PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

Methods for Aggregating Crowdsourced

Ontology-based Item Annotations

Andrew Ponomarev
St. Petersburg Federal Research Center of the Russian Academy of Sciences
St. Petersburg, Russian Federation
ponomarev(@iias.spb.su

Abstract—Crowdsourcing plays an important role in modern
IT landscape, enabling the use of human information processing
abilities to solve problems that are still hard for machines. One of
the specific (and most demanded) applications of crowdsourcing
is collecting item annotations, i.e., describing the contents of
complex items with a help of labels (tags). Input received from
crowdsourcing participants is typically unreliable, therefore, to
increase the quality of annotations, each item is typically
processed by several participants and the obtained annotations
have to be aggregated. The paper considers a special case of
annotating, where a set of possible labels, as well as the set of
relationships between the labeled items and the labels are defined
by an OWL 2 ontology (OWL QL). Such semantic item
annotations turn out to be very useful in organizing large
collections of items and enabling semantic search in them. In
order to increase annotations quality, the paper proposes two
aggregation methods — OntoVoting and OntoSB, differing in that
the first one is agnostic with respect to participants’ reliability
and the second one accounts for variations in reliability.
Simulation experiments with ontology-based annotations of
varying quality show that the proposed aggregation methods
increase the quality of collected ontology-based item annotations.

I. INTRODUCTION

Crowdsourcing has become a widely used tool in a growing
palette of IT tools, helping to address many problems that are
hard for machines. An important kind of crowdsourcing
applications is collecting annotations. In these applications,
each participant is asked to associate some labels (tags) with a
given item (usually, a complex one — text, video, or image). It
involves understanding the contents of the item and finding the
most appropriate labels for it. Such annotations are then may be
used either to train AI models (for automating the process of
item contents interpretation), or directly to enable tag-based
search in data collections (it is typically much simpler to
implement a tag-based search, than to automatically interpret
complex items).

An important characteristic of crowd-based applications for
collecting annotations is what is considered as an acceptable
annotation. It is a spectrum, ranging from binary labels (e.g., a
picture meets some criterion or not), through using a controlled
vocabulary of tags (of varying size), to accepting any
participant’s input.

The paper deals with a special case of crowdsourced
annotation problem, where each annotation is expressed as a set
of formal statements in OWL 2 language [1]. In particular, it

means that both a set of possible labels and a set of
relationships between an item being labeled and the labels are
defined by some OWL 2 ontology. Ontologies have received
much attention in Semantic Web initiative and proved
themselves to be an effective tool of reaching semantic
interoperability, as they a) define the precise meaning of terms,
b) describe relationships between terms, c¢) are based on formal
models, enabling inference of information not provided
explicitly (usually, on description logics). OWL 2, a W3C
recommendation, is currently one of the most popular ontology
languages that is used to represented variety of the ontologies
in a range of application areas.

As input received from human participants is typically
unreliable (due to lack of knowledge or effort), any
crowdsourcing application has to implement some quality
management strategy. In many cases, such strategy is based on
redundancy — the same task is assigned to several participants
and then results are aggregated in order to increase their
reliability (the procedure is based on an assumption that errors
introduced by the participants are independent). Obviously, the
aggregation mechanism is the core of redundancy-based quality
management. Variety of label aggregation techniques have
been proposed [2]-[5], however, only few of them take into
account relationships between labels, and if they do, they often
consider pairwise relationships between labels, which turns out
to be inapplicable when the number of labels is high. At the
same time, ontology concepts are explicitly related and this can
be used to improve annotations quality leveraging some
redundancy of the input.

The problem of aggregating ontology-based descriptions
was already considered in our previous papers [6], [7],
however, in [7] we discussed only one construct of OWL —
subclass assertion, and the hierarchical voting approach
proposed in [6] doesn’t take into account possible differences
in participants’ reliability.

In this paper, we propose two methods for aggregating
annotations — OntoVoting and OntoSB. Both methods utilize
the ontology structure to infer the most reasonable aggregated
annotation from the set of unreliable ones and therefore to
increase the annotation quality, correcting individual errors
resulting from the lack of annotators’ effort or understanding.
The difference between the proposed methods is in the set of
considered information. OntoVoting treats all participants as

ISSN 2305-7254

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

equally (un)reliable and can be used in situations where there is
no prior information about participants (it is based on the
method from [6]). Contrary, OntoSB leverages a reasoning
under uncertainty technique and can take into account prior
participant reliability. We perform a series of simulation
experiments to understand the effect of the proposed
aggregation methods on the quality of annotations.

The rest of the paper is structured as follows. Section II
discusses related work on label aggregation using external
knowledge. Section III describes formal model of ontology-
based item annotation. Section IV presents the aggregation
methods, and Section V — experimental setup and results.

II. RELATED WORK

Existing label aggregation techniques are typically based on
strict comparison of labels obtained from individual
participants, ignoring possible relationship between them.
These methods are suited for situations where there are few
possible labels and these labels are disjoint (e.g., binary labels
reflecting presence or absence of some feature). Obviously,
these techniques do not work well in situations where there are
many possible (interrelated) labels (in particular, ontology
statements). There are several papers on adapting consensus
methods to situations where there are relations between labels.
In [8], the authors propose an extension of the Dawid-Skene
algorithm [9] and explore different models for representing
relations between labels (including a Bayesian network as a
compact representation of a joint distribution). However,
Dawid-Skene algorithm has high computational complexity,
therefore, its applicability for labeling using large ontologies is
limited. In [10], a probabilistic labeling model for hierarchical
classification is proposed, that is, for the situation when the
labels that participants assign to objects are classes organized in
a hierarchy (classification of books, goods). This is especially
close to the considered problem, because typically a core of an
ontology is a class taxonomy, defined with a help of OWL 2
SubClassOf construct. However, the method from [10] is
intended for sequential tag refinement by a participant in a
series of tasks, which is not always reasonable.

The closest problem definition is considered in [6], [7];
these papers also consider aggregation of ontology-based
annotations. However, [7] considers only SubClassOf ontology
construct, while algorithms proposed in this paper account for
nine OWL constructs (in class, property, and individual levels).
The method proposed in [6] is based on the assumption that all
participants are equally reliable. This assumption is relaxed in
the OntoSB algorithm, proposed in this paper.

III. FORMAL MODEL

This section describes the annotation structure, considered
in the paper, and lists OWL 2 language constructs that can
affect the aggregation procedure.

A. Item Annotation Structure and Problem Definition

Ontology-based item annotation includes two kinds of
information: ontology specification and item annotation. In this
paper, we consider specifically ontologies expressed in OWL 2.
An example of such ontology is shown in Fig. 1. The ontology
specifies a set of classes to be used for thematic classification

(organized in a hierarchy), class Item, and three properties
(hasTopic, hasPrimaryTopic, and hasLength) that can be used
to describe items.

Item annotation is a set of OWL 2 statements (assertions)
linking the item with some ontology entities (classes or
individuals) and/or using properties defined in the ontology.
This paper considers annotations consisting of only two kinds
of statements:

e ObjectPropertyAssertion(OP, item, v), where OP is an
object property defined by the ontology used for
annotation, item is the item being annotated, v is some
entity, introduced by the ontology.

DataPropertyAssertion(DPE, item, It), where DPE is a
data property defined by the ontology, item is the item

being annotated, and /z is some literal.

Prefix(:=<http://purl.org/ontologies/fruct/s#>)

Ontology(<http://purl.org/ontologies/fruct/s>
Declaration(Class(:ltem))
Declaration(ObjectProperty(:hasPrimaryTopic))
Declaration(ObjectProperty(:hasTopic))
Declaration(DataProperty(:hasLength))

SubClassOf(:InformationTechnology owl:Thing)
SubClassOf(:Al :InformationTechnology)

SubClassOf(:AlOntology :Al)

SubClassOf(:Crowdsourcing :InformationTechnology)

SubObjectPropertyOf(:hasPrimaryTopic :hasTopic)
ObjectPropertyDomain(:hasTopic :ltem)

DataPropertyDomain(:hasLength :Item)
DataPropertyRange(:hasLength xsd:int)

)

178

Fig 1. Example ontology

Example of an item annotation using the ontology shown in
Fig. 1 could be the following:

<https://doi.org/10.1000/xyz123>
o:hasPrimaryTopic o:Crowdsourcing .

<https://doi.org/10.1000/xyz123>
o:hasTopic o:AlOntologies .

<https://doi.org/10.1000/xyz123>
o:hasLength "5"Axsd:int .

This describes an item with the unique identifier
<https://doi.org/10.1000/xyz123> (using URI or, in general,
IRI is part of semantic web standards stack), using two object
properties introduced by the ontology and one data property.
To save space, we use the namespace ‘0’, implying that it is
defined to match the ontology URI. Note, that for simplicity we
express object property assertions and data property assertions
as RDF triples, according to mapping specified in [11].

Let an item x can be completely described by a set of
statements A (x), such that each statement actually corresponds

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

to the contents of x, none of the statements in 4"(x) follow from
other statements, and no statements could be added (correspond
to the contents of x but are not included in 4 (x)).

The goal of the problem-setter is to obtain annotation 4"(x),
but it is generally unknown, and what the problem-setter can
get are annotations, that are close to the real one, but with
possible deviations (too general statements, missing statements,
not relevant statements).

The ontology-based annotation aggregation problem can be
specified by a tuple P = <x, U, 4, M, O>, where x — is an item,
U is a set of users (annotation participants), 4 is a set of
annotations of the item, M is a mapping between annotations
and their authors (4 — U), and O is the ontology used in the
annotations 4. The aggregation method M (P) should result in
some annotation for item x that is as close as possible to A" (x).
This specification can be extended by user attributes (e.g.,
reliability), and one of the proposed methods, namely OntoSB,
actually is based on an extended formulation. The notion of
annotation “closeness” (or, similarity) is formalized in
Section V. The proposed methods are not driven by loss
minimization, and the formal definition of similarity is used
only for the evaluation.

B. OWL Constructs

As it was noted earlier, two statements shouldn’t be simply
compared for equality, because difference in the used property
or property value doesn’t necessarily mean that the meaning of
the statements is entirely different. As properties and property
values are described in the ontology, there might be
relationships stating that two different values (with different
identifiers) are essentially the same. We analyzed a set of
constructs of OWL QL profile, a subset of OWL 2, providing
efficient query processing and suitable for crowdsourcing,
where a large number of objects is annotated with a relatively
simple ontology. In particular, we identified three groups of
such statements in OWL QL. The first group is concept and
property hierarchy assertions:

e SubClassOf — Defines one class as a subclass (or, more
specialized class of another class). Instances of the
subclass are also instances of the more general class.
SubObjectPropertyOf/SubDataPropertyOf — States that
the extension of one object property expression is
included in the extension of another object property
expression.

The second group is equivalence (or, synonym) assertions:

e EquivalentClass — Asserts that two classes are
equivalent, i.e. contain exactly the same set of
individuals.

EquivalentObjectProperties — States that the extensions
of several object property expressions are the same.

Finally, the assertions of the third group are used to
explicitly state difference and inconsistency:

e Disjoint — Asserts that no individual can be at the same
time an instance of two classes of the specified ones.
DisjointObjectProperties/DisjointDataProperties

States that the extensions of several object property

179

expressions are pairwise disjoint — that is, that they do
not share pairs of connected individuals.
DifferentIndividuals — States that several individuals are
all different from each other.

IV. ANNOTATION AGGREGATION METHODS

This section introduces two methods for aggregating
ontology-based annotations: OntoVoting and OntoSB. They
share similar principle, but OntoSB takes into account possible
difference in expected quality between annotators.

A. OntoVoting

The proposed aggregation methods are based on an
observation that an annotation statement can be generalized
(following the ontology specification) without losing its
validity. For example, let one of the participants stated that
some article is primarily dedicated to crowdsourcing:

<https://doi.org/10.1000/xyz123>
o:hasPrimaryTopic o:Crowdsourcing .

According to the formal definition of the OWL 2
SubClassOf construct, which is used in the ontology (Fig. 1) to
describe class Crowdsoucing, any individual belonging to this
class also belongs to class InformationTechnology. Therefore,
the statement:

<https://doi.org/10.1000/xyz123>
o:hasPrimaryTopic o:InformationTechnology .

is also wvalid. It is less specific, however, valid. This
generalization can be continued, using other SubClassOf
definitions to the statement that the primary topic of the paper
is owl:Thing.

Moreover, the ontology uses OWL 2 SubObjectPropertyOf
to establish relation between hasPrimaryTopic and hasTopic,
which means that any pair of entities connected by
hasPrimaryTopic property are also connected by a more
general property hasTopic. Therefore, the original statement
can also be generalized to:

<https://doi.org/10.1000/xyz123>
o:hasTopic o:Crowdsourcing .

And further to:

<https://doi.org/10.1000/xyz123>
owl:ObjectProperty o:Crowdsourcing .

where owl:ObjectProperty is a top object property. Both paths
of generalization can be applied independently, so there are six
statements following from the original statement.

On the other hand, there are disjoint classes, implying that
an individual may belong only to one of these classes, and
disjoint properties, implying that no two entities can be
connected by both properties. It means that along with possible
generalizations of the original statement, there are also some

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

negative statements that follow from the original statement. We
propose Algorithm 1 (StatementConsequences) for identifying
both positive and negative consequences of a given statement.
For a given statement (in a form of a triple — object, property,
value), the algorithm builds two sets of triples — positive and
negative consequences, the statements that should also be true,
and the statements that has to be false, respectively. The
algorithm relies on ValueGeneralizations,
PropertyGeneralizations, and Disjoints functions. These
functions are typically provided by a programming library for
processing ontologies. ValueGeneralizations function builds a
list of all concepts that are generalizations of a given concept
(or wvalue), wusing SubClassOf, EquivalentClass, and
ClassAssertion statements. For example, in the ontology,
shown in Fig. 1, ValueGeneralization function for the concept
“Crowdsourcing” would return a set, consisting of
“Crowdsourcing”, “InformationTechnology”, and “owl:Thing”.
PropertyGeneralizations function does similar thing for
properties, based on inference using SubObjectPropertyOf,
SubDataPropertyOf, and EquivalentObjectProperties
assertions. Disjoints function returns a set of all concepts that
are explicitly stated as different or disjoint with the specified

one, using Disjoint and DifferentIndividuals ontology
constructs. Finally, DisjointProperties returns properties
disjoint with the given one (interpreting

DisjointObjectProperties/DisjointDataProperties constructs).

Algorithm 1 StatementConsequences
Input: statement < item, p, v>

.S, SV, V=0

2: for v’ € ValueGeneralizations(v)

3 V=T u vy

4: V' =T v Disjoints(v’)

S:for p’ € PropertyGeneralizations(p)

6: St=S"u {<item,p’,pv>|pv eV}

7. S =85 v {<item,p’,nv>|nvel}
8: for np € DisjointProperties(p’)
9: §=Su {<item,p’, pv>|pveV}

10:return <S", S >

Algorithm 2 AnnotationConsequences
Input: annotation 4 (set of statements)
1: M := dictionary()

2:fors e A4
3: <§', § >:= StatementConsequences(s)
4: fors’ e S
5: if s” € M.keys
6: M[s’] = max(M[s '], 1)
7: else
8: M[s'1=1
9: fors’e§
10: if s” € M.keys
11: M[s’] = max(M[s], -1)
12: else
13: M[s'1=-1
14: return M

180

Participant’s annotation usually contains several statements,
and usually there are generalized statements that follow from
more than one original statement (indeed, a statement that the
value of an owl:ObjectProperty of the item is owl:Thing
generalizes vast majority of statements). Algorithm 2
(AnnotationConsequences) shows the proposed algorithm for
finding all consequences of an annotation, consisting of several
statements. In OntoVoting algorithm all positive consequences
are assigned ‘vote’ of 1, and all the negative consequences are
assigned ‘vote’ of -1. If a statement is receives a ‘vote’ of 1
from one statement, and a ‘vote’ of -1 from another, resulting
‘vote’ is assumed to be 1.

Finally, OntoVoting aggregation algorithm is organized in
the following way: it builds consequences of each annotation
(provided by different participants), sums votes for respective
statements, filters only those statements that have the specified
number of votes, and removes all the statements that follow
from some other statements in the resulting set (Algorithm 3).

Algorithm 3 OntoVoting
Input: O - set of annotations from different participants,
7 - votes threshold.
: M = dictionary()
: # Find logical consequences of each annotation
: # (summing votes)
:forqg e Q
V' := AnnotationConsequences(q)
for s € V.keys
if s € M keys
M[s] = Combine(sum, M[s], V[s])
else
Ms]=VIs]

Filter out statements that don’t have enough support

D AR Ul > ey

10:
11:

12: §:= {s | s € M.keys, M[s]>= 1}

13: # Filter out non-specific statements
14:fors e S

15: G, G := StatementConsequences(s)
16: S=S\G

17: return S

B. OntoSB

In OntoVoting algorithm, evidence from each participant is
equally important, as every participant has exactly one ‘vote’
that is propagated to all statements that follow from the
participant’s annotation. However, in many situations,
participants differ by knowledge and/or effort and in these
situations, it may be reasonable to give different value for their
input. OntoSB allows for taking this into account by plugging a
model for reasoning under uncertainty to the propagation
scheme of the OntoVoting algorithm. In particular, OntoSB
uses Shortliffe-Buchanan scheme for reasoning under
uncertainty [12] (hence, the name), however, other options are
also possible (e.g., Dempster-Shaffer theory [13]).

Shortliffe-Buchanan scheme was originally used in expert
system (MYCIN) and is based on degree of belief, associated
to facts. Degree of belief is a real number in the range [-1; 1],
where -1 corresponds to “highly unlikely” and 1 corresponds to

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

“highly likely”. In the proposed OntoSB method we associate
reliability (in the range [0; 1]) to every participant. The
participant’s reliability 1is associated to all positive
consequences of the participant’s annotation, and negative
reliability is associated to all negative consequences. Therefore,
the algorithm for finding consequences basically stays the same
as for OntoVoting (Algorithm 2), however, fixed votes (1 and -
1) are changed to the participant’s reliability value.

Shortliffe-Buchanan scheme defines the following rule to
calculate the degree of belief for the fact that has two evidences
with degrees of belief b; and b, [12]:

b] + b2 (1 —bl), b] >= O, b2 >=()
by+by(1+by),5<0,b,<0
by + by /1 —min(|b], | ba)]

This degree of belief combination formula is used in line 8
of the Algorithm 3 instead of summation. These two changes
(initial values for statement weight and another combination
operator) transform OntoVoting into OntoSB algorithm.

b, ° b,

V. EVALUATION

The evaluation of the proposed methods is based on
simulation of the noisy annotations. This section explains the
evaluation methodology (the process of data generation and
ontology generation and measuring the annotation quality) as
well as the comparison of the algorithms.

A. Ontologies

We generated several ontologies for the simulation study.
All these ontologies share the same organization principles, but
differ in size. The skeleton of each of the generated ontologies
is several concept hierarchies, defined by a SubClassOf
construct, which is typical for most of the real-life ontologies.
The generated ontologies also include a number of “synonym”
classes (1/3 of all the classes forming the hierarchies). Besides,
each ontology defines five object properties organized into two
object property hierarchies. The ontologies do not include data
properties, as the evaluation mostly aims at exploring
conceptual aggregation, to deal with data properties any data
aggregation approach could be plugged.

In the simulation study, we used three generated ontologies
of different sizes: small, medium, and large:

e Small — 2 hierarchies, each with 4 levels, 3 subclasses
per non-leaf class. In one hierarchy the subclasses are
disjoint. There are 313 classes in total.

Medium — 4 hierarchies, each with 4 levels. Two of
them has 3 subclasses per non-leaf class, the other two —
4 subclasses. In half of the hierarchies, the subclasses
are disjoint. There are 1197 classes in total.

Large — simply twice as big as the medium one, 2393
classes in total.

B. Ground Truth Annotations

For each ontology, a ground truth dataset was generated,
including annotations of 500 items. Each item annotation
consists of one hasPrimaryTopic property and two other
properties selected at random. Values of each property are
selected randomly from all the classes of the respective
ontology.

181

C. Participant Model

To build a participant behavior model, we analyzed
possible types of error [14]-[17]. In particular, each participant
submits a set of statements in the «object — property — value».
Therefore, errors can be associated with the number of
statements, properties used and the specified property value in
each statement. In particular, when choosing a property of a
value, the following types of errors are possible: a) using too
general property or value (insufficient specification), b) using
too specific or unrelated property or value. Besides, a
participant may skip some of the statements of the true
annotation or add some noise statements.

In the simulation model, each participant is characterized by
the following characteristics:

e Observancy, describing how many of the ground truth
statements the participant can detect. It is defined as a
probability that the participant considers a particular
true statement.

Diligence, describing the propensity of using exact
values, not generalizing them. It is defined as a
probability that some considered true statement will be
reported “as is”. With probability 1 — d the property
name or object value will be changed to a more general
(chosen randomly).

Noise, controlling how many statements unrelated to the
true statements a participant will generate. It is defined
as a probability to generate a noise statement (where
property and value are chosen at random). Noise
statements are generated iteratively while the value
returned by a uniform random generator in range [0; 1)
is less than the value of noise parameter.

We used three types of participants in the simulation:

e high quality (observancy 0.9, diligence 0.9, noise 0.1);
medium quality (observancy 0.75, diligence 0.75, noise
0.2);
low quality (observancy 0.6, diligence 0.6, noise 0.4).

D. Annotation Penalty Score

To measure the similarity of descriptions (e.g., ground truth
descrintions and agereeated) we use the following score.

Let D@ = {sM} and D@ = {s®} be two annotations
defined as sets of statements. Further, let G(s) be a set of
statements that generalize statement s, and L(s,s") be a
minimal number of generalization steps to transform s to s’.
Then, statement penalty score is calculated as:

D) = mi ' @ o @
pD(s) = leZ)?Dlg),s' (L(s,s)+ L(s;Y,s)) ,s € DM,
p@(s) = min (L(s,s’) + L(si(l),s’)) ,s €D@,

sl.(l)ED(l),s’
In other words, penalty for a statement (with respect to
some other annotation), is the minimal distance (in
generalization operations) to any of the statements of the other
annotation.
Annotation penalty score is calculated as:

P(D(l),D(Z))= Z pPD(s) + Z PP (s)).

SiED(l) SjED(z)

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

In the presented results, the value of this metric is the
annotation penalty score averaged per items.

E. Results and Discussion

The first experiment is to verify that the proposed
aggregation method (OntoVoting) is able to improve
annotations with respect to the annotations provided by one
participant and to understand the effect of algorithm parameters
(number of voters, voting threshold) on the resulting annotation
quality. To do so, we used small ontology and medium quality
participants. Table I shows the average annotation penalty
score after 10 simulations (for 500 annotated items), standard
deviation is shown in parenthesis. The average quality of
annotations of one medium quality participant is 8.38 (0.39).

It can be seen, that with three or more participants working
on an annotation, it is possible to achieve significantly better
annotation quality, than with one annotator. When the number
of annotators is greater than five, the gain of the annotation
quality is diminishing. Most effective threshold is 2. It can be
explained by the fact, that with more strict thresholds, the
consensus is reached only in higher levels of aggregation,
increasing the annotation penalty.

TABLE I. THE EFFECT OF ONTOVOTING PARAMETERS

quality participant, the threshold was set to 2 (the results shown
are averages of 10 runs).

The quality of annotation doesn’t depend on the size of the
ontology (all variations are within confidence intervals).
OntoVoting algorithm with redundancy 3 to 5 provides
significant gains in annotation quality (relative gains are
roughly the same for all the examined ontology sizes).

Table III shows the effect of the quality of the original
annotations on the aggregated ones (on the small ontology
dataset). Aggregation turns out to be effective for each of the
original annotation qualities, however, it has certain limits — no
matter how many low quality participant annotations are
aggregated, the result is still significantly worse, than could be
produced by one high quality participant.

Redundancy
Threshold 2 3 4 5 6
2 10.0 5.43 2.83 1.88 1.7
(0.15) | (0.15) | (0.16) | (0.17) | (0.12)
3 - 1193 | 7.68 4.36 2.4
(0.16) | (0.2) | (0.11) | (0.14)
4 - - 13.0 9.59 6.09
(0.11) | (0.18) | (0.21)
TABLE II. ONTOLOGY SIZE AND ANNOTATION QUALITY
Ontology | Single Redundancy
Size 3 4 5 6
Small 8.25 5.31 2.9 1.94 1.67
(0.28) | (0.16) | (0.18) | (0.1) | (0.12)
Medium 8.99 5.78 3.03 1.94 1.71
(0.34) | (0.19) | (0.17) | (0.09) | (0.08)
Large 8.92 5.64 3.01 1.86
(0.26) | (0.16) | (0.19) | (0.1)
TABLE III. ONTOLOGY SIZE AND ANNOTATION QUALITY
Annotator | Single Redundancy
Quality 3 4 5 6
Low 14.47 10.3 8.15 7.5 7.25
(0.49) | (0.17) | (0.31) | (0.29) | (0.21)
Medium 8.19 5.29 2.85 1.89 1.79
(0.19) | (0.16) | (0.11) | (0.12) | (0.14)
High 3.52 1.28 0.41 0.3 0.37
(0.14) (0.1) | (0.06) | (0.04) | (0.07)

Table II shows how the ontology size influences the
annotation quality. All the annotations were done by a medium

182

TABLE IV. ONTOVOTING AND ONTOSB COMPARISON

Dataset | Single | OntoVoting Best
(h-m-1) (thr =2) OntoSB
Redundancy 4
1-1-3 11.75 4.83 3.16
(0.33) (0.14) (0.11)
1-3-1 8.9 2.89 2.9
(0.19) (0.15) (0.16)
3-1-1 6.9 1.6 1.52
(0.27) 0.1) (0.12)
Redundancy 5
1-1-3 11.75 3.87 3.97
(0.33) (0.14) (0.08)
1-3-1 8.9 2.07 1.97
(0.19) (0.14) (0.17)
3-1-1 6.9 1.15 0.93
(0.27) (0.11) (0.08)

Please, note, that for the experiments above, OntoSB can
obtain similar results. If the reliability of all the participants is
the same, then combination of 1, 2, 3, etc. belief values would
yield only the number of distinct values equal to the number of
participants, annotating each item (redundancy). So, picking a
degree of belief threshold in this case is equivalent to picking a
redundancy threshold. Essentially, OntoSB is designed for the
situation, where the participants are different. To model this
situation a dataset with varying annotators was generated. In
particular, participants, annotating items were selected
randomly with different probability (e.g., high quality — 0.2,
medium quality — 0.2, low quality — 0.6). Table IV summarizes
results on some distributions, showing the best aggregated
annotation quality, obtained by each algorithm. Dataset column
describes proportion of the workers in the order high-medium-
low. It is important to note, that in this experiment OntoSB was
given participant confidence values tuned for each particular
situation. In general, experiments with OntoSB show that the
aggregation quality of OntoSB is usually either comparable
with OntoVoting, or slightly beats it (in some cases —
significantly, e.g., on 1-1-3 dataset OntoSB with 4 participants
gives better quality than OntoVoting with 5). However,
OntoSB turns out to be very sensitive to the participant

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

reliability values. Without a justified scheme for selecting these
values, OntoVoting might be preferable due to its robustness.

VI. CONCLUSION

The paper considers the problem of aggregating semantic
annotations, expressed as represented as sets of statements,
describing items in terms of some OWL QL ontology. We
examined OWL QL constructs to identify those, which can be
utilized in the process of aggregation. Based on this analysis we
proposed two algorithms — OntoVoting and OntoSB. The
experimental evaluation on a simulated dataset shows that the
proposed algorithms effectively utilize the redundancy,
significantly improving the quality of semantic annotations,
obtained from unreliable participants.

Potential applications of the semantic description
aggregation are various crowd-based annotation systems,
especially in the fields where many high-quality ontologies
exist (e.g., scientific research, and, in particular, biomedical
sciences). Besides, as ontologies are a universal tool, based on
strong logical foundations, some problems related to collecting
descriptions may be reduced to the ontology-based semantic
annotation, which widens the scope of possible applications
even further.

In this paper we assume, that the participant’s reliability
(used by OntoSB) is known, but it is not always the case.
Further research is dedicated to methods of evaluating the
reliability based on participant’s behavior, similarly to many
other aggregation algorithms, which simultaneously estimate
item labels and user features.

ACKNOWLEDGEMENT

The reported study was funded by Russian Foundation for
Basic Research, project number 19-07-01120.

REFERENCES

W3C, “OWL 2 Web Ontology Language Document Overview,”
2012. [Online]. Available: https://www.w3.org/TR/owl2-overview/.
[Accessed: 10-Oct-2020].

N. Quoc Viet Hung, N. T. Tam, L. N. Tran, and K. Aberer, “An
Evaluation of Aggregation Techniques in Crowdsourcing,” in Web
Information Systems Engineering — WISE 2013, Lecture Notes in
Computer Science, vol 8181, H. G. Lin X., Manolopoulos Y.,
Srivastava D., Ed. Berlin: Springer, Berlin, Heidelberg,2013,pp.1-15.

(1]

183

B3]

(4]

[3]

(6]

(7]

(8]

[9]

[10]

(1]

[12]

[13]
[14]

[15]

[16]

[17]

A. Sheshadri and M. Lease, “Square: A benchmark for research on
computing crowd consensus,” in /st A4AI Conf. Human Comput.
Crowdsourcing, 2013, pp. 156-164.

A. L Chittilappilly, L. Chen, and S. Amer-Yahia, “A Survey of
General-Purpose Crowdsourcing Techniques,” IEEE Transactions on
Knowledge and Data Engineering, vol. 28, no. 9, pp. 2246-2266,
2016.

J. Zhang, V. S. Sheng, and J. Wu, “Crowdsourced Label Aggregation
Using Bilayer Collaborative Clustering,” [EEE Transactions on
Neural Networks and Learning Systems, vol. 30, no. 10, pp. 3172—
3185, Oct. 2019.

A. Ponomarev, “Aggregation of Crowdsourced Ontology-Based Item
Descriptions by Hierarchical Voting,” in Proceedings of the 2nd
Crowd Science Workshop: Trust, Ethics, and Excellence in
Crowdsourced Data Management at Scale co-located with 47th
International Conference on Very Large Data Bases (VLDB 2021),
2021, pp. 60-71.

A. Ponomarev, “An Iterative Approach for Crowdsourced Semantic
Labels Aggregation,” in Advances in Intelligent Systems and
Computing, vol 1295, 2020, pp. 887-894.

L. Duan, S. Oyama, H. Sato, and M. Kurihara, “Separate or joint?
Estimation of multiple labels from crowdsourced annotations,”
Expert Systems with Applications, vol. 41, no. 13, pp. 5723-5732,
2014.

A. P. Dawid and A. M. Skene, “Maximum Likelihood Estimation of
Observer Error-Rates Using the EM Algorithm,” Applied Statistics,
vol. 28, no. 1, pp. 20-28, 1979.

N. Otani, Y. Baba, and H. Kashima, “Quality control of
crowdsourced classification using hierarchical class structures,”
Expert Systems With Applications, vol. 58, pp. 155-163,
2016.

W3C, “OWL 2 Web Ontology Language Mapping to RDF Graphs,”
2012. [Online]. Available: http://www.w3.org/TR/owl-mapping-to-
rdf.

E. H. Shortliffe and B. G. Buchanan, “A model of inexact reasoning
in medicine,” Mathematical Biosciences, vol. 23, no. 3-4, pp. 351—
379, Apr. 1975.

J. Y. Halpern, Reasoning under uncertainty. MIT Press, 2017.

B. Frenay and M. Verleysen, “Classification in the Presence of Label
Noise: A Survey,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 25, no. 5, pp. 845-869, May 2014.

C. Eickhoff and A. P. de Vries, “Increasing cheat robustness of
crowdsourcing tasks,” Information Retrieval, vol. 16, no. 2, pp. 121—
137,2013.

G. Kazai, J. Kamps, and N. Milic-Frayling, “Worker types and
personality traits in crowdsourcing relevance labels,” Proceedings
of the 20th ACM international conference on Information
and knowledge management - CIKM 11, pp. 1941-1944,
2011.

U. Gadiraju, R. Kawase, S. Dietze, and G. Demartini, “Understanding
Malicious Behavior in Crowdsourcing Platforms,” Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing
Systems - CHI ’15, pp. 1631-1640, 2015.

