
NVMe Solid State Storage Performance Testing

Vadim Ponomarev,Eugene Pitukhin
Petrozavodsk State University

Petrozavodsk, Russia

vadim@cs.petrsu.ru,eugene@petrsu.ru

Abstract—The paper presents the initial stage of constructing
a performance model of a modern solid-state drive with a PCIe
NVMe interface – a methodology for collecting performance data
for existing devices, on the basis of which the model will be
built. Approach, implementation and results of implementation
of presented methodology are presented. An open source utility
is proposed for creating a public NVMe SSD performance data
set.

I. INTRODUCTION

In previous works, models of performance indicators for

solid state storage systems were presented [1]. However, the

performance models were based on draft results, obtained in

early experiments. The experiments used early samples of

devices from a single manufacturer [2]. All tested devices

had SATA interface, which is currently outdated and being

superseded by the NVMe interface.

NVMe interface was designed from scratch to utilize low

latency and massive parallelism of modern SSDs, processors,

platforms and applications. For instance, while SATA has

only one command queue per device, NVMe can provide up

to 65535 queues per single device. New design allowed to

achieve much higher performance.

Thus, constructing a mathematical model of the perfor-

mance of a solid-state drive with a PCIe NVMe interface

become relevant.

The first step in building a model is to get a data set that

reflects the necessary characteristics of the object being mod-

eled. A large number of works on NVMe SSD performance

are available (for instance, [3], [4] and [5]), but, oddly enough,

the authors were unable to find public data sets containing key

performance metrics and parameters that affect performance

of modern solid-state drives with an NVMe interface. Also, it

was not possible to find a free tool which allows you to get a

data set with the required characteristics youself.

Therefore, the task of obtaining the data necessary for

modeling arises. And before starting the experiments with real

devices we need methodology suitable for collecting perfor-

mance data for solid-state drives with the NVMe interface.

This paper presents such a methodology and test results

obtained using the implementation of this methodology devel-

oped by the authors.

The structure of paper is the following. Section II describes

NVMe architecture and key factors affecting NVMe SSDs

performance. These key factors should be saved when measur-

ing performance for later use in modeling. The development

of a software tool that implements performance measurement

while preserving the key factors is described in section III.

Section IV presents the results obtained. Finally, section V

summarizes the final remarks and conclusions.

II. SPECIFICITY OF NVME SSD PERFORMANCE DATA AND

KEY AFFECTING FACTORS COLLECTION

A. High level architecture and background

Fig. 1. High-level architecture of computer system with NVMe SSD

High-level architecture of computer system with NVMe

solid state drives is presented on Fig. 1. Typical solid state

drive has a number of flash memory chips supporting read,

write and erase operations. Read and write operations can be

done by a blocks with relatively small size (typically 4 to

16 Kb). Erase operation can be done only by a large block

(typically a few megabytes) and flash block wearing out by

erase operations. Each flash block can be erased only a finite

number of times.

Group of flash memory chips is attached to flash memory

channel, which is used for interaction and data transfer. Each

channel can handle only one data transfer at a time. Howewer,

different channels can work simultaneously and provide con-

current access to chip groups attached to them.

Flash memory channels are attached to flash drive controller

which can be considered as multi-core embedded computer

running complex program and implementing host interface

protocol (NVMe/PCIe) and flash chips management. Another

important task of flash drive controller is to provide flash

translation layer (FTL) routines such as logical block mapping,

wear leveling and garbage collection. Unlike legacy storage

devices, there is no host bus adapter (HBA) between host and

storage device, NVMe SSD controller is directly attached to

host’s PCIe subsystem.

______________________________________________________PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



Peripheral Component Interconnect Express, abbreviated as

PCIe, provides kind of communcation network for computer

system components.

Finally, there are CPUs submitting commands and data to

drives. Massive parallelism of NVMe allows to have multiple

I/O submission and completion queues, one per each processor

core on a single drive. This allows to avoid contention, almost

entirely avoid locking and increase performance comparing to

legacy SATA drives. A more complete overview of the subject

area is available in [6], for instance.

B. Key factors affecting NVMe SSD performance

Taking into account all of the above, we can identify the

key factors that affect performance of NVMe SSDs. First

is the type (QLC, MLC, TLC, SLC) and other hardware

characteristics of NAND flash chips used in drive. This is,

for instance, I/O speed, program throughput and read latency.

NAND flash wearout also affects performance. The prob-

ability of bit errors increases during the use of the drive,

therefore life time, total number of bytes written, and number

of erases (if possible) must be recorded and reported with the

collected performance data.

Next factor is the number of flash memory channels and

their characteristics, such as bus frequency. Number of flash

memory channels bounds internal parallelism of a drive. Also,

knowing the total number of flash memory chips and number

of flash memory channels we can easily determine the number

of chips on a single channel.

Next and one of the most important factor is the model of

flash drive controller. This factor is very complex and have a

large amount of sub-factors. To name a few:

• firmware version

• DRAM memory capacity (if appropriate)

• supported number of flash memory channels

• performance characteristics (maximum throughput for

sequential read and write, maximum IOPS for random

read and write)

Next factor is the maximum available PCIe bandwidth and

amount of NVMe drives sharing that bandwidth. We need to

know PCIe topology of the system where drives are installed.

Also, during the measurements, it is necessary to ensure that

all drives are inactive, except for the tested one.

Another system-wide hardware factors that can affect per-

formance are the model of CPU, model, amount and frequency

of RAM, model of system board

Last, but not least hardware factors are the ambient temper-

ature and temperature of the tested drive. SSDs have thermal

throttling and even thermal shutdown to avoid damage of the

drive, therefore temperature values must be saved and reported

with collected performance data.

In addition to hardware, performance can be affected by

software factors, such as NVMe driver settings, driver’s ver-

sion and I/O scheduling algorithm used, CPU affinity settings,

CPU frequency scaling settings. Other software factors, such

as data pattern, I/O pattern and testing algorithm must be uni-

form for all tests and will be described in the next subsection.

C. SNIA SSS PTS

The Storage Networking Industry Association (SNIA) is a

non-profit global organization dedicated to developing stan-

dards and education programs to advance storage and infor-

mation technology. The SNIA has developed methods which

enable manufacturers to set, and customers to compare, the

performance specifications of Solid State Storage devices,

which are evolving with the state of the technology. These

specifications define a set of device level tests and method-

ologies which enable comparative testing of SSS devices for

Enterprise and Client systems [7].

Methodology published in SNIA Solid State Storage (SSS)

Performance Test Specification (PTS) should be used. It takes

into consideration that NAND Flash based solid state storage

device performance tends to be highly dependent on the write

history of the device. The test methodology defined in the

specification attempt to create uniform conditions for write

history and the state of the device prior to the test, I/O pattern

(read/write mix, block size, access pattern) and data pattern.

The key idea in SNIA SSS PTS methodology is to run tests

until so called “steady state” reached. Steady state condition

is clearly defined in the document. Shortly, measured metric

must not change more than 20% of the average value during

measurement window (five test runs), ans the slope of the best

linear approximation of measured metric must not be greater

than 0.1.

Being a great document, SNIA SSS PTS is not intended

for modeling purposes. The methodology proposed in the

specification is intended only for the correct comparison of

the performance characteristics of various solid-state drive

models, and does not require collecting all factors listed in

subsection II-B. This paper presents an attempt to extend SNIA

SSS PTS methodology to collect all data necessary for later

modeling of SSD with NVMe interface.

III. IMPLEMENTATION

A. Available tools

There are at least two public implementation of SNIA SSS

PTS. One is [8]. It is implemented using Ansible to run tests

and Python to check steady state condition. Unfortunately, this

tool does not collect any information other than the fio utility

results. It is also designed to work only with SATA drives.

Using Ansible for such a task is also questionable.

Another available tool is [9]. It is implemented using PHP

programming language, intended to use with SATA drives and

implements outdated (2013) SNIA SSS PTS Enterprise v1.1.

This tool also does not collect all information required for

modeling purposes.

And there is a reference commercial SNIA SSS PTS im-

plementation [10]. It is non-free, was not updated since 2015

year (latest news on the company web site), and doesn’t look

appropriate for scientific purposes.

______________________________________________________PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 368 ----------------------------------------------------------------------------



B. Software requirements

Taking into account all the above, the authors decided

to implement their own data collection tool that meets the

following requirements:

• Open source code, publicly available to the research

community;

• Follow current (version 2.0.2, October 1, 2020) SNIA

SSS PTS methodology;

• Support drives with PCIe NVMe interface;

• Record as much data listed in subsection II-B as possible;

• Create both human and machine readable output suitable

for modeling purposes;

Openness is obviously required for the ability to collect

performance data and key factors listed in subsection II-B by

the community. Authors have access only to a limited range of

desktop and enterprise computer systems and solid state drives.

Creating a data set that covers a large number of computer

systems and drive models is possible only with community

help.

SNIA SSS PTS methodology is mature, well-developed and

need additions only for the modeling purposes (because it was

originally intended only for comparing various devices, not for

modeling them).

The requirement to support drives with the NVMe PCIe

interface arose due to the fact that such drives are currently

both modern, publicly available. and widely used in desktop

and enterprise systems. Support of drives with legacy SATA

interface is surely possible too, but from the modelling point of

view SATA SSD drives a not very interesting, since the share

of such disks is rapidly decreasing. There are also various

forms of persistent solid state memory [11], but they are not

yet currenly available for mass consumer.

The requirement to collect as much factors as possible is due

to the fact that before the data actually collected and analyzed

we don’t currently know what impact will each of the listed

factors have.

And the last requirement in the list is readyness: collected

data must be easy to load by programs. Manual data entry

is obviously inappropriate. Data must be saved in machine-

readable format, for example, JSON or XML, to name a few.

From the point of view of human readability, JSON looks more

preferable.

C. Implementation

Only freely distributed software components were used in

the implementation. The main utility used for management

of NVMe devices is nvme. It has various sub-commands, of

which the following are used for our purposes:

• list: list all NVMe devices and their parameters on

machine;

• id-ctrl: retrieve information about SSD controller;

• get-feature and set-feature: get/set feature and

show the resulting value;

• format: purge device and return it to “fresh-out-of-the-

box” (FOB) state;

• smart-log: Retrieve various sensor and monitoring

values (for example, device temperature, read and write

counters).

Fortunately, nvme supports JSON output format. An example

of nvme list command output follows:

{
"Devices" : [
{
"Subsystem" : "nvme-subsys0",
"SubsystemNQN" :

"nqn.2014.08.org.nvmexpress:...",
"Controllers" : [
{
"Controller" : "nvme0",
"Transport" : "pcie",
"Address" : "0000:01:00.0",
"State" : "live",
"Firmware" : "2B2QEXM7",
"ModelNumber" :

"Samsung SSD 970 EVO Plus 500GB",
"SerialNumber" : "...",
"Namespaces" : [
{
"NameSpace" : "nvme0n1",
"NSID" : 1,
"UsedBytes" : 0,
"MaximumLBA" : 976773168,
"PhysicalSize" : 500107862016,
"SectorSize" : 512

}
...

Listing 1. nvme list output example

We can see PCIe address 0000:01:00.0 allowing to link

NVMe device with PCIe topology and other information

obtained by lspci utility.

Low level information, such as number and type of flash

memory chips, controller performance characteristics and

amount of DRAM must currently be collected and provided

manually. Hopefully there will be a database allowing to get

low-level device parameters by device model. This task is

impossible without community support.

The lspci is the next building block. This utility allows

to get information about PCIe topology and devices connected

with characteristics such as connection width (number of

lanes), bandwidth and other parameters.

Generic information about computer system, such as CPU

model and characteristics, number and model of installed

DIMMs and other similar information can be obtained by

lshw utility. It also supports JSON output format.

The main utility used for performance tests is fio [12]. It

is de-facto standard for Linux block device testing and perfor-

mance measurements. The utility provides a large number of

features. Typical usage scenario is to write so called “job file”,

containing description of various global and “job” parameters,

and run fio with job file as a parameter. An example of job

file follows:

[global]
ioengine=libaio
iodepth=16

______________________________________________________PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 369 ----------------------------------------------------------------------------



direct=1
gtod_cpu=1
thread
group_reporting

random_distribution=random
random_generator=tausworthe
allrandrepeat=1
randseed=3735928559

filename=/dev/nvme0n1
numjobs=2
size=183144969k
rw=randrw

[wdpc-rr65-4k]
stonewall
runtime=1m
time_based
rwmixread=65
bs=4k

Listing 2. Fio job file example

Among other parameters, the following are set:

• iodepth corresponds to “Outstanding IO (OIO)” in

SSS PTS: the number of IO operations issued by a host

awaiting completion;

• randseed: seed value for random number generator;

• numjobs corresponds to “Thread Count (TC)” in SSS

PTS: the number of Threads (or Workers or Processes)

specified by a test;

• rw and rwmixread: specifies I/O pattern, rw value

randwr means “random mixed reads and writes”, where

rwmixread is the percentage of a mixed workload that

should be reads;

• runtime limits the time of test execution, with the

option timebased means “run for a specified amount

of time”;

• bs is the I/O block size

The fio utility supports JSON output format. Output file

contains input parameters taken from job file and collected

data for read, write and trim I/O operations. Data contains

aggregated information, such as mean bandwidth and IOPS

during job run, and latency histogram.

And finally we need some program to glue all mentioned

building blocks together. It must be written in high-level

programming language with ability to launch external pro-

grams, do some pattern matching, have statistics modules

to calculate mean values and linear regression for steady

state check. Nowadays the most appropriate programming

language for such set of a tasks is Python. Program was written

implementing adapted SNIA SSS PTS methodology with the

Alg. 1.

The difference from the SNIA SSS PTS methodology is that

after each WDPC run, parameters that change during testing,

such as temperature and read/write counters, are collected and

saved for future use in modeling. The proposed change will

allow taking into account, for example, the heating of the drive

during testing. The amount of stored information about the

Algorithm 1 IOPS performance test algorithm

procedure SAVE(data)

� Various helper functions

end procedure
procedure WIPC

� Workload-independent pre-conditioning: Run fio to

overwrite the device with random data two times

end procedure
procedure WDPC(rwmix, bs)

� Workload-dependent pre-conditioning: Run fio with

given I/O pattern rwmix and block size bs one minute

end procedure
procedure STEADYSTATEREACHED(y, w)

� Steady state as defined in SNIA SSS PTS v2.0.2 2.1.24

(page 17): for the last w values of y:

a) Range(y) < 0.2 ∗Ave(y)
b) Slope(y) < 0.1 for the best linear curve fit of the y
end procedure
SAVE(Generic computer system information)

SAVE(PCIe information)

SAVE(NVMe information)

SAVE(System I/O scheduler settings)

SAVE(NVMe driver version and settings)

SAVE(Temperature sensor data and monitoring counters)

Results40/100 ← ∅

Results6465/35 ← ∅

Results1024100/0 ← ∅ � Initialize with empty list

PURGEDEVICE � Call nvme format
WIPC � Run workload-independent pre-conditioning

repeat
for all rwmix ∈ 100/0, 95/5, 65/35,
50/50, 35/65, 5/95, 0/100 do � R/W mix %

for all bs ∈ 1024, 128,
64, 32, 16, 8, 4, 0.5 do � block size in KiB

Result ← WDPC(rwmix, bs)

SAVE(Result)
SAVE(temperature sensor data

and monitoring counters)

if (rwmix = 0/100) ∧ (bs = 4) then
APPEND(Results40/100, Result)

else if (rwmix = 65/35) ∧ (bs = 64) then
APPEND(Results6465/35, Result)

else if (rwmix = 100/0) ∧ (bs = 1024) then
APPEND(Results1024100/0, Result)

end if
end for

end for
until (STEADYSTATEREACHED(Results40/100, 5)

∧ STEADYSTATEREACHED(Results6465/35, 5)

∧ STEADYSTATEREACHED(Results1024100/0, 5))

∨ (25 rounds passed)

______________________________________________________PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 370 ----------------------------------------------------------------------------



system is also significantly expanded in comparison with the

recommendations of SNIA SSS PSS v2.0.2 [7].

At the time of writing this text, program source code size

was 27 Kb (807 lines of code).

The program is currently available for review, tests and

contributions on GitHub [13]. The authors hope that the

program will be further developed and it will be possible to

obtain performance testing results for various models of drives

(with the help of community).

IV. MEASUREMENTS

A. Common metrics

This section presents quick view on the first results obtained.

Test system was a desktop PC with AMD Ryzen 5 3600X

processor, Asus TUF B450-PRO GAMING system board. 32

Gb RAM installed. Test drive was Samsung SSD 970 EVO

Plus 500GB (NVMe in M.2 form factor) installed in socket

with PCIe 3.0 x4 support. Operating system was openSUSE

Leap 15.2 Linux distribution (kernel version 5.3.18 with

openSUSE patches).

Each round takes 7 ∗ 8 = 56 minutes (one minute fio run

for seven values of R/W mix % and eight values of block size,

as specified by Alg. 1). During each fio run three files are

generated:

• JSON file with nvme smart-log result (temperature

sensor values, read/write counters);

• Text file with fio job;

• JSON file with fio results.

There must be at least five rounds to reach the steady state,

but typically after the first round the performance metrics

change significantly and the steady state is reached on the sixth

round (R = 6 on figures). Therefore, typically, a minimum of

56 ∗ 6 = 336 minutes (5 hours 36 minutes) required to reach

steady state and 1008 files produced.

SNIA SSS PTS methodology for IOPS test requires to track

steady state for the following I/O patterns and I/O block sizes:

• R/W mix % = 0/100, I/O block size = 4KiB;

• R/W mix % = 65/35, I/O block size = 64KiB;

• R/W mix % = 100/0, I/O block size = 1024KiB.

Figures 2, 4 and 3 shows IOPS for three fixed values of

block size used in steady state tracking (4Kb, 64Kb, 1024Kb)

and all available I/O patterns (random R/W with mix % values

100/0, 95/5, 65/35, 50/50, 35/65, 5/95, 0/100).

Without any surprises, the highest mean IOPS value (more

than 160k IOPS) was shown for 4Kb block size and read

operation (R/W mix % 100/0 on Fig. 2). For all three block

sizes, the lowest IOPS value was achieved when R/W mix %

was 35/75 (surprisingly not 0/100).

Figures 5, 6 and 7 shows IOPS for three fixed values of

R/W mix % used in steady state tracking (0/100, 65/35 and

100/0) and all available block sizes (1024 Kb, 128 Kb, 64 Kb,

32 Kb, 16 Kb, 8 Kb, 4 Kb and 512 bytes).

Steady state was reached on the sixth round. There is

clear performance decreare after first workload-dependent pre-

condition (WDPC) run.

Fig. 2. Block size 4k IOPS

Fig. 3. Block size 1024k IOPS

Fig. 4. Block size 64k IOPS

V. CONCLUSION

This paper continues work on performance models of solid

state drives started in [1]. Drives with a modern PCIe NVMe

______________________________________________________PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 371 ----------------------------------------------------------------------------



Fig. 5. R/W Mix 0/100 IOPS

Fig. 6. R/W Mix 65/35 IOPS

Fig. 7. R/W Mix 100/0 IOPS

interface are considered instead of legacy SATA interface

drives. The first step to a more accurate modeling has been

made: a methodology for obtaining performance data of de-

vices has been developed (based on SNIA SSS PTS v2.0.2).

A program was developed that implements this methodology.

The program is open source and is available to the commu-

nity [13].

Our further work is to continue the development of this

software utility (implement more metrics) and make a public

data set containing performance data for a bigger number

of PCIe NVMe drives and various test computer systems

(hopefully with the help of the community). The obtained data

set is then planned to be used to create a model of an NVMe

drive.

REFERENCES

[1] V. A. Ponomarev, “Simulation modeling performance indicators for
solid state storage systems,” Programmnaya Ingeneria, vol. 10, no.
9–10, pp. 367–376, Aug 2019, in Russian. [Online]. Available:
http://doi.org/10.17587/prin.10.367-376

[2] K. A. Ekimov, S. F. Podryadchikov, V. V. Putrolaynen, M. A.
Belyaev, and E. I. Maslennikov, “Testing experimental samples of
solid state drives,” IOP Conference Series: Materials Science and
Engineering, vol. 537, p. 032042, jun 2019. [Online]. Available:
https://doi.org/10.1088/1757-899x/537/3/032042

[3] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz,
A. Shayesteh, and V. Balakrishnan, “Performance analysis of
nvme ssds and their implication on real world databases,” in
SYSTOR ’15: Proceedings of the 8th ACM International Systems
and Storage Conference, 05 2015, pp. 1–11. [Online]. Available:
https://doi.org/10.1145/2757667.2757684

[4] Y. T. Jin, S. Ahn, and S. Lee, “Performance analysis of nvme ssd-based
all-flash array systems,” in 2018 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 04 2018, pp.
12–21. [Online]. Available: https://doi.org/10.1109/ISPASS.2018.00010

[5] Y. Son, H. Kang, H. Han, and H. Yeom, “An empirical evaluation
and analysis of the performance of nvm express solid state
drive,” Cluster Computing, vol. 19, 09 2016. [Online]. Available:
https://doi.org/10.1007/s10586-016-0591-8

[6] M. Torabzadehkashi, S. Rezaei, A. HeydariGorji, H. Bobarshad,
V. Alves, and N. Bagherzadeh, “Computational storage: an efficient
and scalable platform for big data and hpc applications,” Journal of
Big Data, no. 6, 2019. [Online]. Available: https://doi.org/10.1186/
s40537-019-0265-5

[7] E. Kim, A. Jones, M. Fausset, E. Ho, D. Landsman, and
J. Thatcher, Solid State Storage Performance Test Specification v2.0.2.
[Online]. Available: https://www.snia.org/sites/default/files/technical
work/PTS/SSS PTS 2.0.2.pdf

[8] J. Liu, Solid State Storage (SSS) Performance Test Specification in
Ansible. [Online]. Available: https://github.com/ljishen/SSSPT

[9] Block storage test suite based on SNIA’s Solid State Storage
Performance Test Specification Enterprise v1.1. [Online]. Available:
https://github.com/cloudharmony/block-storage

[10] Calypso Systems, Inc. - SNIA SSSI Certified Test Lab. [Online].
Available: https://calypsotesters.com/about/

[11] Persistent Memory Special Interest Group. [Online]. Available:
https://www.snia.org/forums/cmsi/NVDIMM

[12] J. Axboe, Flexible I/O tester. [Online]. Available: https://fio.readthedocs.
io/en/latest/fio doc.html

[13] V. A. Ponomarev, Python implementation of SNIA Solid State Storage
(SSS) Performance Testing Specification (PTS). [Online]. Available:
https://github.com/ccrssaa/py-sss-pts

______________________________________________________PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 372 ----------------------------------------------------------------------------


