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Abstract—Although sign language has become more widely
used in recent years, establishing effective communication be-
tween mute/deaf people and non-signers without a translator
remains a barrier. There have been multiple methods proposed
in the literature to overcome these challenges with the help of
Sign Language Recognition (SLR) using methods based on arm
sensors, data glove and computer vision. However, the sensor-
based methods require users to wear additional devices such as
arm bands and data-glove. The sensor-free vision-based methods
are computationally intensive and sometimes less accurate as
compared to the wearable sensor-based methods. In this paper,
we propose a vision-based light weight web-based sign-language
interpretation system. It provides two-way communication for
all classes of people (deaf-and-mute, hard of hearing, visually
impaired, and non-signers) and can be scaled commercially. The
proposed method uses Mediapipe to extract hand features from
the input image/video and then uses a light weight random forest
classifier to classify the signs based on the extracted features
with the accuracy of 94.69 %. The proposed model is trained
on alphabets from American Sign Language. We developed a
web-based user interface to remove for ease of deployment. It
is equipped with text-to-speech, speech-to-text and auto-correct
features to support communication between deaf-and-mute, hard
of hearing, visually impaired and non-signers.

I. INTRODUCTION

Sign language enables deaf, hard-hearing and mute people

to communicate effectively with others [1]. Signs can be

generated using hand movements and can be intercepted

visually using eyes. However, most of the people do not

have the domain knowledge to interpret the sign language.

Traditionally, humans have been employed as sign language

translators. However, it makes the communication inefficient

and expensive making its accessibility poor. With the ad-

vancement in technology, various methods are proposed for

Sign Language Recognition (SLR) using wearable IoT sensors,

data-gloves and vision-based system [2]–[5]. These methods

can potentially reduce the burden of having human translator

for communication.

SLR with wearable IoT sensors and data gloves rely on

capturing data from the IoT devices and interpret the hand

gesture for sign recognition. Data-glove technology uses me-

chanical or optical sensors attached to a glove to convert

finger flexions into electrical impulses to determine hand

posture. Gloves worn by the users are connected to the

computer using heavy cords that can obstruct the user’s natural

hand movements [6], [7]. Similarly with arm sensors-based

method, users are required to wear EMG sensors on the arm

making it an invasive system [2], [8]–[10]. Although these

methods can provide good accuracy in signs prediction, the

requirement of additional hardware makes them unsuitable

to be used in daily conversations. The accelerated research

Fig. 1. American Sign Language (A.S.L.) signs

in AI and Computer vision led to developing new methods

and models for SLR. These methods are non-invasive and

convenient since the user does not need to wear any additional

hardware to interact with the computer. Convolutional Neural

Networks (CNN) are widely used to interpret the signs. Their

ability of automatic feature extraction makes them attractive to

be implemented without instrumenting additional algorithms

for image processing. However, CNNs are computationally

expensive models to be used in real time communication e.g.

in video conferencing. This leads to the need of light weight

models to support real time recognition for SLR.

In this paper, we propose a computer vision-based SLR

method to assist deaf, mute hard-hearing and visually impaired

people to communicate with non-signers. Plenty of sign lan-

guages are used globally, like American sign language, Indian

sign language, German sign language, Etc. The American

Sign Language (A.S.L.) is the most widely used among all

of them. Therefore, this work uses the basics of A.S.L. as

a communication medium using sign languages. The dataset

used in this work consists of A.S.L. signs of 26 alphabets

(as shown in Figure 1) primarily and words used in daily

communication such as thank you, please, hello, yes etc. Users

can generate any possible words from these basic 26 alphabets

and even use predefined words to save time.

The proposed work is intended to design a highly accurate

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



real-time communication model that is light weight and easily

scalable with the web-based User Interface (UI). The proposed

UI also supports speech to text, text to speech and auto

completion to allow visually impaired people to use the

framework efficiently as well. It enables deaf/mute person

to communicate with the visually impaired person possible

without any middle man or a translator. The proposed method

uses Mediapipe to extract the features from the image/video

and uses random forest classifier to classify them. Since both

Mediapipe and random forest classifier require less compute

power, this method becomes suitable for establishing real time

communication. The detailed study of the state of the art is

reviewed in section II. It compares the proposed approach with

the currently available solutions for sign language interpreta-

tion. Sections III and IV focus on the overview of the proposed

research methodology. Performance analysis and UI features

are described in Results section V. Section VI discusses the

future work on how the current methodology can be improved

further to achieve better accuracy.

II. RELATED WORK

Approaches for sign language interpretation in human-

computer interaction can be divided into two types, wearables-

based methods and vision-based methods. (a) Wearables-based

method: It includes both data-glove and arm sensor technol-

ogy. They both rely on capturing data from the wearable de-

vices and interpret the hand gesture for sign recognition. Data-

glove technology uses mechanical or optical sensors attached

to a glove to convert finger flexions into electrical impulses

to determine hand posture. Gloves worn by the users are

connected to the computer using heavy cords that can obstruct

the user’s natural hand movements [6], [7]. Similarly with arm

sensors-based method, users are required to wear EMG sensors

on the arm making it an invasive system [2], [8]–[10]. (b)

Vision-based methods: Computer vision techniques are non-

invasive and are based on how people interpret information in

their environment. This method is more convenient since the

user does not wear any additional hardware to interact with

the computer.

Since we propose a computer vision-based approach for

sign language interpretation, we will discuss the state of the

art in vision-based methodologies only. Table I shows the

comparison of the currently available vision-based methods

and the proposed method for SLR. There have been multiple

methods utilizing Convolutional Neural Network based or

compute intensive models [3], [11]–[16] and light-weight

models [4], [17]–[20] for Sign Language Recognition(SLR)

from input video/image.

A. SLR using CNN-based models
Kshitij Bantupalli et al. [3] utilized a custom recorded

American Sign Language dataset using four synchronized

cameras for Sign Language Recognition (SLR) using Con-

volutional Neural Network (CNN), Long Short-Term Memory

(LSTM) and Recurrent Neural Network (RNN) models. These

models extract spacial features and temporal information from

the custom dataset. Although the method achieved 90% accu-

racy the dataset is confined to 150 words only. Further the

method does not work well with different skin tones, different

background and when a face is a part of the frame. Shikhar

et al. [11] employed a dataset of 24 ASL alphabets (J and Z

were excluded) with depth and color maps, feature descriptors,

and CNN to achieve real-time SLR and accuracy 91.4%. The

model does not support signs represented using both hands

and did not include the formation of complete sentences. The

model did not have the feature for working on unique and

more interactive words with gestures other than ASL.

Koller et al. [13] employed a mixture of CNN and Hidden

Markov Model (HMM) to recognize continuous sign language.

The CNN model was used to recognize the hand gesture,

while the HMM model was utilized to analyze the results

supplied by the CNN model in real-time. Further, Garcia et

al. [14] also use CNN with the transfer learning approach

for SLR. However, both of these models perform poorly for

similar gestures and have an accuracy of 79.1%. Use of 3D-

CNN is has also been evaluated for SLR with Italian gesture

dataset [15] resulted in low accuracy of 78.9%. Kang et

al. [16] also proposed using CNN to solve SLR. For hand

segmentation, the method used depth maps, and the cropped

image was then fed into CNN (AlexNet) for classification.

However, the difficulty of recognizing alphabets for a different

signer was not addressed, and color map compatibility was not

included. The authors were able to reach an accuracy of 74.1%

only. Rioux et al. [4] used Deep Belief Network (DBN) to

classify different types of feature extraction methods on ASL

dataset with accuracy 76.1%. DBN is a classification algorithm

that uses both depth and intensity data to classify images. It

works only for static images and can recognize signs from

one hand. They have proposed a highly advanced network

that can reach an accuracy of 76.1% and also takes around

2.69sec to recognize the gesture. To reduce the computations

in feature extraction, Mediapipe framework has been used for

Vietnamese sign language detection [5] using RNN. However,

RNN is a compute intensive model as compared to the light

weight models mentioned in the next section.

B. SLR using light-weight models
Wang H. et al. [12] have proposed an advanced framework

based on HMM called Light-HMM. It uses low-rank approx-

imation to identify the keyframes and adaptively determine

hidden states in HMM. The model’s accuracy drops from 93%

to 77% when tested on public users with different skin tone,

background and clothing colors. Further, Kishore PVV et al.

[18] proposed a model that incorporates the Elliptical Fourier

Descriptor (EFD) for feature extraction and Artificial Neural

Network (ANN) for feature recognition trained on Indian

Sign Language with an accuracy of 90.12%. This methods

requires a four-camera paradigm for identifying Indian sign

language motions. HSV and YCbCr color models were able

to achieve accuracy of 93% with 24 ASL alphabets (excluding

J and Z). However, the model could only take image as input

making it inefficient to use for real time recognition [17]. A

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 13 ----------------------------------------------------------------------------



TABLE I. COMPARATIVE ANALYSIS OF 
RELATED WORK

Research
Work

Method
Model
used

Accuracy
Real time
recognition

Background dependency
User
interface

Shortcomings/Features

[3]
Covers 150 common
gestures including
ASL alphabets.

CNN,
RNN,
LSTM

90 Yes Skin tone dependent. No
Background noise like face
or clothing decrease real
time accuracy.

[11]
24 ASL alphabets
using depth and
color map

CNN 91.4 Yes
Background
independent

No

Fails for 2 hand gestures,
sentence formation feature
missing, text to speech
and vice versa missing.

[17]

24 ASL alphabets
using HSV color
model where
images were first
converted to
grayscale

HSV,
YCbCr
color
model

93 No Background dependent No
Very static model, lacks
realtime interpretation and
works only on static images.

[12]
ASL alphabets using
light HMM model

HMM 93 Yes Background dependent No

Accuracy suffers when tested
in signer independent situation,
just detects signs and lacks
advanced features(autocorrect,
text to speech etc.).

[13]
CNN and HMM
for continuous
sign language

CNN,
HMM

79.1 Yes Background dependent No
Low accuracy, sentence
formation and other
advanced features missing.

[14]
Transfer learning
using GoogLeNet

Transfer
learning

79.1 Yes Background dependent No
Accuracy is low and advanced
features are missing.

[15]
3D-CNN for upper
body and hand
extraction

3D-CNN 78.9 Yes Background dependent No Low accuracy

[16]
CNN and depth
maps for sign
language

CNN 74.1 Yes Background dependent No
Low accuracy, different signer
problem not addressed, color
map compatibility not included.

[18]
ANN and Elliptical
Fourier Descriptor
for ISL

ANN,
EFD

90.12 Yes Background dependent No
Setup not scalable and
model lacks dynamic
features.

[4]
Deep Belief Network
for ASL

DBN 76.1 Yes Background depdendent No
Works only for 1 hand, not dynamic,
low accuracy and slow recognition
in real time

[19] SVM for ISL SVM 97.5 Yes Background dependent No Slow recognition in real time.

[20]

Dynamic signs predictions
using human pose estimation,
implements lightweight model
on front end, with balance of
speed and accuracy.

LSTM 91.5 Yes Background independent Yes
Requires dedicated GPU
in front end(client-side).

Our
method

Custom ASL and ISL
alphabets along with
gestures for some
common words
using mediapipe.

LwP 94.69 Yes
Background independent.
Works well even with face,
clothes etc.

Yes.
User
can know
what
features
are fed to
model
at real time.

High accuracy, fast at real time,
simple model used so it’s easily
deployable, sentence formation,
text to speech and vice versa,
autocorrect feature present,
very dynamic and can adapt to
new signs.

while back, JL Raheja et al. [19] employed SVM to classify

the feature vector of the retrieved characteristics, including

Hue-moments, which are position, angle, and form invariant

moments, fingertips, and trajectory tracking. The system used

the spatial domain approach to collect characteristics from the

fingertips. They achieved an accuracy of 97.5%, which cannot

be generalized as they tested their model only on four signs

of ISL (A, B, C, and Hello).

Currently, Google [20], [21] is working on sign language

recognition system to predict dynamic signs in video confer-

ences. Their current model gives accuracy of 91% with 285 fps

which is the fastest in all available methods.The only limitation

of system is the client system should have dedicated GPU for

faster predictions.

C. Comparison of the proposed method w.r.t. the state of the
art

Our proposed method tries to fill the gaps in the currently

available methods. Apart from reaching high accuracy, the

model works very fast in real-time, using a Random forest

classifier, one of the light weight models in the field. It

works for different signers, different background, with and

without face. It also supports an interactive UI. The model can

form complete sentences after recognizing signs and has some

custom and previously used default signs for more everyday

words so that the user does not have to generate them again.

An auto-correct feature has also been added to avoid the

model’s accuracy getting in the way of making sentences.

The model has advanced speech-to-text and text-to-speech

recognition to help visually impaired people. Our model has

been trained on a mixture of ASL and ISL datasets. It helps

to adapt our model to different conditions like one hand or
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two hand gestures. Only a few ISL alphabets are added to

the majority ASL dataset to make our model more flexible

and accurate. Other works till now have not developed models

on such hybrid datasets yet as we have performed. We have

discussed the details of our approach in the section III.

III. PROPOSED FRAMEWORK FOR SIGN LANGUAGE

INTERPRETATION SYSTEM

Figure 2 shows the steps involved in the vision-based

interpreter for the sign language recognition. The approach can

be divided into three sub-parts, a)dataset creation, b) model

training, and c) UI functionality. For creating dataset, the

hand features are extracted using mediapipe from the static

images of the ASL dataset. The final dataset is prepared

with lettersets having highest accuracy. We trained different

classification models as shown in Table II for sign recognition

using the prepared dataset and selected the best performing

model, random forest for inference. Then the trained model

is tested in real time to classify letters. As a part of the UI

functionality, the proposed framework also includes advanced

features such as auto-correct, speech to text and text to speech

conversion to help visually impaired people. This framework

can be easily deployable on the web. It does not need any

additional OS specific instrumentation.

Fig. 2. Flowchart for the proposed research on vision-based sign language
interpretation system

IV. METHODOLOGY

The approach to carry out this work includes data-set

collection, pre-processing data, training data and then testing

on real time data. All these processes are explained in detail

below. This work extensively uses the concept of mediapipe

framework. A brief introduction to Mediapipe framework is

given below.

A. Mediapipe

Mediapipe is a highly efficient framework developed by

Google that helps in effective tracking of hands and fingers

using these 21 3-D landmarks from a single hand. It detects a

hand from the real time images and generates a set of 21

points. These points are interconnected with lines that are

termed as connections in mediapipe. Figure 5 shows a glimpse

of these landmarks and connections. This hand extraction

technique is highly effective even with the background noise

unlike the conventional techniques. Even if we have our face

behind our hand while facing the webcam, then too mediapipe

will detect the hands with no serious issues. We just need to

tune the minimum detection confidence of mediapipe hands

model to obtain good hand detection feature. If the minimum

detection confidence is 0.4, then mediapipe will show the

landmarks only if it’s atleast 40 percent sure that there is a

hand in the image. If minimum detection confidence is very

low, the mediapipe might detect everything as hands. If the

minimum detection confidence is very high, then mediapipe

might not detect the hand at all even if the hand is placed in

front of the camera. So, we need to keep its value accordingly

depending upon the conditions. If the user has a very high-

definition webcam, then the value of minimum detection

confidence can be kept on a higher side. But, if the user has

a low-quality webcam, then the value of minimum detection

confidence must be kept low. So, our model works well for

any camera resolution. It’s independent of camera quality. The

values of minimum detection confidence must be tuned at the

front end to adjust our model. Still, a good resolution camera

will produce better accuracy overall. We have used webcam of

laptop which is of average quality and our model worked well

on it after adjusting minimum detection confidence value. This

work gives access to the user to tune this parameter according

to their needs in real time on the web app we’ve built for this

model. Mediapipe helps us to detect correct signs quickly in

real time. Since, our main aim is achieving good accuracy on

real time data, we’ll be testing each alphabet or word 4 times

only for calculating accuracy. It’s mainly because we want our

model to produce correct results within 4 guesses only. If it’s

producing correct outputs for first 4 inputs in real time, then

it will definitely produce accurate results even after 4 results

too. So, we decided to test for 4 times only per alphabet/word.

B. Datasets Used

For training the ML model, we have used two ASL datasets

from Kaggle. The symbols of a few alphabets in the ASL

are very similar, like ’M’ and ’N.’ So, after training, our

model was getting confused in a few alphabets and producing

incorrect predictions. To tackle this problem, we tried mixing

out two different datasets. It helped us in improving the

accuracy of predictions. We even added some ISL alphabets

for training that were manually captured using the webcam
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Fig. 3. Mediapipe hand landmarks

for better generalization and adaptibility. This was done to

improve accuracy and make the model more flexible for future

use. We chose ISL alphabets because they had two hand

gestures for some alphabets which ASL was lacking. For

training on words, we created a custom dataset while ensuring

the ASL words requirements. After shuffling, mixing, and

filtering the datasets, we obtained a dataset consisting of 26

alphabets, 7 words, and 3 special symbols (delete, space, and

enter). The delete sign is used to remove any letter from the

screen. It is helpful to remove any letter in case the model

incorrectly predicts it. Space symbol adds a space after any

word. It is helpful to form sentences. The ’enter’ sign is

used to generate audio for the currently spelled words. The

dataset preparation step was carried out several times and cross

verified with the predictions of the ML model. Finally, the best

possible dataset was created that performed well compared to

all others in terms of real-time accuracy. The training was

performed on this final dataset to generate our final model.

The datasets we used were Kaggle datasets named Dataset-1

[22], Dataset-2 [23] and Dataset-3 [24].
C. Data Pre-processing

Once the image is fed, we create a hand extractor using the

Mediapipe framework. The images are preprocessed using the

Mediapipe framework. The Mediapipe extracts 42 landmarks

and their specific connections from the image as shown in

Figure 5. Hence, the actual image becomes useless once its

features are extracted. But, these features need to be processed

before training model over them, because they are useless in

their raw/natural form as these are mere co-ordinates indi-

cating different points on hand in a certain 2D frame. Feature

derivation involves evaluating angles and the length of fingers.

Each finger has three segments like (5,6), (5,7), (5,8) for index

finger, where 5 is point on palm and 8 is tip of the finger.

Hence we have 15 segments for 5 fingers. But, the thumb has 4

segments (0,1), (0,2), (0,3), (0,4). So, the point 2 is removed as

thumb has 3 segments in real. It keeps in maintaining balance

and accounting for 15 segments. We keep the longest segment

of index finger as our reference segment, as its most volatile.

All angles and lengths of other segments will be calculated

relative to the reference segment. For measuring the lengths of

other segments, we will use ratios. For example, if the length

of the reference segment is 1, then the length of the middle

finger’s largest segment may be 1.4, the length of the thumb’s

largest segment may be 0.5, and so on. We prefer ratios over

absolute length due to a fundamental reason. If the hand is

very close to the camera, then the absolute length of fingers

will be larger compared to the case where the hand is far from

the camera. However, whatever be the distance between hand

and camera in real-time, the ratios will always be the same. So,

using ratios rather than absolute lengths is better in real-time

usage. The same is the reason for using a relative reference line

for calculating angles. If the reference for calculating angles is

fixed, then the real-time performance will be very rigid. If the

user performs the correct sign, but his hand is at a slight angle

from the reference line, the model will mispredict it. If we keep

the reference line relative, the user can focus on performing

correct signs without worrying about the angle. Our final

model would give better-generalized results. The ratios and

angles are calculated for all fingers (except the index finger,

which is the reference) and appended in a pandas dataframe.

This process is repeated for the entire dataset, and a final

dataframe is created. The dataframe consists of an additional

column about the labels, hand(left or right) of the trained

image. The first letter of each image name in the dataset tells

us the label name. We extract this label using string slicing

and store it in the dataframe under the ’label’ column, and for

hand we flip the same image so that we can get dataset for

both hands. So user can use any hand for communicating.The

dataframe contains 10 columns named slope0, slope1, slope2,

slope3 slope4, dist01, dist02, dist03, dist11, dist12, dist13,

dist21, dist22, dist23, dist31, dist32, dist33, dist41, dist42,

dist43, slope01, slope02 slope03, slope11, slope12, slope13,

slope21, slope22, slope23, slope31, slope32, slope33, slope41,

slope42, slope43, hand, label. Where slopei is slope of ith

finger, distij is distance ratio of jth segment of ith finger

to reference segment, slopeij is slope difference between jth

segment of ith finger and reference segment, hand is left,right,

label is letter/word the data denotes. For the words and some

other letters dataset, where two hands are involved, we create

a different dataframe with more columns as the number of
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TABLE II. ACCURACY ON 
DIFFERENT MODELS

Classifier algo-
rithms

Accuracy of one
hand dataset(%)

Accuracy of two
hand dataset(%)

RFC 90.12 94.58
NBC 86.59 79.74
LRC 82.59 89.95
KNN 82.12 89.15
SVC 80.47 90.91
LwP 72.96 58.45

features is doubled for two hands. We generate 2 CSV files

using the two data frames we created for one hand and

two hand data. These calculated parameters are finalized for

training the machine learning model. This final dataset will be

fed to the ML model to train. Our ML algorithm works on

this preprocessed data.

D. Machine Learning Model Training

We trained various Machine Learning classifiers, Learning

with Prototype (LwP), Logistic regression classifier (LRC),

Support-vector machines classifier (SVC), Random forest clas-

sifier (RFC), K-nearest neighbour (KNN) and Naive bayes

classifier (NBC) with the dataset prepared using steps ex-

plained in the previous section. We evaluated the performance

of each algorithm using test data. As we need a light-weight(i.e

fast working) algorithm we didn’t include the neural network

algorithms. We tested different hyper-parameters of each of

these algorithms and selected the best parameters that works in

favor of both being lightweight and classify at better accuracy.

E. Testing phase based on train test split:

For testing the accuracy of different algorithms, we shuffled

and split the data in two parts (2/3 - training data, 1/3 - testing

data). The algorithm is trained using training data and accuracy

is calculated based on prediction of testing data. Table II

displays the performance of each algorithm on two datasets

(one hand, two hand).

Hence, we implemented Random Forest Classifier (RFC)

for classification in our system. The RFC distributes the data

in more than one samples and fits the decision tree on these

samples and averages them to improve the prediction accuracy.

The sample distribution helps in reducing the overfitting

effect. The hyper-parameters are tuned and final values set

are max depth=12, min sample split=4, random state=101.

F. Testing phase on real time data

We created a new python file named handextractor.py that

performs real-time testing on data. We read the CSV files

created in the training phase and store them as data frames.

In this phase, OpenCV is used to capture frame-by-frame

information of real-time data. For every frame, we first do

feature extraction using the Mediapipe hand’s package. The

landmarks and connections fed from the frame are sent to our

model. The model calculates the ratios and angles of different

fingers’ segments, w.r.t. the index finger’s largest segment.

The trained algorithm is used to predict the letters for given

input. However, using this technique, many words are printed

on the screen in a single second. The reason for it is that if

OpenCV reads real-time data at 30 fps, then per second, 30

output labels will be generated. It is too fast to handle by the

user in real-time. So, we set a threshold value for it. We will

print the output label only if we have generated 40 labels of

a certain letter. We will store these labels in a dictionary and

output that label which has occurred a maximum number of

times. So even if our model incorrectly predicts a few times,

it will still not affect the overall output. We will print the

output generated by the model on the screen itself using the

cv2 method putText(). We also have some special signs like

’Space’, ’Delete’ and ’Enter.’ These are not supposed to get

printed. We allow them their tasks using if, elif, and else

methods. If the sign detected is ’Space,’ then append ” ” to

the current string printed on the screen. If the sign detected is

’Delete,’ remove the last alphabet of the string printed on the

screen. If the sign detected is ’Enter,’ feed the word printed on-

screen to the gTTS module and generate audio for the currently

spelled word. We have also added the autocorrect feature to

our model. It helps generate logically correct sentences even

if the user misspelled 2 or 3 alphabets wrongly in a word.

We have also implemented text to speech module to complete

the 2-way communication. This method will take audio input

from the normal user and convert it to text that a deaf and

mute person could read and understand. A brief overview of

all the processes we discussed till now can be inferred from

figure 4.

V. RESULTS

This section discusses the user interface and the perfor-

mance results in terms of accuracy for interpreting signs for

all English alphabets and some common words, thank you,

please, hello etc.

A. UI for Sign Language Interpretation System

We developed a web application using streamlit. It is a

light weight UI framework that eases of deployment of our

model in real world applications. In real time, if the user

is unable to form correct signs, then 1-2 alphabets of any

word may get incorrectly classified by our model. To avoid

that, we have added auto-correct feature that predicts the

correct word even if 1-2 alphabets are incorrect. The UI has a

sidebar having options: About App, Info about Signs, Run on

Image, Run on Video and Info about project group members.

The ”About App” section contains an overview of the sign

language communication. In ”Info about Signs” section, the

user can see a reference table containing all signs of respective

images. ”Run on Image” section helps to classify letters on

static images if we upload them. ”Run on Video” section helps

to classify letters on static videos if we upload them. To run on

real time dynamic gestures, the user has to use ”Use webcam”

button. It will ask for permission to open the webcam and

start detection and word formation in real time. The user can

set the values of ”maximum number of hands” that the model

can detect too. This value is set to 2 by default. The minimum
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Fig. 4. Basic workflow of the model

detection confidence can also be adjusted by the user in the UI

itself. If user puts his hand in front of webcam, then mediapipe

will show lines only if its x percent confident that the object

is a hand. Here, x is the minimum detection confidence value

in percentage representation. The value of minimum detection

confidence lies in between 0 and 1. To convert it to percentage

representation, we multiply it by 100. If it’s value is 0.6 (value

in percentage will be 60), then it will show lines only if the

model is 60 percent sure that it’s a hand. It’s value can be

adjusted as per video camera quality. If quality of webcam is

good, then detection confidence can be set high. Otherwise, it

must be kept low. The user has control over it and can modify

it according to the requirements.

B. Performance Analysis
All these experiments were performed on a laptop having

Intel(R) Core(TM) i3-6100U CPU @ 2.30GHz and 8GB

RAM. The proposed method is designed specifically for

good performance on real-time data. Conventional methods

generally provide excellent accuracy on static data, but their

accuracy falls significantly when tested on real-time data. We

tested our proposed model on real-time data by testing for each

label four times and recording the predicted outputs. Then the

accuracy would be calculated as follows:

Accuracy =
Number of signs correctly predicted

Total number of predictions made

We also calculated the accuracy for each test using the same

formula. There will be 5 tests overall. The final accuracy

obtained overall is calculated as follows:

FinalAccuracy =

∑5
i=1 Accuracy(Test i)

4

TABLE III. THE PREDICTION 
TIME

Frame
Rate(fps)

Frame window for
testing

Time taken(sec)

30 1 0.033
60 1 0.016
30 10 0.33
60 10 0.16
30 20 0.67
60 20 0.33
30 40 1.33
60 40 0.67
30 80 2.67
60 80 1.33

Table IV shows the accuracy related to each test run.

We obtained an overall accuracy of 94.54 percent on real

time data. The accuracy keeps increasing as the number of

tests increase. It’s so because the user can figure out what

features are getting extracted and fed to the model. If he gets

any incorrect prediction, then the user can make necessary

changes in his sign as he can see what features are being

extracted.

LwP works very fast, giving the recognized letter in every

frame, making the time to recognize the gesture to be 1/30

(0.033) sec for a 30fps system, 1/60 (0.016) sec for a 60

fps system which is very fast even for real-time. However,

as explained in the methodology, we have created a frame

window of 80 frames for the words formation and letters

printing part. The majority of the classification for letter/word

will take for the final output. It will reduce the chances of
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Fig. 5. User Interface

error in the final prediction even if the user has made wrong

gestures in some frames. The overall frame window will

have the gestures which are correctly classified. Thus, while

making the gestures, the user can create wrong gestures for

some frames, But eventually, the user will tend to make the

fitting gesture. So for this, there should be a time frame

for the user to make the right gestures. If the time frame is

small, the user will not always make the fitting gesture in

that short time frame. Thus it will not be user-friendly. If

the time frame is long, the user has to hold the gesture he

wants to make for longer. So for this, we have to set the time

frame appropriately, i.e., neither less nor more, so that there

can be sufficient time in which the user can make the gesture

without the effort to hold the hand for long. So for setting

this, our testing system’s webcam works at 30 fps, i.e., the

webcam captures 30 frames per second. We had to set the

frame window appropriately, i.e., neither less nor more. We

have come up with the length of the frame window as 80

frames for testing our system. For this, we are getting 2.67

secs to make a single gesture. We have tested it for 30 frames

per window (1-sec time frame ), 50 frames per window (

1.67 secs time frame ), and 70 frames per window ( 2.33

secs time frame ) also. One can say that there is a trade-off

between the accuracy and speed of recognition. However, the

good part is that adjusting the frame window entirely depends

upon the user. i.e., how fast he/she can make the gestures.

Furthermore, as the user gets familiar with all the gestures

for the letters/words, he will get used to making the hand

signs. Thus, he can set the frame window at a lower value

also. (i.e., 30 frames or 50 frames). It depends entirely on

the user’s ability to make gestures, i.e., how fast he/she can

make them. The table related to the same is plotted as Table 3.

VI. DISCUSSION AND FUTURE WORK

The proposed method performs very well with different

users, various backgrounds and even with two hands. It

can be further extended by adding complex gestures to the

dataset apart from basic alphabets and signs. Since there is

no readily available dataset for the complex gestures, creating

a corresponding dataset is one of the critical challenges.

These gestures will make use of hands, arms, face, and body.

Mediapipe pose can be effectively used for the same. Once

the new model has been trained, it is required to combine the

usage of the Mediapipe pose and the Mediapipe hands and

produce a very generalized model. The benefit of including

these gestures would be that the user can directly generate

that word from a single pose instead of typing alphabets to

form words. Nevertheless, it will also have some limitations

as all words cannot be included in our model. We will include

common words only. If any word is not trained on our model, it

can be formed using sign language letters. Further, to create a

better front-end mechanism, we plan to build an authentication

system too. Users can log in to the portal and carry out video

calls using sign language. We also intend to provide users with

the option of generating their own custom gestures for quick
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TABLE IV. THE LETTER-WISE ACCURACY FOR EACH DATASET IN 
PERCENT

Word Test-1 Test-2 Test-3 Test-4 Acc
a a a a a 100
b b b b b 100
c c c c c 100
d d d d d 100
e e e e e 100
f f f f f 100
g g g g g 100
h h h h h 100
i j i i i 75
j j j i j 75
k k k k k 100
l l l l l 100
m m m m m 100
n m n n n 75
o o o o o 100
p p p p p 100
q q q q q 100
r u r r r 75
s s s s s 100
t m t t t 75
u u u u u 100
v v k v v 75
w w v w w 75
x x x x x 100
y y y y y 100
z z z z z 100
hello hello hello hello hello 100
please please please please please 100
thankyou thankyou thankyou thankyou thankyou 100
bathroom bathroom bathroom bathroom bathroom 100
family family family family family 100
friend friend friend friend friend 100
yes yes yes yes yes 100
Acc 87.87 93.93 96.96 100 94.69

communication once they log in to the site. It would be an

excellent application for the public to use.

VII. CONCLUSION

In this paper, we proposed a light weight method for Sign

Language recognition using Mediapipe and random forest

classifier trained on American Sign Language. The proposed

work successfully performed very well on real-time data

attaining an accuracy score of 94.69 %. Conventional methods

using a computer vision-based approach are unable to obtain

such high accuracy on real-time data. Some of them can

achieve such accuracy but are deeply affected by background

noise. The proposed method performs well and is unaffected

by background noise. The user can even have many different

things in the frame; still, the Mediapipe effectively detects

the hands. Also, the web-based user interface is a signifi-

cant improvement here. The user can look at what features

are being extracted from their hands in real-time using the

Mediapipe. It helps the user to correct their mistakes while

creating hand signs. It also has an autocorrect feature enabled

along with speech to text and text to speech conversion. The

user can adjust the values of minimum detection confidence

of the Mediapipe hands using the frontend slider option. In

the UI, the user has three options to test our model. The user

can upload any picture, upload any video, or test on real-time

data. The light weight models used in the proposed method

makes it suitable for the real time recognition systems.
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