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Abstract—Decentralized financial applications running on
blockchains using smart contracts have attracted a lot of attention
recently. One important class of such applications is decentralized
digital asset exchanges. In this paper we present an agent-based
modeling approach for decentralized exchanges that allowed us
to achieve realistic results both in normal and stress market
conditions and also investigate the impact of front runners on
the distribution of profits. We also compare the results of the
two exchanges - Uniswap and Liquifi - to evaluate the effect of
the proposed solution for the price slippage and front running
problems.

I. INTRODUCTION

Decentralized financial applications running on blockchains

are attracting a lot of attention nowadays [1]. A blockchain

is a distributed append-only timestamped data structure. The

data in blockchains is persisted on numerous network nodes

(or peers) in the form of transactions. Transactions are being

signed by submitting participants and then distributed among

the network nodes using a certain consensus mechanism, such

as Proof-of-work or Proof-of-stake [2]. Another important

element of modern blockchain technologies is a smart con-

tract - a special computer program run on every blockchain

node in order to perform complex transactions. Decentralized

applications that are built using smart contracts, operate in

full automatic mode, without any need or even possibility of

human intervention. Therefore, their users do not need to trust

any party when performing financial transactions.

One important class of decentralized financial applications

is decentralized digital asset exchanges (DEXes). DEXes are

used to buy digital assets (tokens) of one type selling digital

assets of some other type. DEXes usually fall into two types:

order book exchanges and liquidity pool exchanges.

• Liquidity pool DEXes attract assets as investments from

liquidity providers to form pools where everybody can

exchange assets without the need of other participants.

Automatic market maker (AMM) algorithms codified in

smart contracts define exchange prices that depend on

asset amount ratios in the pools.

• Another category, order book DEXes do not have liq-

uidity pools. They process trading orders mostly as

traditional exchanges do. A common drawback of order

book DEXes is that they usually cannot be implemented

within a smart contract because of high performance

requirements that are hard to fulfill on a blockchain

platform.

We can conclude that the liquidity pool DEX type is the

most appropriate solution as it can be implemented purely

on a blockchain within smart contracts. However, DEXes of

this type also suffer from the price slippage and front running

problems. The problems come from the AMM nature itself

as the exchange price is being changed by every transaction.

Moreover, the larger the transaction size the greater is the

price slippage impact. The price slippage also leads to front

running attacks possibility - as some network participants may

intercept large transactions and win profits acting against them.

These problems and possible solutions are also discussed in

more details below.

As the impact of the price slippage and front running

problems can vary depending on the AMM used and external

market conditions, we can use simulation modeling to evaluate

DEX performance in different scenarios. There are numerous

works asserting that the agent-based modeling approach is very

promising in simulation of financial markets behavior. In [3] a

methodology is given for applying the agent-based approach to

simulate stock markets. While some of the proposed models,

e.g. trader models, can be adapted for decentralized markets,

there are still many nuances that were not discussed there.

One of the first attempts to simulate decentralized markets

has been undertaken in [4]. In this work a deep analysis of

the arbitrageurs behavior is presented and an optimization

problem for the arbitrageur is formulated. It is also proven that

for Uniswap [5] AMM the optimization problem is convex

and has a closed-form solution. In [6] the optimal arbitrage

problem is generalized to fit any constant function AMM.

Although these works give a sufficient basis for decentralized

markets modeling, some of the problems are still not investi-

gated, specifically the front runners behavior and their impact

on profits distribution among market participants. Also the

abovementioned works lack an underlying blockchain model
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and therefore cannot predict dynamic DEX performance in

rapidly changing market conditions, when block creation time

and transactions order may cause significant changes in the

exchange price.

As front running activities have a negative effect on the

markets, the developers of decentralized financial applications

search the ways to mitigate this problem. One possible direc-

tion was proposed in [7] based on virtual balances that do

not change immediately, but wait for some period, e.g. until

the end of a block, making it harder for the front runners

to get the profit. Another solution was proposed in [8] and

implemented in Liquifi DEX. The idea here is to allow long

exchange operations with gradual liquidity flow. Front runners

cannot take profits from acting against these long operations

because they last much longer than one block so that trying to

front run these operations makes no sense as other arbitrageurs

will have enough time to correct the price.

Though decentralized financial application are rapidly grow-

ing in number, the research results in this area are still

not sufficient. The existing works made the first steps to

formalization of the agent-based simulation problem for de-

centralized applications and obtained results for some special

cases. But there are still lots of open questions regarding

realistic modeling of blockchain networks, digital markets and

participants behavior. In this paper we present an extended

agent-based modeling approach for decentralized exchanges

that allowed us to achieve more realistic results both in normal

and stress market conditions and also investigate the impact of

front runners on the distribution of profits. We also compare

the results of two DEXes - Uniswap and Liquifi - to evaluate

the effect of the proposed solution to the price slippage and

front running problems.

In section II we describe the basics of automatic market

makers (AMMs) and give examples of the two most widely

used AMMs - constant product market maker and constant

mean market maker. In section III we describe in details our

agent-based modeling approach, introduce agent models: a

trader, an arbitrageur, a displacement front runner, an insertion

front runner, a liquidity provider. We also provide models

for a blockchain network and an external market. In section

IV there are simulation results that we have got for the two

decentralized exchanges (Uniswap and Liquifi) and discussion

of these results.

II. LIQUIDITY POOL DECENTRALIZED MARKETS

A. Automatic market makers

An automatic market maker (AMM) is an algorithm, usually

codified in a blockchain smart contract, that automatically

calculates exchange prices of digital assets. In liquidity pool

DEXes AMMs use digital assets amounts in the pools as

the main input data to determine the price. Constant function

market makers (CFMM) are the most common class of AMMs.

These algorithms are based on a constant function that must

be kept unchanged after every transaction.

Constant product market maker [9] is the simplest CFMM

with the constant function of the form:

k = x · y
where x and y are amounts of digital assets in the pool, k is

some constant.

Uniswap [5] is the most popular DEX based on the constant

product market maker.

Balancer [10] is another DEX that use a generalized CFMM

- constant mean market maker:

V =
∏
t

BWt
t

where t ranges over the tokens in the pool, Bt is the balance

of the token in the pool, Wt is the normalized weight of the

token, such that the sum of all normalized weights is 1, V is

some constant.

The main difference of the constant mean market maker is

that it supports more than 2 digital assets in one pool.

B. Price slippage

Fig. 1 illustrates how the constant product market maker

works.

Fig. 1. Price slippage

When a trader adds some amount of asset 1 into the pool,

the price of asset 1 decreases to keep the product constant. The

problem is mostly significant for large deals or small liquidity

pools.

C. Front running

Front running is a special type of attack when some

participant, seeing an upcoming trading transaction, puts his

own transaction ahead (playing with a transaction fee for

example). In public blockchains front running attacks occur

rather often because all the transactions are inherently visible

to all network participants.

Front running attacks can be of different types:

• A displacement front running attack takes place when

a front runner causes the transaction under attack to
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revert. Usually it is because traders set some price slip-

page tolerance limit. When a front-runner changes the

price before the transaction, the limit makes the initial

transaction fail.

• An insertion front running attack takes place when a

front runner does not want the attacked transaction to

revert. Instead, the front runner inserts his transaction

before the attacked one, making it less profitable due to

price slippage, and then makes an opposite transaction to

get the profit from the changed price.

III. MODELING APPROACH

The agent-based approach is based on modeling behavior

of all major market participants. In our scenario we identify

the following agents:

• Traders are primary users of a decentralized market. In

terms of our model, the only goal of a trader is to sell

some amount of a digital asset of one type to buy a

corresponding amount of a digital asset of another type.

Traders usually seek for the best possible exchange price

and have some tolerance for price slippage.

• Arbitrageurs are professional market players that seek

for price disbalances between several markets that give

them opportunities to get profits from buying some as-

set on one market and selling the same asset on the

other market. Though arbitrageurs’ profits are entirely

speculative, they play an important and useful role on

decentralized markets, and especially on liquidity pool

markets. While decentralized automatic market makers

usually do not use any external sources to determine the

exchange prices, arbitrageurs help to adjust the prices

to common market levels. We will refer to this type of

arbitrageurs as ”honest” arbitrageurs.

• Front runners are somewhat similar to arbitrageurs,

but they get profits not from price disbalances between

markets, but from knowledge about the upcoming trades

on one market. Front runners then use blockchain specific

means to place their transactions in front of the transac-

tions under attack. Therefore, front runners do not play

any useful role and just take profits away of other market

participants.

• Liquidity providers are essential participants of liquidity

pool markets. They invest their own assets into liquidity

pools to earn exchange fees from every transaction on the

market.

A. Trader model

According to [3] the trader behavior can be modeled in

different ways:

• A zero-intelligence trader makes his transactions ran-

domly, not depending on the current market situation.

• A fundamentalist trader makes decisions based on the

fundamental value of an asset.

• A trader based on the historical information makes

decisions based on a comparison between the average of

the short-term price and average of the long-term price

to detect the trend.

The choice of a trader model depends on the simulation

goals. In our scenario the main goal is to investigate the impact

of front runners on the distribution of profits. Considering this,

the zero-intelligence trader model is quite suitable as we are

interested mostly in price slippage measurements and not in

evaluation of trading strategies, which may be a part of a future

work.

B. Arbitrageur model

Arbitrageurs perform trades between the simulated market

and the external market when prices differ. Given two digital

assets, A and B, the arbitrageur seeks to maximize the profit

made from trading, for example, some amount of loaned asset

B, ΔB to some amount of asset A ΔA via the simulated

market. The arbitrageur then trades back the received ΔA for

Δ′
B and pays back the loan ΔB to receive profit Δ′

B −ΔB .

Therefore, the arbitrageur solves the following optimization

problem:

maxΔA,ΔB
mpΔA −ΔB

ΔA,ΔB ≥ 0

CF (ΔA,ΔB) = k

where mp is the external market price of asset A,

CF (ΔA,ΔB) is the market maker constant function.

For the constant product market maker the equation

CF (ΔA,ΔB) = k takes the following form:

(RA −ΔA)(RB + γΔB) = k

where RA is the initial reserve of asset A in the pool, RB is

the initial reserve of asset B in the pool, γ = 1− α, α is the

trading fee of the simulated market.

In [4] it is proven that this optimization problem is convex

and can be rewritten as a closed form expression for the

optimal solution:

Δ∗
A =

(
RA −

√
k

γmp

)
+

where (x)+ = max{x, 0} for x ∈ R.

For the constant mean market maker the equation

CF (ΔA,ΔB) = k takes the following form:

(RA −ΔA)
WA(RB + γΔB)

WB = k

where WA and WB are the weights of assets A and B in the

pool respectively.

C. Front runner models

1) Displacement front runner: A displacement front-runner

in our scenario acts against ”honest” arbitrageurs. The front

runner monitors blockchain transactions and, when an arbi-

trage transaction is detected, he places a similar transaction

but with higher transaction price, increasing its priority when
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forming a new block. When this tactics succeeds, the attacked

”honest” arbitrage transaction is reverted due to the slippage

tolerance limit and the front runner gets the profit.

Network delays are modeled by a front runner activation

timeout meaning that the front runner detects a new transaction

not immediately but after a random waiting time. That is why

some ”honest” arbitrage transactions may still succeed when,

for example, they occur very close to the end of a block, so

that the front runner does not have enough time to place his

transaction before the block is committed.

2) Insertion front runner: An insertion front-runner acts

against traders. This front runner monitors trading transactions

and estimates the price slippage. The front runner also has

access to the information about the slippage tolerance of the

attacked transaction. Using this information, the front runner

can calculate the maximum transaction size that will not

exceed the trader’s slippage tolerance. Then the front runner

places his transaction ahead of the trader’s. The trader still

accomplishes his transaction but at the worst possible price.

After that the front runner places a transaction in the opposite

direction and sells back the assets at better price.

D. Liquidity provider model

Liquidity providers invest their assets into liquidity pools to

earn fees taken from each transaction. Usually it is required

to hold the assets in a pool for some time to gather enough

fees. On the other hand, in this work we focus on the short-

term effects. That is why in our scenario we do not model

any activity from the side of liquidity providers. The liquidity

providers in our case invest some predefined amount of assets

in the beginning of the simulation and hold them without

changes until the simulation ends.

In some situations, especially, in rapidly changing market

conditions, actions of the liquidity providers may still have

short-term effects. This may be further investigated in our

future works.

E. Blockchain model

The most important aspect of blockchain operation in our

scenario is forming of blocks and transaction ordering in the

blocks. Therefore, we use a simplified blockchain model where

all the new transactions are included in a list of pending

transactions that is sorted by the transaction price proposed

in each transaction. As soon as enough transactions to form

a new block arrive, the block is created and an appropriate

event is fired.

Some aspects that we have left aside by now are network

delays and possibility of alternative chains at different nodes.

The first aspect is approximately modeled by random delays of

each agent. These delays correspond to the message propaga-

tion delays in the real blockchain network. The second aspect

(alternative chains), though very important for the consistency

of the whole blockchain network, does not have a significant

impact on the simulation results as eventually only one chain

will be chosen by all the participants.

F. External market model

We update the market price every time step (after all agents

have completed their actions) in the following way:

mp → mp · eσX+μ

where X ∈ N(0, 1) is drawn from a normal distribution and

μ, σ ∈ R represent the mean returns and volatility of the

market when no trades are performed.

When exchange operations are performed, the external

market follows a simple power law model where the price

mp of some token A, is updated in the following way:

mp → mp + κΔ1+ξ
A

where κ ≥ 0 and ξ ≥ 0 are given in the problem data.

In reality external markets are often large enough compared

to the size of the modeled transactions. This also allows us

in most cases to take an assumption of an infinitely large

external market where the simulated transactions do not affect

the market price.

G. Simulation tool

To run the simulation experiments we use SimPy simulation

tool [11]. It is a lightweight discrete event simulation library

written in Python programming language.

IV. SIMULATION RESULTS

We simulate transactions for ETH/USDT token pair on

decentralized exchanges using the method described above,

based on two AMMs: Uniswap and Liquifi. All rules for

changing states of these AMMs are taken from the whitepa-

pers, and the change of the external market price is generated

randomly. Although both exchanges use the constant product

market maker AMM, Liquifi introduces a special type of

long time-locked operations that are supposed to be a cure

to the price slippage and insertion front running problems.

Using the simulation, we can confirm our hypotheses about

the different distribution of revenues at each exchange due

to their peculiarities. In Figures 2 and 3 we can observe the

key difference between the selected AMMs. Specifically, the

ETH/USDT token pair price change in the Liquifi model is a

sloping line with corrections done by market agents, this is a

result of the time-locked operations described in details in the

Liquifi whitepaper. In the Uniswap model, the price changes

stepwise as a result of swap operations by market agents. We

can see that a large exchange operation that occured at time

100 on the Uniswap market (fig. 2) caused a significant price

leap below 850, while on the Liquifi market the opertion of the

same volume, but stretched in time, did not cause the price to

go lower than 990 (fig. 3). This confirms that the time-locked

operations effectively reduce the price slippage.

Fig. 2 plots the ETH/USDT price change during the simula-

tion time for the Uniswap exchange. The abscissa axis shows

the simulation time from 0 to 2000 seconds. The ordinate axis

expresses the price of the token pair in USDT. The solid line

shows the change in the price of the token pair according to the
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Fig. 2. Uniswap AMM price chart

Uniswap AMM. The dotted lines show the mean, minimum

and maximum prices of the reference market.

Fig. 3. Liquifi AMM price chart

Fig. 3 plots the ETH/USDT price change during the simu-

lation time for the Liquifi exchange. The abscissa axis shows

the simulation time from 0 to 2000 seconds. The ordinate axis

expresses the price of the token pair in USDT. The solid line

shows the change in the price of the token pair according to

the Liquifi AMM. The dotted lines show the mean, minimum

and maximum prices of the reference market.

In our experiments, we analyze the dependency of the

market agents (traders, arbitrageurs and front runners) profit

amounts on the size of the liquidity pools for each AMM

in normal and high volatility market conditions. To obtain

representative data, we selected 6 simulation configurations

for each AMM and ended up with 12 variations, then we

performed 50 repetitions of each of them and took the average

values. Below we use abbreviations to denote the size of the

liquidity pools: 100 ETH / 100000 USDT is denoted by the

letter S (small), 1000 ETH / 1000000 USDT is denoted by the

letter M (medium), 10000 ETH / 10000000 USDT is denoted

by the letter L (large). The experimental data obtained for

the Uniswap market are shown in Table I and for the Liquifi

market - in Table II.

Fig. 4. Comparison of profits in normal market conditions

Table I shows the amounts of the Uniswap agents profits.

The table shows the 3 types of AMM market agents: traders,

arbitrageurs, front runners (both displacement and insertion).

The results are converted to USDT and rounded for clarity.

Table II shows the amounts of the Liquifi agents profits.

The table shows the 3 types of AMM market agents: traders,

arbitrageurs, front runners (only displacement as insertion

front running is not possible on the Liquifi market). The results

are converted to USDT and rounded for clarity.

Fig. 4 shows the comparison of the market agents profit

amounts at different liquidity pool sizes for Uniswap and

Liquifi, under normal market conditions. By normal conditions

we mean here the low value of the external market volatility

(σ = 0.001).The abscissa axis shows the size of the liquidity

pools. The ordinate axis expresses the profit in USDT. The
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Fig. 5. Comparison of profits in critical market conditions

black line corresponds to Liquifi, the gray line - to Uniswap.

Fig. 5 shows the comparison of the market agents profit

amounts at different liquidity pool sizes for Uniswap and

Liquifi, under critical market conditions. By critical conditions

we mean here the high value of the external market volatility

(σ = 0.03). The abscissa axis shows the size of the liquidity

pools. The ordinate axis expresses the profit in USDT. The

black line corresponds to Liquifi, the gray line - to Uniswap.

A. Discussion

When comparing the results of AMM simulation, we were

able to find interesting trends depending on the size of liquidity

pools. Liquifi shows a significant advantage in activity returns

for the trader and the arbitrageur at the size of the liquidity

pools M and S, the corresponding charts are shown in Fig. 4

Fig. 6. Insertion front runner profits on Uniswap

TABLE I. MARKET AGENT PROFIT AMOUNTS FOR THE 
UNISWAP AMM

Market conditions Normal
Pool size S M L

Trader -3476 -602 -38
Arbitrageur 2 -3 -6
Front runner 3256 332 190

Market conditions Critical
Pool size S M L

Trader -4660 -208 27
Arbitrageur 782 1523 5304
Front runner 11970 86013 821816

and 5. When the size of the liquidity pool is large enough (L),

the difference from Uniswap is reduced to zero. As a result

of the simulation, we confirmed the hypothesis of increasing

arbitrage and front running profits in critical market conditions.

The results also show that the insertion front running technique

cannot be applied to the Liquifi AMM because of the special

time-locked operations. The Liquifi whitepaper describes the

time-locked operation as a special mechanism that allows a

user to split a large volume swap and execute it in parts over

the time. The time-locked operation should make the swap

more profitable for the trader, and counteract the actions of the

insertion front runner. At the same time, the Uniswap market is

vulnerable to the insertion front running attacks, the simulated

insertion front runner profits depending on the pool size are

shown on fig. 6.

Fig. 6 shows the dependency of the insertion front runner

profits on the size of the pool for Uniswap. The abscissa

axis shows the size of the liquidity pools. The ordinate axis

expresses the profit in USDT.

V. CONCLUSION

In this paper we have presented our agent-based model-

ing approach and a simulation model implementation that

we have applied to investigate the properties of blockchain

decentralized financial applications - digital asset exchanges.

Starting from the results found in the existing works, we
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TABLE II. MARKET AGENT PROFIT AMOUNTS FOR THE 
LIQUIFI AMM

Market conditions Normal
Pool size S M L

Trader -116 -42 -35
Arbitrageur -11 -9 -8
Front runner 36 32 207

Market conditions Critical
Pool size S M L

Trader -100 673 1
Arbitrageur 52 520 8406
Front runner 7605 81358 789090

have improved the modeling approach with a more realistic

blockchain network model. We have also introduced two

agent models that describe the behavior of front runners: a

displacement front runner and an insertion front runner.

As a practical output we have presented simulation results

for the two existing decentralized digital asset exchange proto-

cols - Uniswap and Liquifi. We have shown how the simulation

can be used to investigate the impact of arbitrageurs and front

runners on profits distribution in different market conditions

for different protocols.

As a general conclusion, we can state that the presented

models can be used in practice to evaluate dynamic proper-

ties of various automatic market maker (AMM) algorithms,

identify their advantages and drawbacks in different market

scenarios.

Future work on this theme will allow us to extend the list of

modeled decentralized exchanges, improve the external market

model to be able to reproduce real world scenarios and validate

our models on these realistic examples. Such realistic market

[6] G. Angeris and T. Chitra, “Improved price oracles: Constant function
market makers.” [Online]. Available: https://arxiv.org/abs/2003.10001

models can be built based on statistical transactions data from

public blockchain networks. We will also continue working

on the blockchain network model to account for network and

block confirmation delays, distribution of transactions between

blocks, reproduce specific traits of different blockchain tech-

nologies.
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