
Transformer-Based Deep Monocular Visual
Odometry for Edge Devices

Anton Klochkov
ITMO University, BrainGarden LLC

akl@braingarden.ai

Ivan Drokin
BrainGarden LLC

ivan@braingarden.ai

Abstract—A lot of recent works have shown that deep learning-
based visual odometry methods outperform existing feature-
based approaches in the monocular case. However, most of
them cannot be used in mobile robotics because they require a
sufficiently powerful computing device. In this paper, we propose
a method with a significant reduction in computing resources and
with a slight decrease in accuracy. To achieve that we replaced
recurrent block by lightweight transformer-based module.

We evaluate the proposed model on the KITTI dataset for
calculating accuracy and test a computation cost on NVIDIA
Jetson Nano and NVIDIA Jetson AGX Xavier. Our experiments
show that the proposed model works faster than the considered
original model.

The code for training and testing is available at
https://github.com/toshiks/TBDVO.

I. INTRODUCTION

Visual Odometry (VO) is one of the most required tech-

niques for pose estimation (ego-motion) from image se-

quences. It is crucial for a lot of applications in robotics

(SLAM, autonomous driving, etc.), augmented/virtual reality,

etc.

Over the past few decades, it has been proposed a lot of

traditional (feature-based, direct photometric-based) methods

for visual odometry. Although state-of-the-art algorithms show

perfect robustness and accuracy, they are usually required

significant engineering effort and careful integration into the

system. Also, some of them perform well only within special

environmental conditions, such as light, variety in textures,

etc. In monocular camera case methods have low perfomance

due to the scale drift [1], [2] and low robustness.

Recently, deep learning has been applied to a lot of com-

puter vision tasks [3], [4], including visual odometry [5]–

[10]. Most of the proposed models used Convolutional Neural

Networks (CNNs) or a combination of them with Recurrent

Neural Networks (RNNs) for calculation relative camera pose.

CNN-only based approaches [5], [6], [10], [11] have large

computation cost, because for robust performance, it requires

combination of pose/depth/optical flow estimation networks

[3], [4], [12]. RNN-based methods [7], [9], [13] have of

lot of parameters because of LSTM block and also required

significant computing resources.

In this paper, we propose a method for computational

optimization of RNN-like architectures. We choose one of the

well-known models for monocular visual odometry DeepVO

[7] as a basis. We suggest using an encoder of transformer [14]

instead of LSTM. Due to positional encoding, the sequence of

frames is not disturbed, and the self-attention module helps to

evaluate the context, similar to LSTM, but more efficiently:

information is processed simultaneously, so information will

not be lost with large sequences, while this happens in LSTM

cells.

We evaluate the performance of the proposed model on

the KITTI dataset [15]. Image sequence processing speed is

evaluated on NVIDIA Jetson Nano and NVIDIA Jetson AGX

Xavier. Our experiments show that on small sequences, our

approach is faster than DeepVO [7], and with an increase in

the number of frames, LSTM significantly loses in speed to the

transformer. We also managed to reduce the number of model’s

trainable parameters by 10 times (which had a positive effect

on the learning process) and the number of calculations.

II. RELATED WORKS

A. Traditional methods for visual odometry

Traditional methods for ego-motion [16]–[19], which have

been studied for the past few decades, include a several-

stage pipeline for image processing. At the first stage feature

detectors is used (SIFT [20], SURF [21], Shi-Tomasi [22],

etc.) for group of keypoints extracting. After that, at the second

stage, keypoints matching on consecutive frames is performed.

The last stage estimates the global scale of detected keypoints

by motion estimation (minimization of reprojection error).

However, these approaches have low-quality accuracy in an

environment with low texture environments or poor illumina-

tion [23]. Other methods, which estimate the motion by pixel

intensities [24], require extensive computational resources.

B. Deep learning for visual odometry

In the last decade, deep learning approaches tightly entered

the toolkit for solving computer vision problems. In particular,

to address issues with traditional feature-based methods for

visual odometry, many works are adopting CNNs [5], [6],

[25] for extracting and matching features to estimate visual

odometry. In these works, authors concatenate two consecutive

images, process them by CNN and transform visual features

to pose by stacking of linear layers. Processing only two

images has a serious disadvantage: neural network incapable of

modeling sequential information [7], which affects the quality.

For extracting space-time motion information one can use

3D CNN, but it requires extensive computational resources,

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



even for very small images. Moreover, such an approach does

not allow work with different sequence sizes. Also, many

methods use depth estimation network [12] to approximate a

global scale: limitations of them we describe in next section.

Finally, for processing the sequence of images, RNNs [7],

[13] can be used. In these approaches, the sequence is splitted

into pairs of consecutive images, each of them is processed

by CNN and fed into the LSTM block. The hidden state

inside LSTM allows to model dynamics and relations among

a sequence of CNN features. Authors use RNNs to solve the

problem with extracting space-time motion information, but

have limitations of sequence length: with increasing count of

images information is lost and the number of computational

operations increases. Also, RNNs have limited context: ele-

ments of sequence processes one by one, so recent values

have the greatest influence on prediction.

Partially issue connected with losing information solved

in the [9] by using external memory block, which can save

information about moving among frames in long sequences.

But memory block requires additional computation costs.

C. Deep learning for monocular depth estimation

Most of the modern state-of-the-art models for visual odom-

etry used depth maps for minimizing the photometric error

between the recovered image from it and the original image.

So, the temporal information is included in the training of

depth, which produces to more accurate pose estimation.

Most of these works solve the problem in an unsupervised

way by learning depth map estimation using the photometric

error [26], [27]. However, approaches in them are not able to

recover the global scale, which needs for accurate depth map

estimation. To avoid it in [8], [28] was proposed using stereo

image pairs to estimate scaled visual odometry.

Also, in the recent work [29] was shown, that modern tech-

nics for optimization depth estimation networks, can give only

19 FPS (Frame Per Second) for input image shape 224× 224
on NVIDIA TX2 edge platform (which is comparable in

performance with NVIDIA Jetson Nano or NVIDIA Jetson

AGX Xavier). Because, usually for solving visual odometry

tasks need a pose estimation network (which has similarities

with the depth estimation model architecture), the speed of the

final approach can be less than 10 FPS.

For these reasons, we do not consider approaches with depth

estimation models.

D. Deep learning for optical flow estimation

As well as methods from the previous section most of

the modern state-of-the-art models for visual odometry used

optical flow estimation network [3]. Some of them [11] used

encoder and decoder. Another [7], [9] include an only encoder,

assuming that this will help to converge faster. Out network

contains encoder of optical flow model from [3].

E. Transformer

Recently success of transformers [14] in NLP (Natural

Language Processing) promoted researchers to apply them in

computer vision tasks. Transformer architectures are based

on a self-attention mechanism that learns the relationships

between elements of a sequence. Unlike RNN, Transformers

can learn long dependencies between input sequence elements

and support parallel processing of sequence [30].

Recent work [11] shows that transformer can be applied

for visual odometry tasks. But authors use a combination

of flow and depth estimation networks, what computationally

inefficient.

In this paper, we suggest replacing LSTM with the encoder

of transformer on the example of the model from DeepVO [7]

to solve problems with long sequences.

III. METHOD

In this section we begin with an overview of proposed

network(Sec. III-A). After, we describe proposed modules in

the framework in (Sec. III-B, Sec. III-C, Sec. III-D). Finally,

we presen the loss function in (Sec. III-E).

A. Overview

The architecture of the proposed method for visual odom-

etry is shown in Fig 1. For camera pose estimation our

model use sequence of consecutive image as input S =
{I0, . . . , IN+1}. After, we split the sequence into N pairs

P = {(I0, I1), (I1, I2), . . . , (IN , IN+1)}. From these pairs

independently we extract features by CNN. Then, we reduce

the number of features using average pooling. The sequence

of processed features we use as input to the encoder of

the transformer (EoT), where the model learns sequential

information. Finally, for each element of the sequence, we pass

high-level features, which contain sequential information, over

linear layers for transformation into N relative poses.

B. Feature Extractor

Traditional methods for visual odometry start with extract-

ing and matching corresponding feature points. To address the

same task, we use CNN especially designed for extracting

geometric features.

Our feature extractor is based on FlowNet [3], which extract

from pairs optical flow. But for our task is not necessary to

have an approximated vector of moving each pixel. Because

sequential information we extract by the encoder of the

transformer, we do not need a decoder from FlowNet [3]. So,

we use an only encoder.

FlowNet [3] encoder contains stack of convolution layers.

First of them has kernel size 7 × 7, next to — 5 × 5 and

remaining layers — 3×3. Each convolution is accompanied by

BatchNorm2d, LeakyReLU, and Dropout layers. The number

of channels (filters for feature extraction) increases from layer

to layer. It allows collecting as many features as possible.

In our case for two concatenated RGB images with

shape [180, 600] transformed by CNN to tensor with shape

[1024, 3, 10]. It means, that input to the next linear layer, which

is located in EoT, should map 30720 number features to hidden

size number. Because we need to learn as much as possible

information from the sequence, we need a big enough hidden

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 423 ----------------------------------------------------------------------------



Fig. 1. The architecture of the proposed method for visual odometry. The dimensions of the tensors depend on input image size. Camera image credit: KITTI
dataset [15].

⊕
means concatenation over the channel,

⊗
— stack of tensors.

size, for example, 1000 [7]. It means, for our case we need

linear layers with about 3 · 107 parameters. It is too much and

presents this layer as a bottleneck.

To address this problem we use average pooling for each

feature map. Finally, after the feature extractor, we have

a tensor with dimension [batch size,N, 1024]. We denote

features from CNN after average pooling as {f0, . . . , fN}:

fN = AvgPool(CNN(< IN , IN+1 >)) (1)

where <,> — concatenation images over channels.

C. Encoder of transformer

EoT [14] allows the model to extract sequential information

from a stack of features for pose refining. We treat the

pose estimation as a machine translation task, where context

matters. So, EoT translates features from CNN ({f0, . . . , fN})
to high-level representation of camera pose in an one-to-one

correspondence. Information about relative positions of frames

we inject using position encoding to input:

{f ′
0, . . . , f

′
N} = PositionalEncoder ({f0, . . . , fN}) (2)

{t0, . . . , tN} = EoT ({f ′
0, . . . , f

′
N}, {f0, . . . , fN}) (3)

In this way, context embeddings allow the model not

to forget about the original geometric features from CNN,

input embeddings include position information and allow the

network to refine relative poses in the right order by multi-

head self-attention blocks. Also here we save on calculations

because we do not need a decoder block from the transformer

and any processing of features from CNN.

D. Pose regression

For transformation high-level features from EoT to relative

poses we use fully connected layers. Our representation of

relative pose contains two parts: translation of rotations and

coordinate. We use quaternion qi,i+1 = (qw, qx, qy, qz) for

angles, because euler angles have gimble lock and rotation

matrix have a lot degrees of freedom [31]. For coordinate

translation we use vector with three values Ti,i+1 = (x, y, z).
Quaternions are one of the best choice [31] for deep

learning because they are easily formulated in a continuous

and differentiable way. But the main problem with them is that

they have two unique values (from each hemisphere) that map

to a single rotation. To avoid this we constrain all quaternions

to one hemisphere.

E. Loss for training

The loss function for training includes several components,

which we describe below.

1) Geodesic loss: To avoid computational errors with trans-

formation ground truth to quaternions, we decide convert

predicted quaternions to rotation matrices according to the

following formula:

R(q) = 2

⎡
⎣
0.5− q2y − q2z qxqy − qwqz qxqz + qwqy
qxqy + qwqz 0.5− q2x − q2z qyqz − qwqx
qxqz − qwqy qyqz + qwqx 0.5− q2x − q2y

⎤
⎦ (4)

During training, we want to reduce the error between the

predicted rotation matrix and from the ground truth. To address

that, we find the distance between rotation matrices, which is

useful for pose estimation problems [32]:

Lr(R1, R2) = arccos
tr(R1R

T
2 )− 1

2
(5)

where R1, R2 — rotation matrices.

2) Odometry loss: For reducing error in the predicted

relative pose we propose a simple loss function that minimizes

the distance between relative rotations and coordinates. For

angles we use Eq. 5, for coordinates, we combine Mean

Absolute Error (MAE) and Mean Squared Error (MSE):

Lrodom =
1

N

N∑
i=0

Lr(Ri,i+1, R̂i,i+1) (6)

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 424 ----------------------------------------------------------------------------



Lxodom
=

1

N

N∑
i=0

(∣∣∣∣∣∣Ti,i+1 − T̂i,i+1

∣∣∣∣∣∣
1

+
∣∣∣∣∣∣Ti,i+1 − T̂i,i+1

∣∣∣∣∣∣2
2

) (7)

Lodom = α1Lxodom
+ α2Lrodom (8)

where Ri,i+1, Ti,i+1 relative rotation matrix and transfor-

mation from ground truth between Ii and Ii+1, R̂i,i+1, T̂i,i+1

— from prediction of model, α1, α2 — constants for scaling

between rotations and coordinates.

Odometry loss (Eq. 8) minimizes the error of relative pose

between two frames. We suppose this constraint allows the

model to be more robust and not be adapted to the environment

[5].

3) Geometric loss: Eq. 8 enforces the local consistency

between the two frames. But the small error in relative pose

can produce a large error for the global pose. To avoid this, we

calculate geometrics loss [5], which find error between global

poses.

To achieve that, firstly we present relative poses in the

homogeneous coordinates:

Pi,i+1 =

[
Ri,i+1 Ti,i+1

0 1

]
(9)

Secondly, we calculate global poses:

Pi+1 = PzeroP0,1P1,2 . . . Pi,i+1 (10)

where Pi+1 — global pose at frame i + 1, Pzero — pose

in origin.

After that we calculate the loss function according to the

following formulas:

Lrgeo =
1

N

N∑
i=0

Lr(Ri, R̂i) (11)

Lxgeo
=

1

N

N∑
i=0

(∣∣∣∣∣∣Ti − T̂i

∣∣∣∣∣∣
1
+
∣∣∣∣∣∣Ti − T̂i

∣∣∣∣∣∣2
2

)
(12)

Lgeo = β1Lxgeo
+ β2Lrgeo (13)

where Ri, Ti global rotation matrix and transformation

from ground truth at frame Ii, R̂i, T̂i — from prediction of

model, β1, β2 — constants for scaling between rotations and

coordinates.

4) Overall loss: The overall loss function in our work can

be expressed by the following:

Lover = λ1Lgeo + λ2Lodom (14)

where λ1, λ2 — constants for scaling between two loss

functions.

IV. EXPERIMENTS

Here we evaluate the performance and speed of our pro-

posal. We mainly use KITTI [15] dataset for benchmarking

performance. For speed calculation, we run our model on

NVIDIA Jetson Nano, NVIDIA Jetson AGX Xavier, and Per-

sonal Computer. The code for training and testing is available

at https://github.com/toshiks/TBDVO.

A. Implementation and training

The model is implemented in Pytorch [33] and Pytorch-

lightning [34]. For all our experiments we set λ1 = λ2 =
1, α1 = β1 = 1, α2 = β2 = 10. It allows to achieve the

balance between the rotation and the translation errors, because

the rotation error much smaller than the translation. We use

AdamW optimizer without changing default parameters. The

similar approach for choosing the coefficients is described in

works [5], [7]. The initial learning rate is set to 0.0004 and

goes down by γ = 0.8 every 10 epoches.

We use pre-trained FlowNet [3] weights to initialize CNN

backbone. For the rest of the parameters, we used Xavier ini-

tialization. The hidden size for the encoder of the transformer

is 1024.

We train the model on two NVIDIA GeForce RTX 2070

with batch size set to 8 and sequence length set to 7 frames.

The image size fed into the network is resized to 180× 600.

To make the model more robust we use augmentations

from Albumentations [35]. We randomly applied over each

sequence RGBShift, RandomGamma, RandomBrightnessCon-

trast, ColorJitter. Also, we flip sequence to balance the dataset

by the value of the rotation angles and skip frames (with

probability 0.3) to balance by the speed of a car.

B. KITTI Dataset

For a fair comparison with existing methods, we use KITTI

Visual Odometry Benchmark [15]. The dataset includes 11

driving sequences with available ground truth. Dataset was

recorded at a low frame rate (about 10 FPS) by driving in

urban areas with the dynamic object. The approximate speed

of the car was up to 60 km/h, it is challenging for monocular

visual odometry algorithms.

For evaluating and testing we spilt the dataset into two parts.

Sequence 00, 02, 08, and 09 we use for training and another

to evaluate metrics.

C. Visual odometry

The performance of visual odometry is evaluated using

KITTI Visual Odometry evaluation metrics [15], i.e., averaged

Root Mean Square Errors (RMSEs) of the translation and

rotation errors for all subsequences of length ranging from

100 to 800 meters.

We compare the performance of our model with deep

learning approaches DeepVO [7] and its modification Deep-

VOM, and with monocular VISO2 [17] as a classic baseline.

DeepVOM is our modification for reducing the number of

parameters. To achieve that we use average pooling for each

feature map from CNN.

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 425 ----------------------------------------------------------------------------



TABLE I. RESULTS ON THE KITTI DATASET. DEEPVO [7], DEEPVOM AND OUR MODEL ARE SUPERVISED METHODS TRAINED ON SEQ 00, 02, 08 AND 
09. VISO2-M [17] TRADITIONAL METHOD FOR MONOCULAR VISUAL ODOMETRY. THE BEST RESULTS ARE HIGHLIGHTED.

Sequence

Method 03 04 05 06 07 10 Avg

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

VISO2-M [17] 8.47 8.82 4.69 4.49 19.22 17.58 7.30 6.14 23.61 29.11 41.56 32.99 17.48 16.52

DeepVO [7] 10.10 6.19 5.90 0.87 5.49 1.91 4.75 1.37 6.17 3.72 10.86 3.72 7.22 2.96

DeepVOM 8.05 4.51 6.14 0.21 4.74 1.51 4.48 0.95 3.88 0.90 7.75 2.37 5.84 1.74
Ours 8.10 4.56 4.63 1.44 5.13 1.59 4.02 1.25 5.26 2.29 6.84 1.97 5.66 2.18

trel : average translational RMSE drift (%) on length from 100, 200 to 800 m.
rrel : average rotational RMSE drift (◦/100m) on length from 100, 200 to 800 m.

Fig. 2. Reconstructed trajectories of sequences 05 and 07 from the odometry
benchmark of the KITTI dataset. [15]

As can be seen in Table I, the proposed approach is

comparable in performance with DeepVO(M) [7] and out-

performs VISO2-M [17]. Moreover, our solution has the best

average score. We consider it is connected with the attention

mechanism, which helps to produce better results due to

the simultaneous processing of several frames. Examples of

reconstructed trajectories we show on Fig. 2.

In Tables II, III, IV we show, that our solution significantly

outperforms the LSTM-based model in terms of speed. Taking

into account the results from the Table I, we can conclude that

our solution has practically not lost quality, but gained speed.

D. Computational complexity analysis

Deep learning-based methods are generally considered to be

computationally expensive. We make the architecture of our

model faster than the classical RNN-based model due to par-

allelization and simultaneous processing of several frames by

the encoder of the transformer. Moreover, some blocks inside

the encoder can be cashed unlike LSTM, where processing is

performed sequentially.

1) Devices: in this section we describe hardware environ-

ments in our experiments.

NVIDIA Jetson Nano a low-power, high capability, ef-

ficient GPU. This device comes with a 128-core integrated

NVIDIA Maxwell GPU and a quad-core 64-bit ARM CPU.

It has 4GB of LPDDR4 memory at 25.6GB/s and 5W/10W

power modes. We flash an SD card with JetPack 4.6 and

installed all required packages. We run all our tests on this

device with 5W power mode.

NVIDIA Jetson AGX Xavier a low-power, high capability,

efficient GPU. Much faster than the NVIDIA Jetson Nano.

This device comes with a 512-core integrated NVIDIA Volta

GPU and an 8-core 64-bit ARM CPU. It has 64GB of

LPDDR4x memory at 136.5GB/s and 10W/15W/30W power

modes. We install JetPack 4.6 onboard and all required pack-

ages. We run all our tests on this device with maximal power

mode.

Personal computer contains modern 8-core 64-bit CPU

AMD Ryzen 7 2700. It has 31GB of DDR4 memory at 17GB/s

and NVIDIA GeForce RTX 2070. We install Ubuntu 20.04.2

LTS on the device with all required packages.

2) Benchmark implementation: in this section we describe

how we implement benchmarks.

All the tests we perform on Pytorch [33]. We divide our

tests into two parts.

In the first part of the experiments, we analyze the speed

of the whole trained models. Because production usually uses

caching, we apply this technique to cache previous results of

CNN: we do not need to process by CNN all frames from

sequence — the last two are sufficient. Such optimization

significantly speeds up the solution and allows to estimate the

impact of the sequential block of the model (all parts of models

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 426 ----------------------------------------------------------------------------



TABLE II. RESULT OF BENCHMARKS ON NVIDIA 
JETSON NANO

Jetson Nano

CPU [ms] GPU [ms]

DeepVOM (Full) 2015.93± 19.03 180.37± 1.26

Ours (Full) 1865.30 ± 16.03 151.76 ± 0.92

DeepVOM (w/o CNN) 231.00± 5.04 37.69± 0.68

Ours (w/o CNN) 73.83 ± 5.25 11.26 ± 0.78

5 10 15 20 25 30

20

40

60

80

Sequence lenght

S
p

ee
d

[m
s]

DeepVOM (w/o CNN)

Ours (w/o CNN)

Fig. 3. Comparison of the speed of models at different sequence lengths
running on the GPU of NVIDIA Jetson Nano.

after average poolings). We note this part of experiments as

DeepVOM(Full) and Ours (Full).

In the second part, we analyze speed only sequential block

of the model. It allows estimating the impact of the sequential

block without CNN. We note this part of experiments as

DeepVOM (w/o CNN) and Ours (w/o CNN).

Before each benchmark, we warm up a model, because the

first iterations usually have low speed. During GPU tests we

synchronize the interaction with the GPU, because otherwise

some of the calculations may still be happening when we load

the next elements.

Note here, the LSTM module has low-level optimization

unlike the encoder of transformer or positional encoding, and

even under these quite dishonest circumstances, our solution

shows significant superiority.

3) Benchmars on NVIDIA Jetson Nano: presented on Table

II. Our approach is about 3 times faster: as on GPU, as on

CPU. Because CNN inference is quite slow on Jetson Nano,

there is no significant increase in speed for whole models.

Difference between them is about 1 FPS.

But if we need a more long sequence, DeepVOM signifi-

cantly degrades. It happens because LSTM process sequence

items one by one, but encoder of transformer simultaneously.

We demonstrate this fact on Fig. 3. The speed of our solution

was practically unchanged, at the same moment LSTM slowed

down several times.

TABLE III. RESULT OF BENCHMARKS ON NVIDIA JETSON 
AGX XAVIER

Jetson AGX Xavier

CPU [ms] GPU [ms]

DeepVOM (Full) 482.73± 17.84 26.51± 0.13

Ours (Full) 400.85 ± 19.27 23.01 ± 0.10

DeepVOM (w/o CNN) 113.48± 0.78 5.27± 0.06

Ours (w/o CNN) 47.48 ± 0.48 4.88 ± 0.07

TABLE IV. RESULT OF BENCHMARKS ON PERSONAL 
COMPUTER

Server

CPU (ms) GPU (ms)

DeepVOM (Full) 55.59± 0.37 4.40± 0.30

Ours (Full) 44.04 ± 0.47 3.67 ± 0.34

DeepVOM (w/o CNN) 14.48± 0.06 1.25± 0.02

Ours (w/o CNN) 3.47 ± 0.02 1.09 ± 0.01

4) Benchmars on NVIDIA Jetson AGX Xavier: presented

on Table III. This device is one of the most powerful among

edge platforms. For mobile robots, this can be a great solution,

because together with AI tasks, you can perform navigation

and movement tasks, while the resources will remain. So

benchmarks on that device are important to the industry.

Table III shows that our proposal works better (44 FPS vs

37 FPS for full models). Although the solution speed exceeds

real-time (25 FPS) on the GPU, the DeepVOM model can

degrade with increasing sequence length. In the case of the

CPU, our solution is guaranteed to give 2 FPS, while the

LSTM-based solution cannot provide such guarantees.

5) Benchmars on the Personal computer: presented on

Table IV. The personal computer is the most powerful device

of the considered. But even here our solution is much faster.

On the CPU, our model almost reaches real-time (22 FPS) and

the difference between the solutions is about 5 FPS. But as

the sequence length increased, we also observed degradation

of the DeepVOM speed.

V. CONCLUSION

We have proposed a novel approach for monocular visual

odometry based on Transformer architecture. The proposed

method does not require a large number of computing re-

sources and sufficiently high metrics for real-world tasks. We

have evaluated the approach on the KITTI dataset [15] and

have compared it with an existed solution. We also have

performed a computational complexity analysis on different

devices. Our experiments show that the proposed method can

be used on various autonomous devices with limited comput-

ing and energy resources. As the next step of our research, we

plan to extend the proposed method for significantly longer

sequences to reduce error accumulation over long distances.

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 427 ----------------------------------------------------------------------------



REFERENCES

[1] H. Strasdat, J. Montiel, and A. J. Davison, “Scale drift-aware large scale
monocular slam,” Robotics: Science and Systems VI, vol. 2, no. 3, p. 7,
2010.

[2] N. Yang, R. Wang, and D. Cremers, “Feature-based or direct: An evalu-
ation of monocular visual odometry,” arXiv preprint arXiv:1705.04300,
pp. 1–12, 2017.

[3] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. Van Der Smagt, D. Cremers, and T. Brox, “Flownet: Learning
optical flow with convolutional networks,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 2758–2766.

[4] A. Kendall, M. Grimes, and R. Cipolla, “Convolutional networks for
real-time 6-dof camera relocalization,” CoRR, vol. abs/1505.07427,
2015. [Online]. Available: http://arxiv.org/abs/1505.07427

[5] A. Valada, N. Radwan, and W. Burgard, “Deep auxiliary learning for vi-
sual localization and odometry,” in 2018 IEEE international conference
on robotics and automation (ICRA). IEEE, 2018, pp. 6939–6946.

[6] N. Radwan, A. Valada, and W. Burgard, “Vlocnet++: Deep multitask
learning for semantic visual localization and odometry,” IEEE Robotics
and Automation Letters, vol. 3, no. 4, pp. 4407–4414, 2018.

[7] S. Wang, R. Clark, H. Wen, and N. Trigoni, “Deepvo: Towards end-to-
end visual odometry with deep recurrent convolutional neural networks,”
in 2017 IEEE international conference on robotics and automation
(ICRA). IEEE, 2017, pp. 2043–2050.

[8] R. Li, S. Wang, Z. Long, and D. Gu, “Undeepvo: Monocular visual
odometry through unsupervised deep learning,” in 2018 IEEE interna-
tional conference on robotics and automation (ICRA). IEEE, 2018, pp.
7286–7291.

[9] F. Xue, X. Wang, S. Li, Q. Wang, J. Wang, and H. Zha, “Beyond track-
ing: Selecting memory and refining poses for deep visual odometry,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 8575–8583.

[10] N. Yang, L. v. Stumberg, R. Wang, and D. Cremers, “D3vo: Deep
depth, deep pose and deep uncertainty for monocular visual odometry,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 1281–1292.

[11] X. Li, Y. Hou, P. Wang, Z. Gao, M. Xu, and W. Li, “Transformer guided
geometry model for flow-based unsupervised visual odometry,” Neural
Computing and Applications, vol. 33, no. 13, pp. 8031–8042, 2021.

[12] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, “Digging
into self-supervised monocular depth estimation,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019, pp.
3828–3838.

[13] N. Kaygusuz, O. Mendez, and R. Bowden, “Mdn-vo: Estimating visual
odometry with confidence,” in 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 3528–3533.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[15] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[16] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an
open-source library for real-time metric-semantic localization and
mapping,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
2020. [Online]. Available: https://github.com/MIT-SPARK/Kimera

[17] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d recon-
struction in real-time,” in IEEE Intelligent Vehicles Symposium, Baden-
Baden, Germany, June 2011.

[20] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004. [Online].
Available: https://doi.org/10.1023/B:VISI.0000029664.99615.94

[18] Z. Z. Nejad and A. H. Ahmadabadian, “Arm-vo: an efficient monocular
visual odometry for ground vehicles on arm cpus,” Machine Vision and
Applications, vol. 30, no. 6, pp. 1061–1070, 2019.

[19] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,
and N. Roy, “Visual odometry and mapping for autonomous flight using
an RGB-D camera,” in Robotics Research - The 15th International
Symposium ISRR, 9-12 December 2011, Flagstaff, Arizona, USA, ser.
Springer Tracts in Advanced Robotics, H. I. Christensen and O. Khatib,
Eds., vol. 100. Springer, 2011, pp. 235–252. [Online]. Available:
https://doi.org/10.1007/978-3-319-29363-9\ 14

[21] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust
features,” in European conference on computer vision. Springer, 2006,
pp. 404–417.

[22] J. Shi et al., “Good features to track,” in 1994 Proceedings of IEEE
conference on computer vision and pattern recognition. IEEE, 1994,
pp. 593–600.

[23] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE
robotics & automation magazine, vol. 18, no. 4, pp. 80–92, 2011.

[24] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40, no. 3,
pp. 611–625, 2017.

[25] X. Yin, X. Wang, X. Du, and Q. Chen, “Scale recovery for monocular
visual odometry using depth estimated with deep convolutional neural
fields,” in Proceedings of the IEEE international conference on computer
vision, 2017, pp. 5870–5878.

[26] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular
depth estimation with left-right consistency,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 270–
279.

[27] R. Mahjourian, M. Wicke, and A. Angelova, “Unsupervised learning
of depth and ego-motion from monocular video using 3d geometric
constraints,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 5667–5675.

[28] H. Zhan, R. Garg, C. S. Weerasekera, K. Li, H. Agarwal, and I. Reid,
“Unsupervised learning of monocular depth estimation and visual odom-
etry with deep feature reconstruction,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 340–
349.

[29] X.-Z. Cui, Q. Feng, S.-Z. Wang, and J.-H. Zhang, “Monocular depth
estimation with self-supervised learning for vineyard unmanned agri-
cultural vehicle,” Sensors, vol. 22, no. 3, p. 721, 2022.

[30] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah,
“Transformers in vision: A survey,” ACM Computing Surveys (CSUR),
2021.

[31] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity
of rotation representations in neural networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 5745–5753.

[32] D. Q. Huynh, “Metrics for 3d rotations: Comparison and analysis,”
Journal of Mathematical Imaging and Vision, vol. 35, no. 2, pp. 155–
164, 2009.

[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[34] W. Falcon and The PyTorch Lightning team, “PyTorch Lightning,”
3 2019. [Online]. Available: https://github.com/PyTorchLightning/
pytorch-lightning

[35] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin,
and A. A. Kalinin, “Albumentations: Fast and flexible image
augmentations,” Information, vol. 11, no. 2, 2020. [Online]. Available:
https://www.mdpi.com/2078-2489/11/2/125

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 428 ----------------------------------------------------------------------------


