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Abstract—Road signs recognition plays an important role in
improving traffic safety for both drivers and pedestrians. To
ensure this recognition, many approaches are proposed by
researchers. To overcome the limitations of the existing methods,
Deep Learning approaches are used. This type of approaches
achieves high recognition performances, and is also less sensitive
to real world adverse conditions. However, they are in contrast
very computationally expensive due essentially to three main
factors, which are more precisely, the size of input images, the
type of used layers, and the number of used parameters. From
this perspective, the objective of this work is to adopt an
approach that aims to reduce this computational complexity, in
order to ensure a fast and efficient classification of traffic signs,
especially for low and limited resources environments. The
adopted approach reaches good classification accuracies, and that
by using BTSCD dataset.

[. INTRODUCTION

Traffic accidents cause over two deaths per minute, and
each year over 1.3 million people lose their lives on roads. This
situation is due to many factors, as for example the use of
unsafe vehicles, the quality of roads’ infrastructure, etc.
However, human factors, especially drivers’ behavior
represents one of the most principal causes of traffic incidents
[1]. These behaviors include speeding, inattention, distraction,
etc.

Where comes the crucial role of road signs recognition in
improving traffic safety, specifically for Advanced Driver
Assistance Systems (ADAS) and autonomous vehicles. To
fulfil this important role, a recognition system should ensure, at
the same time, an accurate precision and also a very quick
response time, in order to guarantee a real time recognition of
traffic signs.

In effect, the notion of real time depends tightly on the type
of used applications. Hence, the response time is defined
according to the nature of each task. Unlike soft real time tasks
[2], which tolerate a certain delay after the pre-defined
deadline, traffic signs recognition is considered instead as a
hard real time task, especially for self-driving cars.

By consequence, if this recognition is produced after a
certain deadline, that will certainly cause a huge number of
dramatic and catastrophic accidents, and will presents a real
threat for both drivers and pedestrians as well.

Knowing that traffic signs recognition includes two major
stages, which are the detection and the classification, the

latency required for each of these two stages should not then
exceed few milliseconds maximum per frame.

From this perspective, the objective of our work is to
propose a fast and efficient approach for traffic signs
classification. Hence, the rest of our paper is organized as
follow: Section 2 presents some related works. The proposed
approach is presented in Section 3. Section 4 presents an
overview of the experimental results, while Section 5 discusses
the obtained results. The conclusion of our paper is presented in
the last section.

II. RELATED WORKS

Road signs recognition plays an important role in
improving traffic safety, and in saving lives on roads. For that,
many approaches are proposed by researchers in order to
ensure this recognition [3-5]. These approaches include color-
based & shape-based approaches, Machine Learning, and also
Deep Learning approaches.

However, many limitations and challenges still face their
implementation, especially for color and shape-based
approaches. These limitations are essentially related to their
sensitivity to real world adverse conditions, as for example
occlusions, illumination, weather changes, etc. Additionally,
edge-based techniques are also very time consuming.

In contrast, Machine Learning approaches like Support
Vector Machines (SVM) achieve high recognition
performances, in comparison to classical ones, but they need
however many classifiers. Furthermore, this type of
approaches is not suitable for Big Data [6].

To overcome these difficulties, the Neural Networks and
especially Deep Learning (DL) approaches are proposed and
used by many researchers [7-8], because they need instead less
classifiers and big datasets are used to train this type of
models. In addition to that, they are less sensitive to real world
adverse conditions, which represents another important
advantage, especially for computer vision and objects
recognition systems, including traffic signs detection and
classification.

In this context, Extreme Learning Machine (ELM) and
Kernel ELM are used by Huang, Yu, Gu & Liu [9]. The
proposed approach includes two stages, the first one consists
on extracting features from the images, and that by using
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Histogram of Oriented Gradient variant (HOG). While in the
second stage a single-hidden-layer classifier is used to train the
model. The random feature mapping is used to connect input
and hidden layers, while hidden and output layers are
connected using trained weights. The adopted approach
achieves high performances, in terms of accuracy, with
98.62%.

Saouli, Aroussi & Fakhri [10] propose a similar approach
for traffic sign recognition based, instead, on combining
multiple features, which are more precisely HOG, Gabor and
Compound Local Binary Pattern (CLBP). After features
‘extraction, they have used also ELM for the classification,
which is much faster than SLFNs (Single Layer Feedforward
Neural Networks), and needs less number of tuning
parameters. The used classifier includes 58 nodes with
Sigmoid activation function. The obtained results show that
ELM outperforms SVM and KNN (k-Nearest Neighbors) in
terms of accuracy (98.30%) and inference time.

In effect, this type of approaches is generally based on a
manual extraction of features. For that, many researchers opt
for DL approaches to ensure instead an automatic extraction of
the features. However, although their high performances in
terms of recognition accuracy, DL approaches are in contrast
very computationally expensive [11].

From this perspective, Convolutional Neural Networks
(CNNs) are used by Jurisi¢, Filkovic & Kalafatic [12]. The
proposed model is based on the work of Ciregan, Meier &
Schmidhuber [13], but the approach proposes instead a multi-
scale architecture inspired by the work of Sermanet & LeCun
[14]. An accuracy of 98.17% is achieved, and that by adding a
fully connected layer after each convolutional one, and
concatenates then their outputs to reach high performances.

In the same context, we find the work of Arcos, Alvarez &
Soria [15]. The adopted approach is based on a single CNN
with three Spatial Transformer modules. The objective of
these modules is to remove background and geometric noises
from features maps, which helps the model to be spatially
invariant to input data, and reach a high recognition accuracy
with 98.87%.

A small Convolutional Neural Network is also used by Li
& Zeng [16]. The proposed model (MyNet) is based on an
accurate extraction of features (TS-Module), and uses the
global average layer instead of the fully connected one to
create one-dimensional vectors of the features. In order to
reduce the number of used parameters, TS-Module combines
three convolutional filters, where 1*3 kernel and 3*1 kernel
are connected by a 1*1 kernel to achieve a 3*3 kernel. The
classification rate of the model is 98.1%.

For Zaibi, Ladgham & Sakly [17], they have adopted
instead a lightweight model based on LeNet-5. The Enhanced
LeNet-5 uses instead two successive convolution layers each
time to extract high-level features from input images. Contrary
to the traditional LeNet-5, the enhanced model includes only
one fully connected layer before the output layer, and
LeakyReLU is added after each convolution one. This
activation function is a variation of the ReLU that allows
backward propagation even with negative input values. A
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recognition rate of 98.37% is reached by the adopted
approach.

Although the high performances of DL approaches,
hardware optimization is required to ensure a real time
detection and classification of traffic signs. While algorithmic
optimization is highly needed for low resources environments,
like autonomous vehicles, mobiles, etc.

From this context, the main objective of the proposed
approach is to reduce the computational complexity of this
type of networks, in order to ensure a fast and efficient
classification of traffic signs for such type of environments, as
presented in the next section.

III. ADOPTED APPROACH

In the field of computer vision, and especially for traffic
signs recognition, the computational cost of DL architectures is
tightly related to three main factors, which are more precisely:
the size of input images, the type of used layers and the number
of used parameters. These parameters include generally the size
and the number of layers, nodes and filters.

In effect, these three factors have a huge impact on increasing
the computational cost of DL models. From this perspective, the
objective of our work is to propose a Deep Learning approach
that could deal effectively with these three main problems, in
order to ensure a fast and efficient classification of traffic signs.

A. Input images size

The first important factor that contributes to the
computational complexity of DL models is the size of input
images. In effect, we find that in this field of research the
minimum size of used images is generally 32*32. Hence, the
objective of the adopted approach is to reduce even more the
size of these images, and that without altering their quality,
and also without losing important and meaningful details.

For this purpose, we find that many filters are used in order
to smooth and enhance the quality of images. Among these
filters, we find for example the Max, Min, Average, Median,
etc.

For the Max filter (Maximum), the objective of this filter is
to replace each pixel with the lightest one on its surrounding,
and that based on a kernel. Hence, the Max filter is useful for
finding the brightest points in images [18].

Contrary to the Max Filter, the Min Filter (Minimum)
consists instead on replacing the pixels’ value with the darkest
pixels in the sliding windows.

Concerning the Average Filter, it is a sort of a
convolutional filter, that takes into consideration the
surrounding pixels on the images. That kernel replaces each
pixel value of an image matrix with the average value of its
neighbors [19]. Hence, the role of Average or Mean filter is to
eliminate the unrepresentative pixels’ value of their
surroundings.

Like the Mean Filter, the Median is also used for noise
reduction (Fig.1). However, instead of replacing each pixel
with the average of its neighbors, this filter consists on sorting
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into numerical order the pixels’ values from the surrounding
neighborhood, and replacing after that the pixel being
considered with the middle pixel value.

Median
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Fig.1. Average and Median filters using a 3*3 sliding window

The Median filter is efficient in removing noise, and it
preserves at the same time the sharpness of an image’s edges.
We find that, this filter is better for noise reduction than the
other filters, because it helps to preserve more details from
images [20-21].

Although the fact that median filtering has a good noise
reducing effect, however it is time consuming [22]. While, we
find in contrast that average filtering preserves the main
structures and details of images [19], and it is instead much
faster and doesn’t take longer to compute.

In addition to that, unlike other image processing
techniques, for the Neural Networks the presence of some
noise is very important to enhance the model performances
and ameliorate its generalizability [23], especially during the
training process.

For these specific reasons, and in order to accentuate the
unique features of input images, we have added the Mean
Filter as the input layer for our proposed model. Generally,
convolutional and fully connected layers are usually used as
input layers in Neural Networks. While in our approach we
have added a Mean layer as the first layer. The objective of
this layer is to reduce the size of input images, and that
without deteriorating their quality.

To test the performances of the adopted approach, we have
created four Neural Networks with deep and light
architectures: one fully connected (FCN), two convolutional
ones (CNN) and a Partially Connected Network (PCN). The
obtained results are presented in Table 1.

Adopting the proposed approach, we have added a mean
layer to the FCN as an input layer, while changing each time
the size of the filter. The used network (FCN) includes more
than 5 million parameters. Table I shows that adding mean
layer, with a filter size of (2*1), improves the accuracy from
90.91% to 91.94%, while it reduces the number of used
parameters by almost 30%.

For the CNN-1, we find that applying a mean filter of
(2*1), in the first layer, increases the performances of the
model (93.37% to 94.44%), and it reduces also the parameters
by more than 50%. Almost the same results are obtained for
the CNN-2, where the accuracy is improved from 96.47% to
97.18%, while the parameters are reduced by almost 60%.
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Finally, for the PCN model [24], instead of using fully
connected layers after the convolutional ones, we have added
2 layers based on partial or local connections, which helps to
improve enormously the obtained results with 98.33%.

Furthermore, Table I shows that by adding a mean layer to
this PCN model the obtained performances have increased
with 98.49%, and the used parameters have reduced by more
than 67%.

TABLE I. ADDING MEAN KERNEL TO INPUT LAYERS IN NEURAL

NETWORKS
Network Architecture First Parameters | Accuracy
layer
« 2 Fully 1024 & 2048 | Fully 5372990 | 90.91%
* Mean (1*2) M 3800126 | 91.74%
+2 Fully 1024 & 2048 ean e
* Mean (2*1) o
FON | ) bully 1024 & 2048 | Mean 3800126 | 91.94%
* Mean (2*2) o
<2 Fully 1024 & 2048 | Mean 3013694 | 91.62%
* Mean (3*3) o
<2 Fully 1024 & 2048 Mean 2534 462 91.82%
+2 Conv 60 & 120
(4*4) Conv 4382402 | 93.37%
+ 2 Fully 240 & 480
CNNT ™ Mean 2%1)
E 42*%"“ 60 & 120 Mean | 1848002 | 94.44%
+ 2 Fully 240 & 480
. *
2 Conv 20 (4%4) Conv 1075050 | 96.47%
CNN |t 2Fully 128 & 256
B « Mean (2*1)
+2 Conv 20 (4*4) Mean 440 170 97.18%
« 2 Fully 128 & 256
+2 Conv 20 (4%4)
«2 Partially 8 3*2) & | Conv 72 430 98.33%
72*1)
PCN | *Mean (2%1)
+2 Conv 20 (4*4) )
-2 Partially 8 (3*2) & | Mean 23758 98.49%
7(2*1)

From the obtained results, we can conclude that using a
mean filtering of (2*1) as input layer improves the
performances of Neural Networks, and reduces at the same
time the number of used parameters, which helps to reduce
enormously the computational cost of these networks.

To take into consideration more relationships between
neighboring pixels, and to extract more unique features that
represent the best the group, we have used an overlapping
Mean filtering (Over-Mean) in our approach as input layer
instead of using the average filtering.

The objective of this first layer (Over-Mean) is to enhance
input images by reducing the changes that could affect their
aspect in real world situations, as variation in illumination,
intensity, contrast, etc.

Knowing that larger kernels are quite time consuming, and
are more useful when more severe smoothing is required [25].
We have applied a sliding window of (2*1) to input images,
which reduces enormously the required number of additions.
Hence, on each iteration of the kernel, the value of the pixels
that corresponds to the center of the window is changed. Then
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the value of each pixel is replaced with the average of this
pixel and its neighboring pixels.

[T _

Fig.2. Overlapping Average with 2*1 sliding window

As presented in Fig.2, the Overlapping Mean filter
calculates the sum of each two neighboring pixels, and then
divides this sum by two, where the filtering or sliding window
is moving one pixel at a time.

B. Type of layers

The second important factor that contributes to the
computational complexity of Deep Learning approaches is the
type of used layers. In effect, we find that CNNs present the
best performances in terms of accuracy [26] for images
classification, and that in comparison to other types of
techniques, like Machine Learning [27], color-based and
shape-based approaches.

However, convolutional layers are very time consuming.
This computational complexity of convolutional layers comes
from the huge number of multiplications needed to transform
each input image. Where comes the need and the importance
of reducing the size of these input images, as presented in the
previous section.

For the convolutional layers, the three channels of RGB
images are mixed together to get the output features maps.
Which means that, the number of computed multiplications
depends on the number, size and depth of each kernel (1).

_ﬁktp,q} = (1)

Where (%) is an element of the input image, € (4:v)

YLy ic(xy) ef (u,v)

er
an element kernel of a layer and /i (».@) represents an
element of the feature map. The number of generated features
maps or output channels depends also on the number of used
filters.

To overcome the complexity of this type of layers, we have
use instead three different types of layers in our approach. For
the first layer (Sep-Conv), it consists on separating each
channel of the input image (32x32 RGB image) before
applying a convolution of shape 1x2x1 using 3 kernels (Fig.3).

In this stage, each 2x1x1 kernel iterates just one channel of
the image, which generates a 31x32x1 one. The final output is
then a 31x32x3 image. The three channels are then mixed and
the number of output channels is multiplied using 10 kernels
of 1x1x3 through the 31x32x3 image. By separating the
channels, the complexity of the model as well as the training
and the inference time are considerably reduced.
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Concerning the second type of layers, we have used after
the first convolution an Overlapping Mean filtering of 2x1 to
the image, as discussed in the previous section, to get a
transformed features map of 30x32x10.

Fig.3. Applying a convolutional filter on each of the three channels

Additionally, a third type of layers is applied, which is more
precisely partially connected layers (Part-1 & Part-2), as used
in our previous model Mean-LC4 [28], presented in Fig.4.
Contrary to convolutional ones, this type of layers is based on
unshared weights, and apply instead different sets of kernels to
each location in the images. Which helps to extract more
representative features in a deeper way, and enhance even
more the performances of the model.
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Fig.4. Mean-LC4 for traffic signs classification

However, knowing that unshared weights involve the
increase of used parameters, we have added two convolutional
layers (Conv-1 & Conv-2) based on sharing weights between
the second and the third type of used layers. The objective of
these two layers is to reduce the size of the generated features
maps before applying the partially connected convolutions.

For our model Mean-LC4, it uses mean filtering as input
layer. Hence, to test the performances of the adopted
approach, we have added instead an Overlapping Mean layer
to this model too. The obtained results are presented in the
section of experimental results.

C. Number of parameters

Concerning the third important factor related to the depth,
Table I shows that light architectures give better results, which
means that increasing the number of used parameters it is not
the best way to enhance the performances of Deep Learning
approaches.
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According to these results, our approach is based on using
the minimum number of parameters needed to reach
satisfactory results. These parameters include: the size and the
number of filters, layers, etc.

Finding and choosing these parameters are based on our
previous work [29], while Fig.5 presents the architecture of the
proposed model (Mean-LC5), the type and the number of used
layers, in addition to the size of the input and output of each of
these layers.
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Fig.1. Mean-LCS5 for traffic signs classification

The proposed model includes three types of layers with a
minimal number of parameters: one separable, two
convolutional, and two partially or locally connected. The
separation of the three channels reduces enormously the
complexity of the convolution operation, while the
Overlapping Mean filtering helps to extract more
representative features with a reduced dimension. Finally,
more representative features are extracted in a deeper way by
applying different sets of filters using the Partially Connected
layers. The objective of these layers is to extract the features
that represent the best the group, in order to ensure the
performances of the model for unseen data.

IV. EXPERIMENTAL RESULTS

To evaluate the performances of the proposed approach, we
have used two public datasets, which are more precisely
CURE-TSR (Challenging Unreal and Real Environments for
Traffic Sign Recognition) and Belgium Traffic Sign
Classification Dataset (BTSCD).

For CURE-TSR, this database includes 14 classes of real-
world and simulator images [30-32], and it covers many
challenging conditions that vary from the least to the most
severe ones. The used images are processed with state-of-the-
art visual effect software to simulate challenging conditions.
These challenges include decolorization, lens blur, codec
error, darkening, dirty lens, exposure, gaussian blur, noise,
rain, shadow, snow and haze.

Concerning BTSCD [33], it is a widely used dataset for the
benchmark of traffic signs classification approaches.
Additionally, the dataset contains a large variety of traffic
signs types (62 classes) and samples, with more than 4500 and
2500 images for the training and the testing process
respectively.

Hence, to train and test our models, we have used BTSCD
and the dataset extracted from CURE-TSR used to evaluate
and test our previous approaches [24], as shown in Table II.
The objective of the extracted dataset from CURE-TSR is to
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study the impact of reducing, the minimum, the number of
training data on the generalizability of the model for unseen
data (testing samples).

TABLE II. TRAINING & TESTING DATASETS

Datasets Classes Training Testing
samples samples
Extracted dataset from
CURE-TSR 11 1331 4039
Belgium dataset
(BTSCD) 62 4575 2520

The extracted set from CURE-TSR includes 11 classes: no
overtaking, no stopping, no parking, stop, no entry, speed
limit, hump, no left, no right, priority to and yield as shown in
Fig.6.

Label 0

Label &

Label 2 Label 4

Label 10

Label 8

Fig.2. Types of traffic signs used for the training (CURE-TSR)

Fig.7 shows the number and the type of traffic signs in each
of the 62 classes of BTSCD. While the balance between the
different classes of the two datasets is presented in Fig.8.
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Fig.3. Types of traffic signs in BTSCD
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Fig.8. Balance between classes in CURE-TSR & BTSCD

To evaluate the performances of the two models (Mean-
LC4 & Mean-LC5) to unseen data during the training process,
we have divided the two datasets to a training (90%) and a
validation set (10%). The validation set is created using cross
validation, to ensure the randomness of the selected sets.
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From Fig.9, Fig.10, Fig.11 & Fig.12, we find that the
adopted models converge very well for the training and the
validation processes, and that using the two datasets.

For the testing process, we have used 4039 images
extracted from CURE-TSR, and the 2520 images from
BTSCD (Table II). Table III shows that the accuracy obtained
by Mean-LC4 is 98.36% and 98.53% for CURE-TSR and
BTSCD respectively. While the results obtained by Mean-LC5
are 98.09% for CURE-TSR, and 98.93% for BTSCD.

TABLE III. TESTING RESULTS

Model CURE-TSR BTSCD
Mean-LC4 98.36% 98.53%
Mean-LC5 98.09% 98.93%
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V. DISCUSSION

As presented in the previous section, the adopted approach
reaches high classification accuracies using the two public
datasets. Additionally, it ensures also a fast training, validation
and inference process. Table IV shows a comparison between
the two adopted models and some existing real-time
approaches for traffic signs classification. All the presented
methods use BTSCD to evaluate their classification
performances.

TABLE IV. COMPARISON BETWEEN OUR APPROACH AND SOME REAL-
TIME CLASSIFICATION METHODS (BTSCD)

Reference | Approach | Accuracy Time Parameters Configuration
nd 2.40 GHz, i7-
Jur2’ o MEAN | 9go3es | 02ms 25244 | 5500U CPU, 6GB
PP RAM
Single i7-6700k CPU, 16
[15] | CNNwith | 9887% | 4280ms | 4029 | GBRAM
3STN 801 Nvidia GeForce
S GTX 1070 GPU
9] KEeLmMe' 98.62% | 1.46ms i7-4790 CPU
“ 2.40 GHz, i7-
aO“rrO,}mh VA ossw | o2ms 23758 | 5500U CPU, 6GB
pp RAM
[9] ELM 98.38% 1.42ms - i7-4790 CPU
Enhanced o 0.38
(7] LeNet-5 98.37% million
o i5 microprocessor,

[10] ELM 98.30% 30ms 4 cores, 4GB RAM

GPU, GeForce
0, k)

[12] OneCNN | 98.17% 2ms GTX 970 CUDA
i7-6700K CPU,
32GB RAM

0,

[16] MyNet 98.1% 705.10ms NVIDIA-

GTX1070Ti GPU

o i5 microprocessor,
[10] SVM 97.15% | 2220ms £ cores, 4GB RAM
[10] KNN 96.22% | 2100ms i3 microprocessor,

4 cores, 4GB RAM

From Table IV, we find that the approach adopted by
Arcos, Alvarez & Soria [15] achieves a high accuracy of
98.87% using BTSCD. The inference time is 4.28s per image,
and that by using i7-6700k CPU and Nvidia GeForce GTX
1070 discrete GPU. The number of used parameters is almost
14 million.

A high recognition accuracy is also achieved by using
Extreme Learning Machine (ELM) and Kernel ELM, with
98.62% and 98.38% respectively [9]. The proposed
approaches are computationally efficient with 1.42ms and
1.46ms per image respectively, using 17-4790 CPU.

The ELM used for the classification by Saouli, Aroussi &
Fakhri [10] outperforms SVM and KNN in terms of accuracy
by 98.30%, and an inference time of 0.03s. The approach uses
an 15 microprocessor with 4 cores and 4 GB of RAM.

For the lightweight model based on LeNet-5 proposed by
Zaibi, Ladgham & Sakly [17]. The network reaches an
accuracy of 98.37%, using just 0.38 million parameters.

The network (OneCNN) proposed by Jurisi¢, Filkovic &
Kalafatic [12] achieves a high recognition accuracy of
98.17%, while the inference time is about 2ms on average,
using CUDA implementation of Caffe framework, on a
GeForce GTX 970.
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While the small convolutional neural network used by Li &
Zeng [16] reaches a good classification accuracy of 98.1%
with an inference time of 705.10ms, using i7-6700K CPU,
32GB RAM and NVIDIA-GTX1070Ti GPU.

In comparison to the presented methods (Table IV), we find
that our approach is efficient in terms of classification
performances, response time, hardware and memory
requirements. The adopted approach achieves high recognition
accuracies with 98.93% and 98.53% for the second and the
first model respectively. In addition to that, the two models
have also a very quick response time, that doesn’t exceed 0.2
millisecond per image, and that using 2.40 GHz, i7-5500U
CPU, 6GB RAM.

VII. CONCLUSION

Traffic signs recognition systems represent an important
component in ADAS and self-driving cars. Their main goal is
to ensure the safety of both drivers and pedestrians. To fulfil
this crucial role many approaches are adopted by researchers,
especially Deep Learning approaches.

However, although their high performances, DL approaches
are very computationally expensive, which limits their use in
real-time recognition applications.

From this perspective, our DL model (Mean-LCS5) is
proposed. The adopted model reaches high classification
accuracy using CURE-TSR and Belgium Traffic Sign
Classification Database (98.93%). Furthermore, the proposed
approach ensures a fast training and validation process, using a
very limited number of parameters.

On the other hand, the approach has a quick response time
(0.2ms/image), and could be implemented in real-time systems
with low resources environments.

To ensure the generalizability of the obtained results
regardless of the used datasets, we will work on adopting a
scaling method based on state-of-the-art approaches,
especially EfficientNet proposed by Tan & Le [34] in order to
ameliorate the performances of our model.
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