Ae)) =0, (13)
Ae=i(6,(v,—vy)+...+6, (v, —v, )= 6).
Given the decomposition of the exponent into
trigonometric functions in the form:
(Re(f)+ilm(f))exp(zg
Re(f)cas(g) Im(f)sin(g)

i[m(f)cos(g)+iRe(f)sin(g)

Let's represent the transformed autonomous system (11) in
the form:
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v, +1g

Ps = psRe +ZH2 o)
RI = Re(qv )cos(Ae)—Im(qf)sin(Ae),

Ae=(0,(v, —v,)+..+0, (v, —vy )= 0y),

ZH

(RI),
(14)

V| +|/2

07 il o4 el 1),

To determine the stationary solution, we equate the right-
hand sides of (14) to zero:

psRels = (15)

_ Z v, +V,
vi=2
ZM

Considering that the first two equations in the system for

ol (Re(qu )cos(Ae)—[m(qf )sin(Ae)),

P (Im(qf)cos(/le)-i-Re(qVS )Sin(Ae)) =0.

v +v2

P

s=1,2 not converted z =exp(ifw) and the form of new

variables z; = psexp (itlmAs +i6;) we get the equalities:
ps=16;=0at s=12.

Let us write the autonomous system of differential

equations (14) taking into account the equalities
P, =10, =0 in the following form:
ps = psReldgs + (16)

Vs +vh Vo1
P7

+ZM Pl (Re(qf)cos(Ae)—lm(qf)sin(Ae)),

pgg Z\ . » DL L i (]m(qf )cos(Ae) +Re(q‘: )sin(Ae)),

Having obtained the solution of the autonomous system
(16), we substitute p, and 6, into the formula

zg = psexp (itlmAg +i6;),s =3,..,8 .

By the transformation formulas (6) we find

4 s
Ys =zt ZMJV Z

To represent the solution in the original variables, we
perform the inverse linear replacement: X =LY .
The resulting autonomous system of differential equations in

general form (16) has a certain form depending on the special
vector indices determined for the initial system.

Let us define special vector indices in the nonresonant
case, when the natural oscillation frequencies of the system
and the frequency of external forces do not coincide and are
not multiples.

At ¢ find special indexes
v :(00100011),(00101100),(00210000),(11100000).
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At ¢ find special indexes
v+ (00001011,(00002100),(00111000),(11001000).
At g/ find special indexes

v : (00000021),(00001110),(00110010),(11000010).

In the absence of resonances, the transformed autonomous
system (16) has the form:

ps = psReds + Y Re(q))pl™ pie pli ™, (17)
0 = Z‘t‘zzlm(qf )p{””p;f”ﬁ Py s =3,5,7

Substituting into system (17) the coefficients ¢’ with

special indexes found, we obtain six differential equations of
the first order. In this case, all special indexes are different for
s=3,5,7, therefore, to simplify the writing of the

coefficients, we omit g° upper index s .

Py = pyRedy + p3p72Reqo,o,1,o,o,o,1,1 + 103:052Req0,0,1,0,1,1,0,0 +

s

s

E}

2
P53 PIMG, 10000+ PAIMA, 060000

Let us find a stationary solution in the nonresonant case,
equating the right-hand sides in the equations to zero and
solving the system of equations, we obtain a steady state. As a
result, the author received a solution in the form:

> k13k22k30—k12k23k30—k13k20k32 + k10k23k32 + k12k20k33 - k10k22k33
S —k13k22k31+ k12k23k3 1+ k13k21k32 — k1 1k23k32 — k12k21k33 + k11k22k33

> k13k21k30—k11k23k30—k13k20k31+ k10k23k31+ k11k20k33 —k10k21k33
P k13k22k31—k12k23k31—k13k21k32 + k11k23k32 + k12k21k33 — k11k22k33

> k12k21k30 - k11k22k30 — k12k20k31+ k10k22k31+ k11k20k32 — k10k21k32
T —k13k22k31+ k12k23k3 1+ k13k21k32 — k11623532 — k12k21k33 + k11k22k33

(18)
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We assume that the expression in the denominator is not
equal to zero. To find the transformed system in the resonant
case, when the natural oscillation frequencies of the system
and the frequency of external forces coincide and are
multiples, we define special indices. By definition, resonance
is a sharp increase in the amplitude of forced oscillations when
the external (exciting) frequency coincides with the internal
(natural) frequency of the system.

Let us consider the case when the natural oscillation
frequency of the system, corresponding to the first root,
coincides with the frequency of the external periodic force.
We define the following special vector indices.

At ¢ find special indexes v :

(00100011),(10000011),(00101100),(10001100),(00210000),
(10110000),(20010000),(01200000),(11100000),(21000000).

At ¢, find special indexes v :

(00001011),(00002100),(00111000),(10011000),(01101000),
(11001000).

At g/ find special indexes v :

(00000021),(00001110),(00110010),(10010010),(01100010),
(11000010).

In this case, the transformed autonomous system (16) is
represented by six first-order differential equations. Solving
the system, we obtain a steady state in the case of resonance.
The result is a solution of the form:

_ k33 R3S [K37 (19)
P32 36 "\ 3s’
0, = arccos [ﬂ] (20)
’ Jik31Vk32

) k30
P Im%,o,l,l,l,o,o,o + mpz [mqo,l,l,o,l,o,o,o
k30
mp3lmq1,o,o,1,1,o,o,o +Imq, 001000+

sin [03 ] p3Req0,1,1,0,1,0,0,0 —sin [93 ] szeqLo,o,l,l,o,o,o

+
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m@ 3 0,1,1,0,0,0,1,0 \/ﬁ@ 3 1,0,0,1,0,0,1,0

Imql.l,o,o,o,o,l,o +sin [‘93 ]p3Reqo,1,1,o,o,0,1,o —sin [93 ]p3ReqLo,0,1,o,o,1,0

+

Using the method of polynomial transformations, the
original non-linear system of three second-order differential
equations with constant and periodic parameters is converted
to an autonomous form up to fourth-order terms.

To economically calculate the right-hand sides of a
polynomial structure, Pan's scheme with coefficient
preprocessing, shown below, can be applied. Consider the
traditional methods for computing polynomials [12]. William
George Horner's universally accepted method for calculating
polynomials involves only n—1 multiplications and n additions.
To calculate a polynomial of the n-th degree, Horner's scheme
is presented in the form:

f()c):(...(((x+a1 yx+a, )')c+a3 )+ a,, )'x+an 21)

Let us present a generalization of the traditional Horner
scheme for a polynomial in many variables of the form

m

n N m
— l/ y
f(x,0x, )= z a . ij D <n.
iy =0 j=1 =1

m

f(xl,...,xm): a, +fo.
i=1

m m
[% + inz (a,.hiz + Zx,3 (ailviz>i3 +)D
h B=h

In the works of J. Todd [13], another scheme was proposed
for calculating a polynomial of the sixth degree using auxiliary
polynomials:

p(x)=(x+b)x, p,(x)=(x+p +b,)(p, +b,),

f(x) :(pz +b4)(p1 +b5)+b6

(22)

To determine the coefficients b, solve a system of

equations. To compute a sixth-degree polynomial in one
variable according to Todd's scheme, three multiplications and
seven divisions are required.

In accordance with another scheme for -calculating
polynomials, presented in the works of Yu.L. Ketkov to
calculate the polynomial of the nth degree for n >5 necessary

+1 S o
nT+% multiplications and »+1 additions.

Methods for economical calculation of polynomials with
preprocessing of coefficients are presented in the works of
V.Ya. Pan [14]. In accordance with the two-stage Pan scheme,

to calculate the n-th degree polynomial, it is necessary §+1

multiplications and n+1 additions. For the Pan scheme,
auxiliary polynomials are used:

63

Py= X, p = X+, Dy = Pasy ((po +x+b,, )(po +b, )+b4; )+b4m >

b

Pirss = Parn (po + 4k+2)+b4k+37 s=1...k

fi(x)=a,p, ,upn n=4k+1,4k+3;
1 (x)=ayxp,  +a,, npu n=4k+2,4k +4.

We present a generalization of V. Ya. Pan's scheme with
preliminary processing of the coefficients for the polynomial

/. (x;-..,x, ) from many variables.

m m m

DRIV ED ST
1 J2=h Jj=1

Po=

h=

Pusii = Pas3 ([ij + Py +by,

=

b

4s

j(p0+b4x_l)+

] + b4s+l >

b Lk

aiess S =1,

Parsz = Parsn (po +by., ) +

fi=a,p, ,at n=4k+1,4k+3;

f.= Zaojxl.pH +a, ,at n=4k+2,4k +4.

j=1

The works of V. Ya. Pan [15] present several schemes with
preprocessing for calculating polynomials with real and
complex coefficients, in which the number of multiplications
is halved.

The two-stage economical Pan calculation scheme with
preprocessing of coefficients makes it possible to halve the
number of multiplication operations when calculating
polynomials, which leads to a significant increase in
performance when used in iterative schemes.

The introduction of the method of economical calculation of
polynomials in method schemes can be effectively used to
solve the Cauchy problem with nonlinearities of a polynomial
structure in order to increase the productivity of calculations.

IV.  ALGORITHM OF THE HYBRID TRANSFORMATION
METHOD FOR INVESTIGATION OF DYNAMIC SYSTEMS

The hybrid method is based on the analytical method of
polynomial transformations, the fourth order numerical
Runge-Kutta method, the economical calculation of Pan
polynomials, Newton's method for solving systems of
nonlinear algebraic equations (SNAE). The combination of
analytical and numerical methods makes it possible to
combine their advantages and completely solve the problem.
Consider the Cauchy problem for systems of nonlinear
ordinary differential equations.

the functions

Let fi(cos(a)t),sin(a)t),ql,qz,...,qm)
i=1,2,...,m defined in the form of degree polynomials n f

teltt,] . (41.9,,-9,)€R", ®eR.
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Required to define functions ¢,(¢),q,(¢),....q,, (¢) which

are the solution of the system of nonlinear differential
equations on the interval 7,1, | :

q',(t) = £, (cos(at),sin(wt),q,.q,.-.49,,)
q', ()= f,(cos(ot),sin(ot),4,,4,,...4, )
q',(t)=71, (cos(a)t),sin(a)t),ql,qz,...,qm),

(23)

and satisfy the initial conditions

q, (t) =401-9> (t) =025 Yn (t) =qo,» Where gy, 4y, 90,
- given real numbers.

Let us assume that the conditions of Picard's theorem on
the existence and uniqueness of a solution to the Cauchy
problem are satisfied for a system of differential equations.
The right side of the system is defined, continuous, and
satisfies the Lipschitz condition.

Provided that the functions can be represented in the form of
polynomials in variables:

£ (cos(a)t),sin(a)t),ql,qz,...,qm ) =

S o8 (0n)sin® (@)

Vit =1

Let us present the main stages of the hybrid transformation
method [16] for solving nonlinear systems of differential
equations with a polynomial structure.

Stage 1. Let us represent the system in matrix form (24),
using the vector index v =[v,..v,] with integer non-

negative components.

Denote |v| =v,+V,+...+v, - the sum of the components

of the vector index.

0+CO= H cos(ot)+ H,sin(ot)+
\ . (24)
Y. H,cos" (wt)sin” (wt)q)..q)"

=2
0=[4,,4,,-9,]" — column vector of sought functions,

0 =[d,,Gy-q, 1" — derivative column vector,

C — constant nonsingular square matrix mxm,

Constant column vectors are represented as:

Hl :[hll’hZI?""hml]T’HZ :[hIZ’hZZ""’hmZ

]T

T
— column vector of small |hkv|<l

H,=[n,.7,...h", ]
nonlinear coefficients.

Stage 2. At the second stage, we represent the system in
normal form. Recording in normal form is performed with the
addition of the system with new variables
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x, =exp(iot) and x, =X = exp(—ior)

X=N-X+R(X), (25)

where X =[x,%,,¢,,-q, ] - column vector of sought
functions with complemented variables. The square matrix N
is obtained by complementing the matrix C :

0

—iw

io 0
0 01,
(H,—iH,)/2 (H +iH,)/2 C
T
...q;;”*z,}

Stage 3. For system (25), we solve the characteristic
Det[A-N]=0 and define

As,8 =1,..,m+2 with small negative real parts.

N =

n
V2 43 Vim+2 MmaViyY2 V3
X0 Gy 5 )Y hv X%

M:Z

R- [0, O,Hi B
v|=2

equation conjugate  roots

Define a nonsingular diagonal matrix A =diag|[2,,...,4,,,].

We check the presence of external and internal resonances by
comparing the roots and external frequency @ .

Performing a linear transformation:

Y=L-X (26)

The nondegenerate matrix of the linear transformation L is
determined from the matrix equation L-N =A-L

The result of transformation (26) is a system of the form:

Y=A-Y+R(Y) 27)

Right nonlinear part R(Y ) rewritten after a linear change of

variables R(Y)=R(L-X)

Stage 4. Special values of the vector index
V= [vlvz...v2m+2] are found by solving equations:
2'lvl +.o.t ﬂm+2vm+2 - ﬁ's = 0’

vi+v,+otv, ,=23,.,ns=12....m+2

The special values of the vector index uniquely determine the
shape of the transformed autonomous system. Only non-linear
components with special indices remain in the autonomous
system.

Stage 5 We carry out a polynomial transformation for
system (27) of the form:

n
s Vi
ys :Z.s + z (avzl‘

M:Z

Z"mz

zZ2 ... ,M), s=12,...m+2 (28)

The result of transformation (28) is the system:
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sV

n
Zo=Az, +MZ:: (pvz1 Ze...

Vim+2
m+2

i), s=12,m+2 (29)
where ¢, — coefficients of the transformed system, a -

conversion factors.

Stage 6 Performing the definition of conversion coefficients
a, u p, of the transformed system (29) according to the

formulas:
s s m+2
Vi i
Zqzlzz.. m+2+2 a,z'zy .z Zlvk +
m+2 n S | &
Vi 'm+2 - MM Hpia | —
2.2 a, 7'z 2,z Z quzl 25z, | = Ry,
k=3 M:Z ‘y‘

Stage 7. To reduce to an autonomous form, we perform in
the system (29) the transition to new complex variables:

zg = ugexp(itlmAg), s =1,2,..,m+2 (30)
The transformed system in new variables has form:
g =ugRedg + Z Qouuy . (31

Stage 8. We turn to an autonomous system with real
variables. For (31), we perform an exponential change of
variables:

s = Psexp (lﬂs ) (32)

As a result, we obtain an autonomous system in general form:

ps = psReds + Z Il Re (g exp (iU)),
m+2
U= El 0,11 (VzH _Vzl)_es (33)
psbs = Z Ao (g exp (1U)).

In the nonresonant case, when the natural oscillation
frequencies of the system and the frequency of external forces
do not coincide and are not multiples, the arguments at the
exponent are equal to zero, and the autonomous system has a
simpler form.

ps = psReds + va'*” P Re(q )

(34)
z pv,+vq p”’*‘w’”*z[m(q )

Stage 9 To determine the stationary solution, we equate the
right parts of the autonomous system (10) to zero. Let us find
the steady state by solving a system of nonlinear algebraic
equations of the form:
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HZ pIE L pl e Re(qfexp(iU)) =—pgRelg,
> i ply e Im (g exp (iU) = O, (35)

U= Z:, 0, (VZI—I —Vyu ) —0s.

To solve a system of nonlinear algebraic equations, we use
Newton's method. To apply Newton's method, it is necessary
to fulfill the following conditions: the functions of the left
parts of the system of algebraic equations must be bounded,
smooth, continuously differentiable, the first derivatives of the
functions are uniformly separated from zero, the second
derivatives of the functions must be uniformly bounded, the
Jacobian matrix of the system of functions is nonsingular.

In the nonresonant case, in the system of nonlinear algebraic
equations (34), the exponential powers are equal to zero, and
system (35) has a simpler form:

‘ ‘Z plvl + VZ

Z pv,+v

=2

pr:rllwmzlm(qu ) =0, s=12,...m+2

10 stage. To determine the transient mode of an
autonomous system, we use the traditional numerical Runge-
Kutta method with the introduction of the method of
economical calculation of polynomials into the iterative
scheme. The classical four-stage Runge-Kutta method has the

fourth order of accuracy. Given initial conditions
4,(1) = 90,9, (1) = 40>, (1) =4, transform to new
variables, sequentially performing transformations

(3),(5),(7),(9). The transformed autonomous system (33) with
initial conditions defines the Cauchy problem in new
variables. In the systems of nonlinear differential equations
under study, the right-hand sides are polynomials in variables.
For economical calculation of nonlinear parts, we use highly
efficient and productive algorithms for calculating
polynomials. The commonly accepted Horner method for
computing polynomials involves n—1 multiplications and n
additions. Methods for economical calculation of polynomials
with preprocessing of coefficients are presented in the works
of V.Ya. Pan. In accordance with the two-stage Pan scheme, to
calculate the n-th degree polynomial, it is necessary n/2+1
multiplications and n+1 additions. A two-stage economical
Pan calculation scheme with preprocessing of coefficients
makes it possible to halve the number of multiplication
operations when calculating polynomials. This leads to a
significant increase in performance when applied in iterative
schemes.

11 stage. We perform transformation to original variables:

zg = pyexp(itlmAg +i65), y, =z, +HZ (ab{‘zz : zmﬁ;)
To represent the result in the original variables, we perform
the inverse linear replacement: X =L"'.Y .
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The hybrid transformation method makes it possible to
analyze nonlinear systems with a polynomial structure and
obtain the main dynamic characteristics of the systems.

V. EVALUATION OF THE EFFICIENCY OF THE ALGORITHM
OF THE NUMERICAL-ANALYTICAL TRANSFORMATION METHOD

Let us evaluate the efficiency of the algorithm of the
numerical-analytical method of transformations in the
calculation of extreme modes. The efficiency of an algorithm
is directly related to computational resources, the main of
which are the execution time and memory used. When
calculating by standard numerical Runge-Kutta methods to
determine the extreme regime, it is necessary to determine the
beginning of the occurrence of such a regime and apply an
adaptive step, reducing it in the region of the occurrence of the
extreme regime by tens of times.

Let us estimate the number of input parameters and
operations performed in the calculation of extreme modes by
the standard fourth-order Runge-Kutta method and the
transformation method. The calculation model is represented
by a system of second-order differential equations of a
polynomial structure in the general form of a fourth-degree
polynomial with all possible coefficients at the powers. The
number of algorithm operations depends on the number of
differential equations being solved in the system, on the
number of components in the nonlinear parts of the equations,
and on the number of calculated nodal points.

Table I presents estimates of the number of operations
performed in the calculation of extreme modes for systems
from two to six non-linear differential equations of the second
order by the method of transformations on a section with 10
nodal points. The evaluation assumes the presence in the
nonlinear parts of the equations of all components up to the
fourth powers inclusive. The estimates are made on the basis
of a computational experiment.

TABLE I. ESTIMATES OF THE NUMBER OF OPERATIONS FOR THE

TRANSFORMATION METHOD
Number 2 3 4 5 6
equations
Number 10080 83160 443520 1801800 6054048
operations

Table II shows the number of input parameters and
operations performed in the calculation of extreme modes for
systems of two to six non-linear second-order differential
equations with all non-linear components of polynomials by
the transformation method and the fourth-order Runge—Kutta
numerical method on a section with 10 nodal points.
Estimating the execution time of an algorithm is an important
factor in measuring the effectiveness of an algorithm. For
industrial applications in the systems under consideration,
processors of average performance are used - megaflops (the
number of floating point operations per second). For example,
peak double precision performance for Intel Pentium III
450MHz processors is 440 megaflops, for Intel Celeron M
900MHz processors - 690 megaflops, for Intel Pentium III-S
1GHz processors - 900 megaflops, for AMD C-50 processors -
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860 megaflops, ARMv7l 1GHz - 360

megaflops.

for processors

TABLE II. ESTIMATES OF THE NUMBER OF INPUT PARAMETERS AND
OPERATIONS FOR THE TRANSFORMATION METHOD AND THE FOURTH-
ORDER RUNGE-KUTTA METHOD

Number of Number of Number of Number of
equations in input operations for the operations
the system parameters transformation for the
method Runge-Kutta
4 method
2 408 10080 100800
3 1461 83160 369600
4 3964 443520 1108800
5 9040 1801800 2882880
6 18276 6054048 6726720

Table III shows the estimates of the execution time of the
method algorithms on an Intel Celeron M 900 MHz processor
of average performance when calculating the extreme mode in
a section with 100 nodal points in the presence of all nonlinear
components.

TABLE III. ESTIMATES OF THE ALGORITHM EXECUTION TIME (IN
SECONDS) WHEN CALCULATING THE EXTREME MODE ON THE INTEL
CELERON M 900 MHZ PROCESSOR

Models Transform method | Runge— Time
Kutta 4 reduction (%)
method

vibration 0.001 0.021 95

protection system
anti-vibration 0.001 0.025 96
system for derricks

robotic 0.002 0.031 93

manipulators

When calculating nonlinear systems with three degrees of
freedom in the presence of all nonlinear components of
polynomials, the calculation time on an Intel Celeron M 900
MHz average processor in a section with 100 nodal points for
the transformation method is 1 ms, and for the Runge-Kutta
method it was 25 ms. with a comparative accuracy of the
fourth order.

VI.  EVALUATION OF THE COMPLEXITY OF ALGORITHMS

A comparative assessment of the complexity of the
algorithms of the methods in calculations for extreme modes is
carried out. Evaluation of the complexity of calculations is
necessary to compare the speed of algorithms and determine
the execution time, the amount of memory depending on the
size of the data being processed. To assess the complexity of
the algorithm, the complexity function is determined - the
relationship between the input data and the number of
algorithm operations. Let us consider the number of basic
mathematical operations of the algorithm of the transformation
method when calculating the stationary mode. The number of
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operations in the method depends on the number of differential
equations being solved in the system, on the degrees of
polynomials of the nonlinear parts of the equations, and on the
number of calculated nodal points. The number of
mathematical operations of the transformation method

m(m+n+2)!

nl(m-1)!

the Runge—Kutta method of the fourth order, when calculating
on an interval with k nodal points, it is estimated

0(4k(m+n+2)!

nlm!

the transformation method for 10 nodal points of a system of
four equations with right-hand sides in the form of a
polynomial of the sixth degree, we reduce the calculation time
by 60% compared to the calculation by the fourth-order
Runge—Kutta numerical method. When calculating the
extreme regime of a nonlinear model, the transformation
method has a complexity that is less in comparison with the
Runge—Kutta method with a comparative accuracy of the
fourth order. The transformation method makes it possible to
determine extreme modes, reduce the level of complexity and
the time of performing calculations.

algorithm is estimated 0( J, for the algorithm of

J . When calculating the stationary mode by

VII.  INVESTIGATION OF NONLINEAR VIBRATION
PROTECTION SYSTEMS WITH THREE DEGREES OF FREEDOM

In various industries, shock absorbers and dampers are used
to reduce external influences. The shock absorber performs the
absorption of part of the energy of external perturbing forces.
The vibration protection system protects the object from
external influences [17]. When creating a new vibration
protection scheme, it is necessary that the natural frequencies
of the system be significantly lower than the frequencies of
external disturbing forces. In modern production, a huge
number of types of shock absorbers are widely used, which
differ in elastic, damping, vibration isolating and shockproof
properties. The traditional method of vibration protection is to
install a shock absorber or damper between the object of
protection and the source of disturbances. The works [18,19]
consider various mathematical models of vibration protection
systems, which include non-linear shock absorbers or
dampers. Consider a vibration protection system with three
degrees of freedom, which includes parallel and series
installation of non-linear shock absorbers or dampers.
Vibration protection object with mass m, installed by means

of non-linear shock absorbers and dampers through
intermediate platforms with a mass of m, u m, . We believe

that the nonlinear characteristics of shock absorbers and
dampers are represented by polynomials of the third degree.
The choice of a cubic characteristic is justified by the design
features of the vibration isolators and the properties of the
material of the elastic elements. In vibration isolators, conical
springs with non-linear characteristics are used, as well as
rubber elements with non-linear material properties. Similar
schemes of vibration protection systems, but with linear
characteristics, were considered in [20,21]. Using the method
of transformations, we study a nonlinear mathematical model
of a vibration protection system for various operating modes.
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We believe that the elastic and damping characteristics of the
vibration protection system are represented by a cubic form.

For the elastic force of the spring kg + pg’® at p >1 the spring
is assumed to be rigid. Here &, p - stiffness coefficients, c¢,d

- damping coefficients. Under the action of external periodic
forces, the base experiences vertical  vibrations

£ (¢) = hsin(t)+ hycos(wt) with frequency @ . Dimensions
w[c’lJ,t[c],h[CM].When compiling the

dynamic equations of the vibration protection system, the
Lagrange equations. The system of equations of motion of the
vibration protection system has the form:

mlql"(t)+clq1‘(t)+c2(q1'(t)—q2'(z))+
;{4 (1)- q3<>)+dlqs(t>3 (a0 ()=, (1)) +
d;(q, (1) =4, (1)) +ka, (1) +k, (4, () 2 (1)) +
ks (4, (1) a5 (1)) + pya, (¢ +p2(q] t))3+
s (4.(1) =4, (1)) = ¢ (hocos(1w) - ha)s1n(ta))+
K, (ysin(t@) + b cos (1)),
mgy (1) +c (4, (1) =4, (1)) +e: (4. (
d, (4, (1) ~a (1)) +dy (a5, (1)
k(0 (6) =4 (6))+ P2 (0 (6) =4 () + P (2 (1) -
mogy (1) + ¢ (4 (1) =4, (1)) +eaqs (0) + (4 (1) g, (,))
d, (4 () S (1) +d4%( +d (¢, (1)=q; (1)) +
ky (a5 (6) = (1)) + kags (1) + ks (45 (1) - ql(t))+

Ps(%( )- z(t)) + P, (¢ ) p5(q3(t)—q1( ))3

¢, (hacos (tw)— hwsin(to))+ k, (hysin(tw)+ hcos (tw))

of quantities:

—a; (1)) +

()) (4. (1)-q, t))

~

where ¢,, q,, q; — displacement relative to the equilibrium
position of the system. Here the time derivatives are denoted

qiv(t) =q,=dg;/dt.

A similar system with a linear characteristic of elastic and
damping elements was studied in [22]. Let's apply the
transformation method. We write the system of nonlinear
differential equations (SNDE) in matrix form:

AG+Bg+Cq= H]cos(a)t)+H2Sin(a)t)+
z‘i‘zzhvcos(a)t)v‘ sin(wt)™ q,”

A=diag[m1,m2,m3],

R S A R
9 "9 °9, "9, 495 >

¢ +c,+c —c, —C5 hk +cho
B= —C, ¢, +¢ c, JH, = 0 ,
—c5 -, C et hyk, +c,ho
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k o+, +k —k, —k, hk, —cho
C=| -k,  k+k, = -k3 |,H,= 0
—k, —k,  ky+k, +k hk, —c,ho

We represent the SNDE in normal form: X = NX +R(x).

Recording in normal form is performed with the addition of
the system with new variables x, = exp(it) , x, = exp(—iot)

and the representation in terms of them of the periodic
coefficients: cos(wt)=0.5(x, +x,)
sin(wt)=—0.5i(x, —x,) . Performing a linear transformation:
Y =LX, define a diagonal matrix A =diag[4,,...A4]. We

verify  that  the  characteristic equation
Det[Axiz +BA+C J =0 has complex conjugate roots

/15,/1,3=3,

linear transformation is a system of the form: ¥ = AY + R ( y) .

n

matrix
.,8 with small negative real parts. The result of a

We check the equality and multiplicity of the roots
ImA s =1,...,8 to determine the presence of resonances. We

determine the special values of the index for a fixed s as
integer non-negative solutions of the equations:

S vim(4)-A =03 v, =234, s=3,...8

We perform the determination of coefficients a;, and p;

z‘i‘zﬂfzv + z;‘zz(afzv (Zi:ﬁ«k"k — g )) +
ZZ:}Q;H afzvv/fzkilz\i\:z ZZ#) =Ry (Z)
4
We carry out the transformation: y, =z + (ajZV) :
M:2

The result of the transformation is the system:

Zg =/ISZS+Z4:(ijV).
\

v‘:2

We perform the transition to new complex conjugate
variables: zg = usexp(itlmA).

The system in new variables has an autonomous form:
45
g =ugRelg + ZM:z SU

We turn to an autonomous system with real variables. We
perform an exponential change of variables: ug = psexp (ify ).

As a result, we obtain an autonomous system in general
form:

05 = psRel +2H2 ol p/”*Re(q exp(Ae))

0, =3 Py Im(glenp (4e))

Aezz(@l(vl—vz)+...+¢97 (v, =vy)=6y).
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In the nonresonant case, the arguments at the exponent are
zero, and the autonomous system has a simpler form:

= pRel +Z:H2,0V‘*VZ . ””*Re(qf),

b =%, 7 im(q?).

We determine the steady state by solving a system of
nonlinear algebraic equations of the form:

v1+v
ZM Zp

v1+v
ZM Zp

In the nonresonant case, we solve a system of nonlinear
algebraic equations of the form:

psRes +Z‘ PP Re(q) ) =0,

ZM

Stationary solutions are determined in the case of the absence
of resonances (18) and in the case of resonance (19). To obtain
a solution in the original variables, we perform the

vy +v2

P

+V*Re(qfexp(Ae)) =—psRels,

V’”*Im(qfexp(Ae)) =0.

v +VZ

P A Im(qu) =0.

transformation: z; = pgexp (itlmAg +i6 ), y, =z, + z (a ZV)

‘v =2
To represent the result in the original variables, we perform

the replacement, the inverse of the linear: X =LY . We will
study the system with the following parameters:

m, =7 ;m, =151 ;m; =8 ;0 =2.6;h, =0.03;h, =0.04;

¢, =0.0L;¢, =0.011;¢, =0.012;¢, =0.013;¢, =0.014;

d, =0.001;d, =0.001;d, =0.001;d, = 0.001;d, =0.001;

k, =14312;k, =13.717;k, =12.114;k, =11.192;k, =10.317,
p, =0.011; p, =0.012; p, =0.013; p, =0.014; p; = 0.015.

Let us represent the SNDE in normal form: X = NX +R(x).

Performing a linear transformation: ¥ = LX . As a result of a
linear transformation, we obtain a system with a linear

diagonal matrix Y =AY +R(y).Eigenvalues have small

negative real parts. The steady polyharmonic mode of
oscillations of the system has the form:

=—0.0348cos (0.3041) —0.0018cos (1.982¢ ) +0.0041cos (578t ) -
0.1586c0s (6t )+0.0153sin(0.3041) —0.0009sin (1.982¢ ) +
0.0164sin(578t)+0.2539sin(61),
q, =—0.0687cos (0.304t) —0.0017cos(1 .9821‘) —0.0015cos (578t) +
0.0115¢os(6¢)+0.0302sin(0.3047) —0.0013sin(1.9821) +
0.0140sin(578t)+ 0.0025sin(6t),
g, =—0.0362co0s(0.304¢) —0.0030cos (1.9827) — 0.0021cos (578¢) +
0.045(:0s(6t) +0.0159sin (0.3041) —0.0016sin (1 .982t) +
0.0047sin (578t) —0.0661sin (6t).

For the considered nonlinear vibration protection system, the
efficiency depends on the selected parameters, on the
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amplitudes and frequencies of the external action. The studied
vibration protection system with a nonlinear cubic
characteristic is most effective in the case of external
disturbance frequencies significantly higher than the natural
frequencies of the system. As a result, a vibration protection
system with three degrees of freedom, represented by a system
of three non-linear differential equations with a non-linearity
of the third degree, is considered. The object of vibration
protection is installed by means of shock absorbers and
dampers between two platforms, to which external periodic
impact is transmitted. Non-linear shock absorbers and dampers
have cubic characteristics. The method of transformations is
applied to determine the steady state and resonant modes.

VIIL

The paper solves the scientific problem of developing
high-performance algorithms of numerical-analytical methods
for the study of standard and extreme modes of operation of
nonlinear dynamic systems. The paper presents the main
methods for studying nonlinear systems of differential
equations used in the modern theory of nonlinear
mathematical modeling. To increase the accuracy and speed of
calculations, the paper proposes an algorithm for the hybrid
method of transformations for the study of nonlinear
mathematical models of a polynomial structure. The paper
presents a method of polynomial transformations for the study
of systems with three degrees of freedom, a study of a
nonlinear vibration protection system with three degrees of
freedom is carried out. The paper proposes a hybrid
numerical-analytical method for the analysis of nonlinear
mathematical models of a general polynomial structure, which
makes it possible to study systems with controlled accuracy
while reducing the resource intensity of calculations. The
method introduces additional complex exponential variables,
formulas for calculating the transformation coefficients and
the transformed system are presented. An analytical solution is
constructed for the transformed system in the resonant and
nonresonant cases. For the economical calculation of the right
parts of the polynomial structure, formulas are presented and it
is proposed to apply Pan's scheme with preliminary processing
of the coefficients. The developed algorithm of the method of
polynomial transformations makes it possible to construct an
approximate analytical solution, taking into account the
nonlinear components of higher degrees of the polynomial.
The proposed algorithm of the method makes it possible to
study the dynamic characteristics of the object under study,
special cases of subharmonic, polyharmonic regimes,
determine extreme regimes, and resonance with controlled
accuracy. The above algorithm is implemented in the created
software package wusing the modern object-oriented
programming language C#. The proposed algorithmic
formulas for the method of polynomial transformations make
it possible to study nonlinear dynamic systems. Using the
algorithm of the method allows one to study systems of a
polynomial structure with right-hand sides in the form of
polynomials in phase variables with constant, as well as with
periodic parameters. The proposed algorithm of the
transformation method and new algorithmic formulas make it
possible to determine extreme modes, -efficiently use
computing resources, increase computational performance and

CONCLUSION
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reduce the level of complexity of calculations. The proposed
hybrid method, which combines analytical and numerical
methods, makes it possible to conduct a qualitative and
quantitative analysis of nonlinear dynamic systems with a
polynomial structure and obtain the main characteristics of
dynamic systems.
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