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Abstract—The quality of information and communication 
service includes such important aspects as service accessibility 
and service retainability, which depend on dependability of 
systems and networks. The paper considers a dependability 
measure called interval reliability. It is defined as the probability 
that an item is in a state to perform as required at a given instant 
and, starting from this moment, continues to be in this state for a 
required time interval. The interval reliability simultaneously 
takes into account availability and reliability, describing the 
impact of dependability on service accessibility and service 
retainability at once. Special attention is paid to systems with 
redundancy, where it may be necessary to take into account 
situations when failover can lead to the premature termination 
(interruption) of a service session. A method for calculating the 
interval reliability for such systems is proposed. The presentation 
is illustrated by numerical examples for a network that can use 
protection with non-interrupting failover and restoration with 
interrupting failover. 

I. INTRODUCTION 

The Quality of Service (QoS) in the field of Information 
and Communication Technologies (ICT) includes several 
aspects, the main of which are: service accessibility, service 
integrity and service retainability [1], [2]. They relate to 
different phases of service usage, as shown at Fig. 1 (its source 
is [1]). These aspects are defined as follows: 

 Service accessibility is the ability of a service to be
obtained, within specified tolerances and other given
conditions, when requested by the user.

 Service integrity is the degree to which a service is
provided without excessive impairments, once obtained
(an acceptable level of impairments has to be specified).

 Service retainability is the ability of a service, once
obtained, to continue to be provided under given
conditions for a requested duration. It is important to
users of session-oriented services.

A considerable factor affecting QoS is the dependability of 
systems and networks. It has several attributes (characteristics), 
among them availability and reliability are most often used in 
ICT [3]–[6] (their formal definitions will be given later). 
Availability primarily affects service accessibility (see Fig. 1). 

Reliability affects service retainability, because failures can 
lead to an unintentional end (premature termination, cut-off) of 
the session. 

This paper considers a dependability measure called 
interval reliability. It simultaneously takes into account 
availability and reliability, describing the impact of 
dependability on service accessibility and service retainability 
at once. The interval reliability has been considered in a 
number of publications ([7]–[12], and others; although in some 
of them under other names, they will be discussed later). 
However, in [7], only its definition is given. Some publications 
([8]–[10]) provide formulas for calculating the interval 
reliability of an element and certain types of redundant systems 
(mostly from identical elements). In [11], its calculation is 
given for series systems, i.e. the simplest ones. The specific 
case of discrete time is considered in [12]. 

The main purposes of this paper are: to draw more attention 
to the interval reliability and justify its usage in ICT, to clarify 
its definition and name, and to propose methods for its 
calculation for various systems. Special attention is paid to 
systems and networks with redundancy, especially those where 
it may be necessary to take into account situations when 
failover can lead to the premature termination of the service 
session. 

The rest of the paper is organized as follows. Section II 
discussed basic dependability concepts and measures; in 
particular, it considers the definition, basic properties and 
standardization of the interval reliability. Section III presents 
common methods of interval reliability calculation for elements 
and some systems. In Section IV typical availability 
enhancement techniques and failover time are discussed; the 
influence of this time on service retainability is considered. 
Section V describes proposed method of interval reliability 
calculation for systems and networks with redundancy in the 
case of service interrupting failovers. Numerical examples of 
calculations for a network that can use protection with non-
interrupting failover and restoration with interrupting failover 
are given in Section VI. Concluding Section VII gives main 
findings of the paper and possible directions for future work. 
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Fig. 1. QoS aspects related to different phases of service usage 

 
II. BASIC DEPENDABILITY CONCEPTS AND MEASURES 

A. Dependability and its attributes (characteristics) 

Definitions of the basic concepts in the field of 
dependability are given in the International Standard [12]. It is 
a part of the International Electrotechnical Vocabulary (IEV) 
developed by the International Electrotechnical Commission 
(IEC). IEV has an online version called Electropedia [14], 
which is freely available. The definitions below are taken from 
this standard. 

All basic concepts are applied to an item that is defined as a 
subject being considered. It may be an individual part, 
component, device, functional unit, equipment, subsystem, or 
system. An item may consist of hardware, software, people or 
any combination thereof. 

Dependability of an item is defined as its ability to perform 
as and when required. The notes to the definition state that 
dependability is used as a collective term for the time-related 
quality characteristics of an item and it includes availability, 
reliability, recoverability, maintainability, and maintenance 
support performance and, in some cases, other characteristics. 
In ICT, the most frequently considered characteristics are 
availability and reliability [3]–[6]. 

Reliability of an item is its ability to perform as required, 
without failure, for a given time interval, under given 
conditions. Given conditions include aspects that affect 
reliability, such as: mode of operation, stress levels, 
environmental conditions, and maintenance. 

Availability of an item is its ability to be in a state to 
perform as required. Availability depends upon the combined 
characteristics of the reliability, recoverability, and 
maintainability of the item, and the maintenance support 
performance. 

B. Reliability and availability measures 

A dependability measure is a quantitative index of one or 
more characteristics that make up dependability of an item. 

To write mathematical expressions, the following notation 
will be used: 

 The state of an item at time t is denoted by  x(t):  
x(t) = 1,  if at the moment  t  the item is in an up state, 
i.e. it is able to perform as required;  x(t) = 0,  if at the 
moment  t  the item is in a down state, i.e. it is unable to 

perform as required, due to internal fault, or preventive 
maintenance. Thus,  x(t)  is a binary random variable. 

 P{.} denotes the probability of an event enclosed in 
braces. 

 E[.] denotes the mathematical expectation. 

1) Reliability measures: Well-known reliability measures 
are the mean operating time between failures (MTBF) and the 
failure rate λ(t). 

Another important measure, called simply reliability, 
denoted by R(t1, t2). It is defined as the probability of 
performing as required for the time interval (t1, t2). It is usually 
assumed that the item is in an up state at the beginning of the 
time interval. In other words, 

R(t1, t2) = P{x(t) = 1, t1 ≤ t ≤ t2 | x(t1) = 1}. 

When  t1 = 0  and  t2 = t,  then  R(0, t)  is denoted simply as 
R(t) and termed the reliability function. Through it, the failure 
rate can be expressed: 

λ(t) = – R′(t)/R(t). 

If the operating time between failures has an exponential 
distribution, then the failure rate is constant:  
λ(t) = λ = 1/MTBF.  In this case,  R(t) = e –λt. 

2) Availability measures: The first among them is the 
instantaneous (point) availability, denoted by A(t). It is the 
probability that an item is in a state to perform as required at a 
given instant: 

A(t) = P{x(t) = 1} = E[x(t)]. 

The steady state (asymptotic) availability denoted by A is 
the limit, if it exists, of the instantaneous availability when the 
time tends to infinity: 

𝐴 ൌ lim
௧→ஶ

𝐴ሺ𝑡ሻ. 

In most cases, it is calculated using the formula 

A = MTBF/(MTBF + MTTR),      (1) 

where MTTR is mean time to restoration (maintainability 
measure). 

This availability measure is most commonly used in 
practice and is usually called merely availability. In most cases, 
in ICT, dependability requirements are set and target values are 
specified just for availability [15]. It is commonly included in 
Service Level Agreements [5], [15]–[19]. 
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The mean (average) availability is the average value of the 
instantaneous availability over a given time interval (t1, t2): 

�̅�ሺ𝑡ଵ, 𝑡ଶሻ ൌ
1

𝑡ଶ െ 𝑡ଵ
න 𝐴ሺ𝑡ሻ𝑑𝑡.

௧మ

௧భ

 

The instantaneous unavailability is defined as the 
probability that an item is not in a state to perform as required 
at a given instant, and it is a complement of instantaneous 
availability to one: 𝑈ሺ𝑡ሻ ൌ 1 െ 𝐴ሺ𝑡ሻ. Accordingly, the steady 
state (asymptotic) unavailability and the mean (average) 
unavailability are defined. For them, there are equalities: 
𝑈 ൌ 1 െ 𝐴,  𝑈ഥሺ𝑡ଵ, 𝑡ଶሻ ൌ 1 െ �̅�ሺ𝑡ଵ, 𝑡ଶሻ. 

C. The interval reliability: the definition, basic properties and 
standartization 

The interval reliability, which is considered in this paper, 
has been known for a long time. In particular, it was mentioned 
in the classic monograph [7]. It is defined as the probability 
that an item is in a state to perform as required at a given 
instant and, starting from this moment, continues to be in this 
state for a required time interval. In ICT, the length of the 
required time interval is usually the duration of the service 
session. 

Denote the interval reliability, as in [10]–[12], by  IR(t,t0), 
where  t  is the given instant, and  t0  is the length of the 
required time interval. Then its definition can be written as: 

IR(t,t0) = P{x(s) = 1, t ≤ s ≤ t + t0}. 

From this definition, it can be seen that the interval 
reliability is actually at the junction of availability and 
reliability. It is clear, that  IR(t,0) = A(t),  IR(0,t0) = R(t0).  

Reasoning similarly to how it was done in [12], it is easy to 
get that the interval reliability is bounded from above by the 
availability and bounded from below by the reliability: 

R(t + t0) ≤ IR(t,t0) ≤ A(t + t0). 

Just as for availability, the steady state (asymptotic) interval 
reliability is mostly considered. It is defined as 

𝐼𝑅ሺ𝑡ሻ ൌ lim
௧→ஶ

𝐼𝑅ሺ𝑡, 𝑡ሻ. 

It is apparent that  IR(0) = A. 

The interval reliability is not included in the standard [12] 
and is only briefly mentioned in [20]. However, it is included in 
the regional standards [21], [22] adopted by the Interstate 
(Euro-Asian) Council for Standardization, Metrology and 
Certification of the Commonwealth of Independent States. In 
[21] there is the definition of this measure, [22] recommends its 
usage for intermittently operating items. 

Unfortunately, the names of this measure differ in different 
publications. The term “interval reliability” is used in [7], [10]–
[12]. The standard [21] uses a term for it that can literally be 
translated as “operational availability”, this term was used also 
in [8], [23]. However, operational availability is defined in [12] 
as availability experienced under actual conditions of operation 
and maintenance. The opposite concept to it is inherent 
(intrinsic) availability, which is availability provided by the 

design under ideal conditions of operation and maintenance. In 
this sense, the term “operational availability” is actively used in 
some industries, for example, in aviation [24]. 

Therefore, [21] specifies the term “interval availability” as 
the English name for this measure, this term is also used in [9]. 
However, it is also used in a different sense. In [17], [18] 
interval availability is defined by the fraction of time during 
which an item is in up state over a finite observation period. 
This fraction is a random variable; its mathematical expectation 
is equal to the mean availability for the same period [20], [25]. 

III. CONNON METHODS OF INTERVAL RELIABILITY

CALCULATION 

A. Calculation for an element 

First, consider the calculation of interval reliability for an 
element, i.e., for an item considered as a whole. For the steady 
state interval reliability there is the formula [8]–[10]: 

𝐼𝑅ሺ𝑡ሻ ൌ
1

MTBF  MTTR
න 𝑅ሺ𝑡ሻ𝑑𝑡.

ஶ

௧బ

 

If (and only if) the distribution of operating time between 
failures is exponential, then there is a simple formula: 

IR(t0) = A∙R(t0) = A∙exp(–t0/MTBF). 

It means that in this case interval reliability is equal to the 
product of availability and reliability. In some works, this 
formula is incorrectly used as a general one. 

If the element is “aging”, that is it has an increasing failure 
rate (IFR) or an increasing failure rate in average (IFRA) [25], 
the following lower and upper bounds can be written [8]: 

 A∙(1 – t0/MTBF) ≤ IR(t0) ≤ A∙exp(–t0/MTBF). (2) 

For the difference δ between the upper and lower bounds, the 
inequality holds 

δ ≤ (t0/MTBF)2/2,   (3) 

so it is quite small when  t0 << MTBF. 

B. Calculation for systems 

The simplest type of systems is series ones. They do not 
have any redundancy, and failure of any element causes the 
system to fail. For a series system with independent elements 
its interval reliability is calculated in the same simple way as 
availability and reliability, i.e. as the product of the 
corresponding values for all elements [11]: 

𝐼𝑅ሺ𝑡, 𝑡ሻ ൌ ෑ 𝐼𝑅ሺ𝑡, 𝑡ሻ,



ୀଵ

 

where  IRi(t,t0)  is interval reliability of the ith element,  n is the 
number of elements in the system. 

Unfortunately, for more complex systems, such a simple 
calculation based only on interval reliability of elements is not 
possible. This does not work even for parallel systems. 
Therefore, the following approach to assessing the interval 
reliability can be proposed. A fairly general class of monotone 
systems (coherent structures) [7], [25] will be considered. It 
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includes serial and parallel structures, their various 
combinations, and more complex network structures. It is 
known [25] that if all elements have failure rates from the 
IFRA class, then the same is true for a monotone system as a 
whole consisting of such elements. Therefore, inequalities (2) 
can be applied to the system. To calculate the availability and 
the MTBF of the system included in (2), well-known 
techniques can be applied [8]–[11], [26]. In particular, when 
distributions of elements’ operating time between failures and 
time to restoration are exponential, Markov techniques can be 
used [27]. An example of such a calculation will be given 
below. 

Essentially the same method was used in [8]–[10] for some 
redundant systems (although sometimes without proper 
justification). However, this did not take into account the 
failover time that is the time of switching from failed primary 
facilities to redundant ones. Meanwhile, this can significantly 
affect the interval reliability calculation. This issue will be 
discussed in the following sections. 

IV. AVAILABILITY ENHANCEMENT TECHNIQUES AND FAILOVER 

TIME 

Redundancy is a widely used way to ensure dependability. 
However, if the failover time is not negligible, redundancy 
increases availability, but does not increase reliability. 
Therefore, the recovery time is an important characteristic. 
Typical situations are discussed in this section. 

There are two main strategies which may be used to 
enhance the availability of a transport network [28], [29]: 

 Protection that uses pre-assigned capacity between 
nodes. The simplest architecture has one dedicated 
protection entity for each working entity (1 + 1); the 
most complex architecture has m protection entities 
shared amongst n working ones (m:n). 

 Restoration that uses any capacity available between 
nodes. In general the algorithms used for restoration will 
involve traffic rerouting. 

A significant advantage of protection in comparison with 
restoration is typically is its shorter recovery time. On the other 
hand, restoration is usually more flexible with regard to failure 
scenarios and lower requirements for backup capacities. So, 
each of these two mechanisms has its own scope, depending on 
the situation. 

A typical recovery time is within 50 ms for Automatic 
Protection Switching in SDH/SONET and OTN, Fast Reroute 
in MPLS, Linear/Ring Protection Switching in Ethernet. In 
general, this threshold (50 ms) is usually considered as a 
requirement for carrier-grade services. Many network and 
customer devices build this level of buffer into their operation 
so that these short interrupts are entirely unnoticed. In more 
modern software defined networks using OpenFlow protocol 
the average recovery time of the fast failover mechanism based 
on the pre-established paths can be less than 40 ms, compared 
to hundreds of milliseconds in the fast restoration mechanism 
[30]. The failover time for such availability enhancement 
mechanisms used in LAN as Link Aggregation and Rapid 
Spanning Tree Protocol is also in hundreds of milliseconds 

[31]. Layer 3 routing protocols (such as RIP, OSPF, ISIS and 
BGP) include the ability to reroute IP traffic in case of link or 
node failures. However, these techniques can take seconds to 
complete depending on the size and complexity of the network. 

In [15] it was shown that achieving high availability of 
cloud services requires redundancy for network connections 
that provides customer interaction with data centers and data 
centers themselves. In particular, a combination of the two 
connections from different providers can be used. In this case, 
it is not possible assuring a recovery time in milliseconds. 
When switching to a redundant data center, the recovery time 
can be minutes, hours, or even days [32] (the shorter the 
recovery time, the higher the expenses of building and 
managing data centers). 

The service interruption time depends on a traffic type. For 
example, a half-second interruption will be unnoticed in a web 
page download or peer-to-peer transfer, annoying in a video 
download, and unacceptable in a voice call. Thus, when 
calculating the interval reliability, we should be able to take 
into account both possibilities: when failover does not interrupt 
service, i.e. it is not considered as a system failure, and when 
failover interrupts service, i.e. it is a system failure. 
Appropriate examples will be discussed below. 

V. INTERVAL RELIABILITY CALCULATION IN THE CASE OF 

INTERRUPTING FAILOVER 

Consider a system in which there are k paths numbered in 
order of preference for their use. This means that if the first 
path is available, then it is used; if the first path is not available, 
but the second path is available, then the second path is used; 
etc. Denote by  Ij  the set of element numbers and by  Hj  the 
probability of using for the  j-th path  (j = 1,…, k).  The sum  
H1 +…+ Hk  is equal to the probability that at least one path is 
available, i.e. the system availability. 

In this context, the word “path” for a network can be taken 
literally. For any system, a path is the minimum set of elements 
that satisfies the condition: if all its elements are in up state, 
then the entire system is also in up state. 

Then the interval reliability, using the idea from [23], can 
be written as: 

𝐼𝑅ሺ𝑡ሻ ൌ  𝐻 ෑ 𝑅ሺ𝑡ሻ
∈ூೕ



ୀଵ

,                      ሺ4ሻ 

where  Ri(t0)  is the reliability of the i-th element (the product is 
equal to the reliability of the  j-th path). 

The following expressions can be used to calculate the 
probabilities  Hj: 

𝐻ଵ ൌ 𝐸 ቈෑ 𝑥

∈ூభ

 ൌ ෑ 𝐴

∈ூభ

,                       ሺ5ሻ 

and for  j = 2,…,k 

𝐻 ൌ 𝐸 ቈቆ1 െ ෑ 𝑥

∈ூభ

ቇ … ቆ1 െ ෑ 𝑥

∈ூೕషభ

ቇ ෑ 𝑥

∈ூೕ

 ,  (6) 
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where xi is the state indicator of the i-th element  (xi = 1, if the 
i-th element is in up state,  xi = 0, if the i-th element is in down 
state), and  Ai  is the availability of the i-th element. 

To calculate the probabilities  Hj  in accordance with (6), 
the expression in the brackets in the right member of (6) should 
be transformed so that there are no repeated variables  xi  in it, 
i.e. that they are all different. This can be done by using the 
following equalities: 

(1 – xy)∙x = (1 – y)∙x,   (1 – xy)∙(1 – x) = (1 – x), (7) 

(1 – xy)∙(1 – xz) = 1 – x∙(y + z – yz). 

They are valid for any variables  x, y, z {0,1}  since they are 
idempotent. 

After that, the final result is obtained by substituting  Ai 
instead of  xi  in the resulting expression. This follows from the 
properties of the mathematical expectation and the equality 
Ai = E[xi].  An example of such calculation will be given 
below. 

In the case where the  j-th path  (j = 2,…,k)  is disjoint with 
each of the paths with smaller numbers, the calculation of the 
probability  Hj  becomes much easier since it is expressed in an 
explicit form: 

𝐻 ൌ ቆ1 െ ෑ 𝐴

∈ூభ

ቇ … ቆ1 െ ෑ 𝐴

∈ூೕషభ

ቇ ෑ 𝐴

∈ூೕ

      ሺ8ሻ 

(the expressions in parentheses are the unavailabilities of the 
first  j – 1 paths, the last product is equal to the availability of 
the  j-th path). 

Note also that the reliability according to (4) depends on the 
order of path selection. It can be maximized by ordering the 
paths in descending order of their reliability. 

VI. EXAMPLES

For examples consider the network shown in the Fig. 2, 
where the ingress and egress nodes are highlighted with a fill. 
This is the so-called bridge system, which is the simplest 
irreducible to combinations of serial and parallel 
configurations. 

Fig. 2. The example of a network (bridge system) 

Let all lines have an exponential distribution of operating 
time between failures, MTBFi = 1000 h, and MTTRi = 5 h 
(i = 1,…,5).  Then according to (1),  Ai = 0.995025. 

There are four paths between the ingress and egress nodes: 
I1 = {1, 4}, I2 = {2, 5}, I3 = {1, 3, 5}, I4 = {2, 3, 4}. The 
availability and the MTBF of the  j-th path can be calculated 
using well-known formulas for series systems: 

𝐴 ൌ ෑ 𝐴

∈ூೕ

, MTBF ൌ  ൭
1

MTBF∈ூೕ

൱

ିଵ

. 

Two scenarios will be considered: 

1) Protection 1 + 1: The protected connection has two
disjoint paths (working {1, 4} and protection {2, 5}). In this 
case, there is a fast recovery, so failover is non-interrupting. 

2) Restoration: All four possible paths can be used for
traffic transfer depending on the failure locations. However, the 
recovery is not so fast, so failover is interrupting. 

For both cases, take the session duration equal to one hour, 
i.e. t0 = 1 h. 

In the case of using protection 1 + 1, for the 1st and 2nd 
paths we get: 

AP1 = A1A4 = 0.990075, AP2 = A2A5 = 0.990075, 

MTBFP1 = (1/MTBF1 + 1/MTBF2)
–1 = 500 h, 

MTBFP2 = (1/MTBF2 + 1/MTBF5)
–1 = 500 h. 

In this case, the entire system is a parallel composition of 
these two paths. Using the formulas for the parallel system, we 
get: 

A = 1 – (1 – AP1)(1 – AP2) = 0.999902, 

MTBF = A[AP1(1 – AP2)/MTBFP1 + AP2(1 – AP1)/MTBFP2]
–1 = 

= 25440 h. 

The value of δ in accordance with (3) is negligible, so we 
can take 

IR(1 h) = Aꞏ(1 – 1/MTBF) = 0.999863. 

In the case of using restoration, according to (4), 

IR(t0) = H1RP1(t0) + H2RP2(t0) + H3RP3(t0) + H4RP4(t0), 

where  RPj(t0)  is the reliability of the  j-th path. 

According to (5) and (8) respectively, 

H1 = A1A4 = 0.990075,  H2 = (1 – A1A4)A2A5 = 0.009827. 

On the basis of (6) and using (7), we obtain: 

H3 = E[(1 – x1x4)(1 – x2x5)x1x3x5] = E[(1 – x4)(1 – x2)x1x3x5] = 

= (1 – A4)(1 – A2)A1A3A5 = 0.000024, 

H4 = E[(1 – x1x4)(1 – x2x5)(1 – x1x3x5)x2x3x4)] = 

= E[(1 – x1)(1 – x5)x2x3x4] = (1 – A1)(1 – A5)A2A3A4 = 0.000024. 

Coming up next, 

MTBFP3 = (1/MTBF1 + 1/MTBF3 + 1/MTBF5)
–1 = 333.333 h, 

MTBFP4 = (1/MTBF2 + 1/MTBF3 + 1/MTBF4)
–1 = 333.333 h; 

RP1(1 h) = exp(–1/MTBF1) = exp(–1/500) = 0.998002, 

RP2(1 h) = exp(–1/MTBF2) = exp(–1/500) = 0.998002, 

RP3(1 h) = exp(–1/MTBF3) = exp(–1/333.333) = 0.997005, 

RP4(1 h) = exp(–1/MTBF4) = exp(–1/333.333) = 0.997005. 

1 

2 

4

5

3 
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Finally we get: 

IR(1 h) = 0.990075∙0.998002 + 0.009827∙0.998002 + 

+ 0.000024∙0.997005 + 0.000024∙0.997005 = 0.997952. 

The results of the calculations are presented in the Table I. 
They show that in the second case, despite the use of a greater 
number of paths, the probability of an adverse event, which is a 
complement of the interval reliability to one, is almost 15 times 
greater. 

TABLE I. INTERVAL RELIABILITY OF THE NETWORK 

Scenario IR(1 h) 1 – IR(1 h) 
1) Protection: two disjoint paths,
non-interrupting failover 

0.999863 0.000137 

2) Restoration: all four possible paths, 
interrupting failover 

0.997952 0.002048 

VII. CONCLUSION

The main findings of this paper are the following. The 
interval reliability is a useful dependability measure. It 
simultaneously takes into account availability and reliability, 
describing the impact of dependability on service accessibility 
and service retainability at once. In some publications, it 
appeared under other names: operational availability and 
interval availability. However, these terms also have other 
meanings. 

When calculating the interval reliability for redundant 
systems, it is necessary to understand what the situation is: 
whether failover will interrupt the system's ability to perform 
as required (for example, to provide a service) or not. This 
usually depends on the failover time. In the first case, failover 
should be considered as a system failure, in the second case it 
should not. This circumstance has a significant impact on the 
interval reliability. In this paper, a method of calculation the 
interval reliability in the situation of interrupting failover is 
proposed. 

Further work could be devoted to more detailed analysis. 
In particular, scenarios where both non-interrupting and 
interrupting failovers occur can be considered, the failover 
time can be taken into account also in availability calculation, 
etc. 
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