PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

AQMoT: Implementation of Special Queue
Management Approach for Internet of Things

Kerem AYTAC'?, Harun OZDEMIR?, Malik TURKOGLU?, Muhammed Murat DILMAGC?, Omer KORCAK®
'Kog Digital R&D Center, “Marmara University
Istanbul, Turkey
keremaytac@gmail.com, hrn.ozdemir52@gmail.com, maliktr34@gmail.com, muhammedmurat] 1 @gmail.com,
omer.korcak@marmara.edu.tr

Abstract—In the age of digitalization, the impact of Internet of
Things (IoeT) networks can be seen in many different areas, and
there are significant issues with networking and capacity due to the
low smartness and cost issues of IoT devices. Congestion and queue
management, especially in an IoT network buffer, is one of the most
important issues to consider. In this paper, we explained how to
develop, implement and test the algorithm built to manage the
queue and to avoid potential congestion by adding some intelligence
to dumb nodes with a lightweight method called AQM-of-Things
(AQMoT) which we have proposed recently. Extensive-form game
model is used for defining decision making criteria of both IoT
nodes (when to send) and the gateway node (when to drop). We
implement a game model according to the queue level by including
other network conditions as well. We propose a content-aware
priority assignment method for the packets. We develop a realistic
test environment and evaluate effectiveness of the AQMoT
algorithm. Test results suggest that AQMoT effectively avoids
packet drops for high priority data and reduces the burden on the
gateway queue caused by redundant data sent by dumb IoT
devices.

L INTRODUCTION

Over the past few years, Internet of Things (IoT) has become
one of the most important technologies of 21st century. We can
connect lots of objects such as Televisions, watches, fridges,
coffee machines and various types of sensors to the Internet. In
this way, these objects become smart devices. These devices are
typically connected to a gateway device which receive and
process data. Currently number of IoT devices are increasing
exponentially and it is expected to hit to 500 billion of devices as
0f2030 according to a study [1].

The increase in the number of IoT devices inevitably brings
some challenges. When there exists more IoT devices in a
system, more problems are encountered due to congestion and
load in the gateway devices. In addition, some IoT devices send
too much unnecessary data, causing the system to slow down and
sometimes the system to stop working. IoT devices connected to
a gateway device are mostly heterogeneous and they generate
and send data with different priorities. For example, data
generated by a fire alarm system have high priority and should be
received quickly without waiting in the queue for a long time.
When the network is too congested, such critical data may also
be delayed or dropped and this is a significant problem which
prevents the system working properly. Sometimes, sensors send
redundant data, such as same value continuously. This does not
benefit anyone and only creates data density in gateway. So,

these data should have low priority and it could be beneficial to
prevent sending of these redundant data at the source node. To
handle all these issues, employment of a queue management
approach is crucial for IoT systems that generates dense amount
of data.

In the literature, there are several queue management
algorithms. RED (Random Early Detection) [2] is a well-known
algorithm, where the queue average size is always evaluated, and
the packets are dropped with determined probabilities between
given minimum and maximum queue thresholds. Adaptive RED
(ARED) [3] is an extension of RED, and it is an adaptive
approach which makes itself more or less aggressive according to
the continuously evaluated average queue length. XRED [4] is a
content aware extension of RED. GREEN (Generalized Random
Early Evasion Network) [5] is a congestion avoidance approach
which contains some proactive decisions to ensure more fairness
between network flows. It also adopts more intelligent way of
drop possibility calculation by evaluating some network
conditions such as Maximum Size Segment, Round-Trip Time or
link capacities, rather than RED’s simplicity and randomness.
PIE (Proportional Integral controller Enhanced) [6] is tough and
suitable for many network scenarios where per-packet extra
processing is not a must, which leads to being a very lightweight
algorithm and easy to deploy in terms of both device and
software. Different than the others, it evaluates drop probability
by sensing the delay behavior finding out where to shift as
direction (i.e. increasing or decreasing delay). CHOKe and its
variations can be given as examples for this type of algorithms
[71, [8]. These types of algorithms are dedicated to provide some
fairness by penalizing unresponsive (or aggressive) traffic in case
a network congestion occurs. These algorithms are stateless and
have ease of implementation which make the algorithms highly
preferable in some cases.

Recently we proposed AQMoT algorithm [9] based on game
theory [10]. This algorithm determines how often IoT sensors
will send data, and how to manage queue when the gateway is
busy. In AQMoT, gateway and sensors exchange some control
information, and some decision rules are defined for the sensors
(to decide whether to send or when to send) and for the gateway
node (to decide whether to drop the received packet). The study
in [9] includes basics of the algorithm, some theoretical details
and provides a conceptual comparison with the above-mentioned
algorithms, without including any implementation and
performance evaluation details. In this study, we aim to fill this

ISSN 2305-7254

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

gap and present implementation details of AQMoT in a real test
environment using microcontrollers (Raspberry Pi’s [11]) and
standard IoT communication protocols (such as MQTT [12],
socket programming). We provide extensive set of real-time
results which depict effectiveness of the algorithm.

The rest of the paper is organized as follows. Next section
describes the previously proposed AQMoT algorithm. Section 111
extends the idea behind AQMoT by giving further
implementation details. Section IV describes the experimental
setup including the environment details, hardware and network
topologies. In Section V, test results are illustrated and discussed
for several scenarios in the given setup. Finally, Section VI
concludes the paper.

II. OVERVIEW OF AQMOT ALGORITHM

AQMoT is a queue management algorithm developed
specifically for IoT environments with a novel decision-making
mechanism for both the sender (whether to send a packet or not)
and the receiver (whether to drop a packet or not) based on an
extensive-form game [13] model as in the Fig. 1. The first player
(sender) is typically a sensor node and the second player
(receiver) is typically a gateway node. The sensor node has two
actions (Send and Not Send) and the gateway node has two
actions (Drop and Send) as well. Utilities of these nodes change
according to action profiles and are defined by several variables
defined in Table I. The details on how to determine these
variables will be described in the next section, which was missing
and left as a future work in the previous study [9].

The main aim is to avoid futile efforts of dumb IoT nodes, by
throttling them if they are exploiting too much resources by
sending a lot of low-priority data. This will prevent overhead in
the queue system, and this make it efficiently work.

Not Send Send

/ \

g
S-RTT,

’ (1-Q)(-P.A+S)+Q((1-P).A+S)

/

~
Drop Send

(-S-F
(L-QNPA-SI+Q(-A.(1-P)-5)

l:jlrtjj(l—’_A S -RTTI+Q(-S-RTT),

Fig. 1 Extensive-form game formulation, where receiver the destination is
Player 2 and sender the source is Player 1

TABLE I. VARIABLES OF THE PROPOSED GAME MODEL

P Priority of packet from 0 to 1.
S Size of packet from 0 to 1. It is calculated as the
ratio of the packet size to the Maximum Segment
Size (MSS).

RTT | Moving average of RTT occurred till then. 0 means
low RTT, 1 means very high RTT.
A An award. (-A stands for a penalty.) It should be
greater than sum of maximum possible value of S
and RTT.
0 The percentage of busyness of queue at destination

according to defined function.

»

=1
=3

Queue Occupancy (Q)

3 -
>
Qmin Qmax Qien

Queue Average (Qavg)
Fig. 2 Queue Occupancy Function by Queue Average

In the defined game, players are assumed to be rational and
they try to maximize their payoffs. The sender communicates
with the receiver to get the latest status. Q is the percent
occupancy of the queue at the target illustrated in Fig. 2. This is
similar to the drop function for other AQM (Active Queue
Management) algorithms like RED [2]. Qmin is the minimum
threshold for the target to identify itself as null. The target doesn't
tend to drop any packets up to this threshold but accepts them all.
Qmax is another threshold close to the target's maximum
possible queue length. Beyond this threshold it tends to drop
them all to avoid causing some network or buffering issues.
Since the effect of these thresholds is not significant in the
algorithm, we have determined them as linear and constant. The
current occupancy percent (Q) is shared by the receiver at certain
time intervals after the connection to all senders. If the sender
sees no potential overhead on its part and finds possible action by
the receiver, which is "accepted" for a low priority, small-size
packet on the network under normal conditions, both sender and
receiver will receive a good reward. The higher priority the
packet, the more payoff will be received by the sender and
receiver. We will try to boost both sides to complete a transfer
with high priority packets. But also, the sender will pay the cost
of the size of the package and the average RTT value. If the size
of the packet is large and the RTT value is high, the sender
should pay more from earnt payoff. On the other hand, if the
receiver queue occupancy is high and the sender continues to
send persistently, these messages are dropped and seen as wasted
effort. Based on that, there will not be an award here, but the
effort will be lost for S and RTT.

To describe the rationale behind the formulated game, if the
receiver has a low occupancy rate (about 0), sending a packet
will give a payoff associated with the priority of the packet. The
sender always pays for the packet size and packet delay RTT
from its award. An award A will be decisive for the behavior of
the senders and receiver. Increasing A will make both sides
greedy and both sides will try to complete a packet transfer even
in a full target. Reducing A will make them to stay on the safe
side and take less risk. Accepting the package for the receiver
will award the same amount except for RTT as it is not important
on the receiver side. The round trip delay is experienced by the
sender.

Now we consider the payoffs when the sender sends the
packet, and the receiver’s queue is not occupied which puts the
receiver into “packet welcomer” state. Sender will take same
reward as it already executed its main duty (i.e., packet sending),
however, the receiver will receive a penalty proportional to the
priority of the packet if it happens to refuse accepting that packet,
although it can do that. This would be an undesirable result. We

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

want to avoid scenarios where the receiver does not accept
packets even though the system is available. That’s why we give
some penalty to this action which forces the receiver to avoid this
action and accept the packet to be granted a payoff as well.

Considering another scenario, where the receiver queue is
occupied, and the sender sends the packet. In this case, the
receiver tends to drop the packet and the sender pays for this
unnecessary effort. In the payoff formulas, the value multiplied
by Q (in the right-hand side) dominates when Q value converges
to one, and the value multiplied by 1-Q (in the left-hand side)
dominates when Q value converges to zero. If the packet is very
important, the penalty of dropping will be high accordingly.
Also, in the sender side, the penalty of sending high priority
packet is not too much even if the receiver queue is highly
occupied.

Table II. illustrates an example scenario with the given
parameters. Here, the Nash equilibrium is (Send, Accept),
because both the sender and the receiver will get highest payoffs
and not tend to change their strategies. For more scenarios, [9]
can be referred.

TABLE II. A SIMPLE GAME WITH PAYOFF TABLE FOR HIGH

PRIORITIZED PACKET
Player 2
;, Accept Drop
Eu Send (1.6,0.3) (-0.8,-0.3)
A | NotSend 0,0 0,0
pr:0.6 S8:0.5 RTT:0.3 A4 Q:04

Further details of AQMoT, such as how priority values are
assigned and what to do with the packets that are decided to be
not send will be described in the next section. Afterwards, we
will describe details of a real experimental setup, in which we
implement both the scenario where no queue management
algorithm is employed, and the scenario where AQMoT is
utilized.

III. AQMOT PROTOCOL DETAILS

In this section, we provide some details of AQMoT that were
not included in [9] and left as future work. AQMoT is a content
aware algorithm, which assigns priorities to the packets
according to their contents. For example, if a sensor value is not
changed or slightly changed compared to the previously sent
value, its priority should be not high. But time is also important
here, such that packets of a sensor should get more priority if the
time passed after sending the last packet of that sensor increases.
To handle this, we propose an algorithm for setting the
appropriate priorities of packets according to the changes in the
content and time.

Priority values for each sensor packet are calculated
according to the formulas given in (1) and (2). We calculate the
percentage difference A between the current value generated by
the sensor and the value in the last sent packet. We also define a
parameter 0, such that when A exceeds & value, packet priority is
set to 1. 6 value may differ according to the sensitivity to change
for different types of sensors. For some sensors 0.1% is a
significant change, whilst for some other 1% change is not

significant. Decreasing the 6 value would increase the sensitivity
to change (i.e., very slightly changes will increase the priority for
the next packets). Another variable is Count, which is set to zero
after sending a packet, and incremented by one for each “Not
Send” action.

1

P= 10 (6—A)—Count (1)
PZ{P ifo<P<1 2
1 otherwise

The formula given in (2) ensures that the priority increases
when new data differs more compared to the last sent one, and it
also increases after each deferred transmission. It also guarantees
that the priority of a packet is always 1 after Count value reaches
to 10. This prevents the scenarios where a sensor does not send
any data for a long time. Fig. 3, 4 and 5 illustrates some priority
values for various transmission scenarios. By default, & is
assumed to be 1. Fig. 3 shows a scenario where the sensor value
slightly changes (0,1%) after sending a packet and it remains
unchanged for next periods. In this case, priority increases to 1
after the eighth “Not Send” decision. Fig. 4 shows a more
random scenario. The effect of the Count value (number of
deferrals) increases exponentially. The first packet has the
highest A value, its priority is relatively high, but not 1. Although
the sixth packet has a lower A value, its priority is 1. Fig. 5 shows
another scenario where the priority reaches to 1 in a shorter time.

Count Per.Diff. A Priority
1 0.10 0.13
2 0.10 0.14
3 0.10 0.17
4 0.10 0.20
5 0.10 0.25
6 0.10 0.33
7 0.10 0.5
8 0.10 '1.00

Fig. 3 Change in the priority values when all the packets have the same
percentage difference of 0.1% compared to the last sent value

Count Per.Diff. A Priority
1 0.75 0.67
2 0.21 017
3 0.41 0.34
4 0.35 0.40
5 0.35 0.67
6 0.35 1.00

Fig. 4 Change in the priority value for various Count and A values

Count Per.Diff. A Priority
1 0.20 0.14
2 0.20 0.17
3 0.20 0.20
4 0.70 1.00

Fig. 5 Change in the priority value for various Count and A values

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

Queue Size M@ge 3

/ Message 4 Queue
Message @—» END»- Accepl-a-[\essage 3 qc;:::;“
Message 2 | b
Message 1
Message 1

f__" Delayed DONT SEND
Y DROP
| S Yy

Sensor Message
Type
lIIiiII IIHHIIII
Generator,

éth Antermpt SENSOR ot
Dnlﬂp Broker

Message 3
Message 2

Fig. 6 Flowchart of our System

Fig. 6 illustrates the flowchart of the system. After creating a
message object, sender makes a decision to whether send it
immediately to the receiver or not. Here it checks the Nash
Equilibrium of the game using the feedback information obtained
from the receiver. It sends the packet if its action in the Nash
Equilibrium is “Send”. Otherwise, if it is “Don’t Send”, this
packet is pushed to the Delayed Queue. Purpose of this queue is
to resend this message after a delay. Duration of this delay is
determined proportional to the absolute value of greatest negative
payoff of (Send, Accept) action profile in the payoff table of the
game. We multiply this value with 100 ms and delay is
determined as the resulting value. For example, if the payoffs in
(Send, Accept) action profile are (-2.4, -1.2), the packet is
delayed for (2.4*100) ms. The choice of 100 ms is obtained
empirically in our realistic test scenarios, but the best coefficient
may be determined for different systems. The packets in the
delayed queue are tried to be retransmitted after waiting for the
determined delay value. Before each retransmission attempt, the
priority of these delayed packets are incremented by 0.05. If the
same message cannot be sent four times in a row, the message is
permanently dropped.

After sending a message to the receiver successfully, this
message is inserted to the queue and forwarded to the MQTT
broker. At the receiver side, queue size is broadcasted to all the
clients in constant intervals. These intervals may depend on the
system characteristics, but it should be short enough to ensure
that the client's knowledge is up to date.

For each packet, following fields are included: (i) topic
(string), which indicates function of the sensor, and its identity;
(ii) message (float/boolean), which indicates the sensor value to
be sent; (iii) operation (int), which is an attribute for deciding
how to process the message; (iv) size (float), the size of the
packet; (v) delayed (boolean), which is an attribute that indicates
whether the packet was “Not Sent” and delayed due to the game
theoretic decision making; (vi) priority (double), the priority of
the packet; (vii) initialPriorityifDelayed (double), which is
required to recalculate priorities for delayed packets; (viii)
counter (int), which indicates how many subsequent messages of
a sensor is not sent; and (ix) 77t (double), the current round trip
time.

IV. EXPERIMENTAL SETUP

We simulated the system with two Raspberry Pi’s and three
laptops which creates our desired IoT environment. Two

Raspberry Pi’s and two laptops emulates the sensors (sender-
side) that send data to the server (receiver-side) pretending to be
a gateway with different intervals. The sensors have different
attitudes, and they are classified as dumb, normal, burst and
random sensors. Dumb sensors send data rapidly and redundantly
in small intervals, and these sensors may fill the queue at
destination side because of these redundant efforts. Normal
sensors send data two times slower than dumb sensors. Burst
sensors send data with inconsistent time intervals and they send
many messages on a sudden. Finally, random sensors send
messages randomly at irregular intervals, which means that they
may be sometimes slower and sometimes faster than normal
Sensors.

Both Raspberry Pi’s and all three laptops publish values read
from a predefined dataset simultaneously to the server via up to
18 sensors. These clustered sensors and server are located in
different places and communication is provided with Hamachi
[14] which builds a private LAN amongst computer scattered
around the world physically while communicating via Internet.
This approach served to provide unstable network conditions.
The experimental IoT system is shown in Fig. 7. We note that
Raspberry Pi’s behave like many clustered sensors that are
running on different connections. Each sensor is emulated by a
different thread running on the Raspberry Pi, reading values from
dataset and publishing these to the server.

SENDER

Fig. 7 Experimental IoT System

In the server-side, the server which implements MQTT
broker, listens a specific port and waits sensor values. The server
is multi-threaded so that for every coming message object, server
creates a new thread and receives the message. Received
messages will be placed in the queue. Maximum queue size is set
to 100. Message sizes are assigned randomly between 0 and 1. In
order to simulate edge processing, we add some sleep time for
the threads for each message that is proportional to its size.

It is important to use real sensor values to better reflect
content awareness of the proposed algorithm. For this purpose,
we decided to use IoT dataset provided by Zamora-Martinez et
al. [15] which includes many real sensor values that are used for
indoor temperature forecasting. In our experiments, the sensor

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

values for 18 different sensors are all obtained from this dataset.
Some of the topic names of the sensors are weather temperature,
CO, level, weather moisture level, etc. Temporal changes of the
sensor values in the dataset are directly used to simulate variation
in the sensor values, hence to define the priority values the
packets.

To create a more realistic experimental setup, we create an
IoT environment that consists of three subsystems in different
locations, instead of restricting to a single local network. These
three subsystems behave like clustered sensors or server, with the
following hardware components:

e The first subsystem consists of a single computer. This
computer serves as the server. It receives incoming
messages.

e The second subsystem consists of a computer and two
Raspberry Pi’s. This system acts as a multi-client
including clustered sensors. Majority of data flows
through this system since it includes high number of
Sensors.

e The third system consists of a single computer. This
computer acts as a client also.

The first setup, the server, is in a place located in Tokat, Turkey
which is 700km away from the clients. The second setup, the
multi-client, is located in Bahgelievler district of Istanbul and
establishes a connection with the server. The third setup, the
client 2, is located in Sariyer district of Istanbul, and establishes a
connection with the server and a virtual, private LAN has been
established between server and clients with Hamachi as
mentioned previously.

Now we give further detail on different types of sensors used
in the experiments.

Dumb Sensor: This type of sensors continuously sends
messages to the server at 400 ms intervals.

Regular Sensor: This type of sensors continuously sends a
message to the server at 800 ms intervals.

Burst Sensor: This type of sensors goes into sleep mode for a
duration that is uniformly random between 10 seconds and 20
seconds, after sending nearly 70 messages at 200 ms intervals.
These sensors significantly increase queue occupancy in a short
period of time.

Random Sensor: In this sensor type, the sensor sends a
message to the server at random intervals between 15 ms and 900
ms.

For each client we created, we define a sensor type. The client
connects and sends data to server with the features of associated
sensor type. On the developed test environment, we applied
various test scenarios and evaluate performance of AQMoT
algorithm. We compare performance of AQMoT with baseline
algorithm which do not employ AQMoT, where sensors send all
the generated data, and the receiver drops the packets if the queue
is full. Test results are described in the next section.

V. TESTRESULTS AND DISCUSSION

In the described experimental setup, three different test
scenarios are implemented, such as low, medium and high
intensity systems. These scenarios are obtained by changing the
sensor types, while number of sensors are constant (18 sensors
are used in all tests). For each scenario, we ran the tests for both
AQMoT algorithm and the baseline algorithm. During all tests,

we tried to keep the environmental conditions constant for both
cases.

1) Low Intensity System
In low intensity system, distribution of 18 sensors is decided
as follows:

2 Dumb sensors

10 Random sensors
3 Regular sensors
3 Burst sensors

Fig. 8 illustrates the queue occupancy of the server in a low
intensity system. It is observed that AQMoT significantly
reduces the queue occupancy in the server side. Fig. 9 shows the
histogram for the number of dropped packets versus priority of
packets. Here both sender-side and receiver-side packet drops are
counted. In AQMoT, almost all of the packets are dropped in the
sender side, i.e., they are not sent. It is observed that only low
priority packets are dropped, and all the packets with priority 1
are successfully sent. On the other hand, when AQMoT is not
employed, 1.8% percent of the highest priority packets are
dropped, although the system is not intensive. AQMoT algorithm
prevents dropping the high priority packets by not sending a
portion of low priority packets and avoiding overload in the
buffers due to unnecessary effort made by dumb sensors.

L Low Intensity System

100

80 4

.
[

£

O

w

o 60

z

2 — AQMoT

§ —— Without Algorithm
g]

v

=1

[}

=

o

201

o 100 200 300 400
Time (Second)

Fig. 8 Queue occupancy in a low intensity system when AQMoT is employed
and not employed

Low Intensity System

= AQMoOT

EEE Without Algorithm
2000 -

1500 A

1000

Number of Dropped Messages

500 -

0.2 0.4 0.6 0.8 L0
Priority Range of Dropped Messages

Fig. 9 Number of dropped packets versus packet priorities in low intensity
system

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

2) Medium Intensity System
In medium intensity system, the distribution of 18 sensors is
as follows:

2 Dumb sensors

8 Random sensors
3 Regular sensors
5 Burst sensors

Fig. 10 illustrates the queue occupancy of the server in a
medium intensity system. Queue occupancy is higher for both
cases compared to low intensity system, but still AQMoT
provides queue occupancy level below 20%. Fig. 11 shows the
histogram for the number of dropped packets versus priority of
packets. It is observed that number of random drops increase, and
larger number of high priority packets are dropped when
AQMoT is not employed. When AQMoT is employed, again the
number of packet drops increased to avoid high queue
occupancy, but this increase is observed in low priority packets.
All the packets with priority of 1 are successfully sent. On the
other hand, when AQMoT is not employed, 22.17% of such
packets are dropped. These results suggest that AQMoT perform
well in a medium intensity system.

Nor Medium Intensity System

100 A

80

60 A

Queue Occupancy of Server

—— AQMoT
—— Without Algorithm
40 1

T T T

0 100 200 300 400
Time (Second)

Fig. 10 Queue occupancy in a medium intensity system when AQMoT is
employed and not employed

Medium Intensity System

B AQMoT
3000 = Without Algorithm

N
v
=3
o

2000 A

1500 A

1000 A

Number of Dropped Messages

0.2 0.4 0.6 0.8 10
Priority Range of Dropped Messages

Fig. 11 Number of dropped packets versus packet priorities in medium intensity
system

3) High Intensity System
In high intensity system, the distribution of 18 sensors is as
follows:

12 Dumb sensors
0 Random sensor
0 Regular sensor
6 Burst sensors

Fig. 12 shows the queue occupancy of the server in a high
intensity system. It is observed that when AQMoT is not used,
the server queue is almost full all the time. When AQMoT is
employed, queue length increases but still it is in tolerable levels.
It fluctuates between 20% and 60%. Fig. 13 shows the histogram
for the number of dropped packets versus priority of packets.
When AQMoT is not employed, almost half of the packets
(43.33%) with priority 1 are dropped. When AQMoT is used,
most drops are encountered by redundant low priority packets,
and only 1.06% of packets with priority 1 are dropped. These
results suggest that AQMoT protects significant packets even in a
highly congested network.

High Intensity System

100 4

804

60 4

Queue Occupancy of Server

20

—— AQMoT
04 —— Without Algorithm

0 100 200 300 400
Time (Second)

Fig. 12 Queue occupancy in a high intensity system when AQMoT is employed
and not employed

Hi High Intensity System
EE AQMOT

m Without Algorithm

7000 4

6000 1

5000 1

4000 -

3000 A

2000

Number of Dropped Messages

0.2 0.4 0.6 0.8 1.0
Priority Range of Dropped Messages

Fig. 13 Number of dropped packets versus packet priorities in high intensity
system

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

4) Discussion
Table III. illustrates the drop rate of highest priority
messages (i.e. with priority of 1) in low, medium and high

intensity networks.

TABLE III. DROP RATE OF PACKETS WITH PRIORITY OF 1 COMPARED
WITH AQMOT AND WITHOUT AQMOT

Low Intensity Medium Intensity High Intensity
W/o algorithm 1.83% 22.17% 43.33%
AQMoT 0% 0% 1.06%

Experimental study shows that the following performance
results are obtained with AQMoT algorithm, that are aligned
with the initial design goals.

i. The queue congestion level in server side is decreased
about 44%.

ii. Rate of the successful delivery of high priority data is
significantly increased. In the low intensity and medium
intensity systems, all the high priority data are sent successfully.
In the high intensity system, 98.94% of the high priority data are
sent successfully.

iii. Transmission rate of redundant data (with repeating
values) are decreased, thus avoiding needless efforts, reducing
energy consumption and relaxing the traffic in the receiver
queue.

To sum up, it is always an important issue to have positive
discrimination over prioritized data rather than unimportant ones
in IoT world. Here, we put effort on flowing prioritized data in
the system by also reserving the most of system resources for
them, while getting rid of many of unimportant ones when
necessary to create some relief decreasing the intensity on the
system.

Without AQMoT in IoT setup, all the drop counts shared by
any kind of message in terms of priority, and unimportant
messages can overload the system by also overriding the
prioritized ones. AQMoT also prevents exploiting by the sensors
which send lots of redundant data.

VI. CONCLUSION

In this study, our primary objective is to evaluate previously
proposed queue management algorithm, AQMoT, which is
specifically designed for IoT environment, and try to avoid futile
efforts made by dumb IoT sensors by restraining their eagerness
of sending too much redundant data. We propose a method for
prioritizing IoT data and designed a detailed workflow of the
system. We implement AQMoT in a realistic test environment
and perform extensive set of simulations/experiments.

In the simulated low intensity and medium intensity systems,
all important data, with priority equals to 1, was delivered in
full. This shows that AQMoT performs well to avoid loss of

high priority data. In the highly occupied system, 98.96% of
important data was delivered. This percentage depends on the
environment, and it can vary considerably in different
occupation scenarios. However, it is observed that as the traffic
intensity level increases, the contribution of AQMoT to avoid
loss of high-priority data also increases. AQMoT prevents queue
occupancy of unimportant/redundant data effectively.

ACKNOWLEDGMENT
This work is supported by Kog¢ Digital R&D Center.

REFERENCES

[1] Atag, C., and Akleylek, S. “A survey on security threats and solutions in
the age of [oT”, Avrupa Bilim ve Teknoloji Dergisi, No. 15, 2019 (pp.
36-42).

[2] Floyd, S., and Jacobson, V. “Random early detection gateways for
congestion avoidance.” IEEE/ACM Transactions on networking, Vol. 1,
No. 4, 1993, (pp. 397-413).

[3] Feng, W.-C., Kandlur, D. D., Saha, D., and Shin, K. G. “A self-
configuring RED gateway”, IEEE INFOCOM’99. Conference on
Computer Communications. Proceedings. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. The
Future is Now (Cat. No.99CH36320), Vol. 3, IEEE, 1999 (pp. 1320—
1328).

[4] Hassan, M., and Jain, R. “High performance TCP/IP networking”, Vol.
29, Prentice Hall Upper Saddle River, NJ, 2003

[5] Feng, W.-c., Kapadia, A., and Thulasidasan, S. “GREEN: proactive
queue management over a Dbest-effort network.” Global
Telecommunications Conference, 2002. GLOBECOM’02. IEEE, Vol.
2, IEEE, 2002, (pp. 1774-1778)

[6] Pan, R., Natarajan, P., Piglione, C., Prabhu, M. S., Subramanian, V.,
Baker, F., and VerSteeg, B. “PIE: A lightweight control scheme to
address the bufferbloat problem.” IEEE 14th International Conference
on High Performance

[7] Pan, R., Prabhakar, B., & Psounis, K. “CHOKe-a stateless active queue
management scheme for approximating fair bandwidth allocation.” In
Proceedings IEEE INFOCOM 2000. Conference on Computer
Communications. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies, 2000 (Cat. No. 00CH37064)
(Vol. 2, pp.942-951). IEEE.

[8] Abbas, G., Manzoor, S., & Hussain, M. “A stateless fairness-driven
active queue management scheme for efficient and fair bandwidth
allocation in congested Internet routers.” Telecommunication Systems,
67(1), 3-20, 2018

[9] K.Aytag, O.Korcak, "AQM-of-Things: Special Queue Management
Approach for Internet of Things", European Journal of Science and
Technology (Avrupa Bilim ve Teknoloji Dergisi), 2020.

[10] Aumann, R. J. "What is game theory trying to accomplish?”, Frontiers
of Economics, edited by K. Arrow and S. Honkapohja, 1985

[11] Raspberry ~ Pi official ~ website, Raspberry Pi, Web:
https://www.raspberrypi.org [Online][Accessed 30- Aug- 2021]

[12] Naik, N. “Choice of effective messaging protocols for IoT systems:
MQTT, CoAP, AMQP and HTTP.” IEEE international systems
engineering symposium (ISSE), IEEE, 2017. (pp. 1-7).

[13] Kuhn, H. “Extensive games and the problem op information” In H.
Kuhn and A. Tucker, editors, Contributions to the Theory of Games,
2016 (pp. 193-216).

[14] Hamachi official website, LogMeln Hamachi, Web:
https://www.vpn.net [Online][Accessed 30- Aug- 2021]

[15] F. Zamora-Martinez, P. Romeu, P. Botella-Rocamora, J. Pardo, “On-
line learning of indoor temperature forecasting models towards energy
efficiency”, Energy and Buildings, Volume 83, Pages 162-172, ISSN
0378-7788, 2014

