
Preventing Hidden Information Leaks Using Author
Attribution Methods and Neural Networks

Alexander Khazagarov, Alisa Vorobeva, Viktoriia Korzhuk
ITMO University

St. Petersburg, Russia

akhazagarov@gmail.com, vorobeva@itmo.ru, vmkorzhuk@itmo.ru

Abstract—This paper addresses the problem of hidden infor-
mation leakage detection through the use of text steganography.
Presented comparative research results show how to perform this
task by detecting changes in user’s writing styles using neural
networks and various types of text features. The framework for
hidden leakages detection based on discovering changes in the
author’s writing style with deep neural networks (RNN, LSTM,
GRU, CNN) is proposed. A series of experiments on text corpus
containing Russian online texts were carried out to evaluate
hidden leakages detection accuracy. The experiments showed
that the LSTM and character 4-grams together allow achieving
the accuracy of 87%. Text preprocessing significantly decreases
accuracy which is also shown.

I. INTRODUCTION

Any business of modern enterprise comes hand in hand with

processing, transferring, and storing various types of digital

data. More and more companies are using clouds, electronic

document management, and Enterprise Resource Planning

(ERP) systems. Modern communication allows exchanging

hundreds of gigabytes of data within seconds. Usage of instant

messaging (IM), e-mails, and social networks make data ex-

change even more accessible. Not only frequency of leakages

of sensible information increase, but its nature changes, a com-

pletely new leakage type is arising [1]. Steganography allows

hiding the fact of information transfer. At the same time, mod-

ern text steganography methods make changes imperceptible

to the human eye and information security specialists may not

reveal a hidden leak. Detection of text steganographic tools is

one of the most challenging tasks. This task is complicated

by the availability of various steganographic methods, and the

usage of each cannot be detected.

Using steganography techniques allows confidential infor-

mation to be sent outside the secure perimeter under the

guise of a regular message file. Also, the application of text

steganography to an ordinary document and the takeout of

a printed document outside the protected boundary is not

difficult in many enterprises.

The long-term goal of modern steganalysis is to develop

universal methods, that can detect messages hidden with

almost all steganographic tools. Most of the previous research

is focused on detecting one type of steganography. Existing

universal steganalysis methods are more complex and less

efficient than specialized, aimed at detecting specific types of

message hiding. It should be noted that although the problem

of hidden leakage is relevant, only a small number of universal

steganalysis methods exist. Despite that, progressive universal

methods are more practical oriented and have more practical

value.

The most effective universal steganalysis method is SARC

(Steganography Analysis and Research Center) [2]. According

to 2019 statistics, its average accuracy is 80%, which is rather

low. Thus, relatively low accuracy of detection of hidden

leakages can be identified as a major problem.

Neural networks (NN) are a very promising alternative to

classical steganalysis methods [3-5] Text steganalysis is not

an exception. However deep learning universal steganalysis

methods use a training set including two types of samples:

normal and stego texts. Models are trained to detect texts with

messages hidden with predefined steganographic methods. It

is alike the signature-based approach in computer virology.

The main limitation is that it will not be able to detect new

steganographic methods, that were not presented in training

data.

The proposed approach is an alternative to the methods

mentioned above, it is some kind of anomaly detection. It is

supposed that the use of text steganography tools changes the

author’s writing style. The use of linguistic identification or

author attribution methods to detect text steganography has not

been studied yet, however, it can be useful for hidden informa-

tion leakage detection and disclosing cybercrimes associated

with it.

A. Problem description

The problem of detecting the usage of text steganography

and hidden information leakage can be described as follow.

Given a set of users U = u1,, uk and their text messages

T = t1,, tm, where m - number of messages and k is

number of users.

One of the users - ua ∈ U is creating the hidden commu-

nication channel for transmitting the secret message (tsecret)
to external user ub /∈ U . We should find algorithm – a, that

is able to detect text, containing tsecret, among all texts of

ua, or in other words to discover the fact of hidden message

transmission - tsecret in the cover text message tcover.

B. Previous research

As it was mentioned before, all studies of steganalysis can

be divided into two areas: universal algorithms and specialized

algorithms. The current trend in steganalysis is to develop

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

universal methods. Universal steganalysis implies finding com-

mon properties and external features while studying a wide

range of existing steganography algorithms [6-10]. The most

popular approach here is supervised learning. Model is trained

on the dataset including both steganographic text samples and

clear (normal) texts. Based on this data, the system finds the

best classification rule [6,25].

In article [11] Authors use Recurrent neural network (RNN)

to extract statistical patterns feature distribution differences

and then classify those features into cover text and stego text

categories. This model can make use of the subtle distribution

difference of the features to estimate the capacity of the hidden

information inside.

In article [12], a linguistic steganography detection algo-

rithm using a statistical language model is presented. The

result of the experiment shows when the text segment size is

2 kB (kilobyte) and 5 kB, the detecting accuracies are found

to be 93.9% and 96.3% respectively.

There are also other types of training methods like paramet-

ric statistical modeling, but they are less popular.

In this work, we study the possibility to detect hidden

leakages while detecting changes in user’s writing style using

neural networks and various types of features. Also, we

propose a framework for hidden leakages detection and study

accuracy on a dataset including texts with the application of

various steganographic methods: Unicode stego tags, advanced

stego tags, Butt Ugly Latin Wide, trailing spaces etc. Different

architectures of deep neural networks are analyzed as well as

different feature extraction methods.

II. PREVENTING HIDDEN INFORMATION LEAKS WITH

AUTHOR LINGUISTIC IDENTIFICATION METHODS

A. Approach to prevent hidden information leaks with author
linguistic identification methods

Every human has his distinguishable writing style that is

subconsciously included in the author’s text messages. If we

can extract some writing-style features of the messages that

are inherent to a particular user, we are then able to discover

the changes in the author’s style. If steganography is applied

to the text, the original text is changed and this leads to the

author’s writing-style alteration [26]. It is supposed that author

attribution or linguistic user authentication methods could be

applied to discover the hidden leakages.

With the proposed approach, the detection of text steganog-

raphy is narrowed to the detection of author style alteration.

Thus, the task transforms into binary classification.

Given a set of texts T = t1,, tm of authors U , where m
- number of texts. The author ui can be presented as a subset

Ti ⊂ T .

To train a classifier ai that predicts if the writing style of

the new text message tnew is the same as in previous texts

of ui, a Ti could be used. The trained algorithm outputs 1 if

there is no author style alteration for ui and 0 if the author’s

writing style has changed.

The problem of author identification is old enough, but it

is remaining relevant. The availability of machine learning

methods allowed us to look at the linguistic identification

problem from a new perspective. In recent years, the study in

the field of linguistic identification has significantly advanced

[13]. The main reasons are the development and popularization

of various machine learning techniques. However, most of the

existing works are theoretically and practically focused only

on texts in English or Germanic languages.

In most studies classical machine learning methods (deci-

sion trees, k-means, support vector machine, random forest,

etc.) were used to attribute the author of the short messages

[13]. In some studies, authors have found that the use of

neural networks in the task of author identification from a

small set of candidate-authors is inefficient because of high

memory consumption and approximately the same accuracy

as the methods mentioned above.

In the article [14] is discussed author attribution using deep

neural networks. Recurrent Neural Network (RNN), Convo-

lutional Neural Network (CNN), Long Short-Term Memory

Network (LSTM), and several hybrid models were compared.

In experiments were used datasets containing texts in Russian

from several websites. CNN and n-grams showed the best

result.

In various articles, there is a tendency to use characters

n-gram [13]. Characters n-gram gives a representation of

author stylistics, grammar, punctuation, and text topic. Most

modern researchers give their preference to character n-grams.

This approach receives information about the peculiarities of

the author’s style through the most popular words, grammar,

punctuation [13-19]. In articles [20,21,24] an ability to identify

the user based on his email texts is discussed. The accuracy of

classification significantly increases when special characteris-

tics are combined with classical ones.

B. Text vectorization for neural networks

A neural network works only with numerical features (this

comes from its mathematical model). To be classified by NN

texts should be represented as numerical data. This process

is known as vectorization – converting string features into

numerical features. In the first step, tokenization is performed:

the whole text is splitting up into chunks (words, symbols, or

sentences). The next step is to perform vectorization based

on the tokenization tree. There are several different ways for

vectorization:

• Numerical coding – each token is matched to some

unique identity.

• One hot encoding – representation in the form of the

sparse vector that consists only of zeroes and single

number one. The length of the vector is equal to the

number of tokens. All vector values are equal to zero

except that one that is corresponding to the desired token.

• Embedding (dense vector) – each token is set with a

vector in which any number can be used so that it is

denser than ‘One hot encoding’.

• N-gram is a set of tokens from 1 to N. N-gram divides the

text into continuous groups of n tokens making a denser

vector representation. N-gram is one of the methods for

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 178 --

extraction of feature set from the text and is usually used

with classical methods to analyze text.

Neural networks usually do not need some special feature

set extraction. If we have data set that is large enough then

the neural network can find all the required patterns on its

own. But in [22] was proposed feature space that showed a

quite high author attribution accuracy for texts in Russian. In

experiments, we will study if it is possible to use it as an

input vector for NN to detect hidden leakages. The feature set

includes 445 features listed in Table I.

TABLE I. FEATURES OF THE ELECTRONIC
MESSAGES

Features group Features
Lexical symbol level 1. message length in symbols.

2. frequency of the capital letters.
3. frequency of the letter symbols.
4. frequency of digits.
5. frequency of spaces.
6. tabulation frequency.
7. frequency of the letters with umlaut.

Lexical word level 8. total word count.
9. mean length of words in symbols.
10. total sentence count.
11. mean sentence length in symbols.
12. reserved words frequency.
13. abbrev. usage frequency.
14-432. frequency of functional words.

Syntax level 433. frequency of punctuation.
434-444. frequency for each punctuation symbol.
445. total frequency of functional words.

III. METHOD AND FRAMEWORK FOR PREVENTING HIDDEN

INFORMATION LEAKS

The method for countering hidden information leaks in-

cludes three stages. The flow chart is shown in Fig. 1.

Fig. 1. Flow chart of preventing hidden information leaks method

The preparatory stage, at which the database with the

necessary tables is creating. The stage of training the user

model based on his messages. The stage of detecting hidden

leakages and using steganographic methods. It is assumed that

it is possible to uniquely identify users.

Fig. 2 shows the general scheme of hidden leakages detec-

tion framework implementation. Arrow 1 shows the message

transferring for the leakages detection, and arrow 2 shows

the result of the analysis. On the user’s workstations should

be installed messages interception software, that captures

instant messaging (IM) and then sends texts to the server for

further analysis. Alert messages are sent to the cybersecurity

specialists if the writing style of the user significantly changes,

otherwise, if the system had not detected information message

is passed to the recipient and stored in the database.

Fig. 2. General scheme of hidden leakages detection framework implemen-
tation

A. Preparatory stage

At the preparatory stage, the RandomMessage and User-

ModelData tables are created, the structure of which is shown

in Tables II and III, respectively. Various initial values are

set at this stage: length message, trigger accuracy for possible

leakage and sensitivity coefficient.

TABLE II. RANDOMMESSAGE TABLE
STRUCTURE

Name Type Size Description
Id int - ID, primary key

Message String Max Message

TABLE III. USERMODELDATA TABLE
STRUCTURE

Name Type Size Description
Id int - ID, primary key

UserLogin Nvachar 255 User login, foreign key
StateNetwork - - Neural network model

Accuracy Float - Accuracy

Messages should be fixed length (l). We recommend to

set value of l based on the analysis of messages length (in

symbols) frequencies. In this study we use l=600 symbols as

such length covers 85% of all messages. If the message is

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 179 --

longer it is split into several with a maximum length of 600

symbols. For example, if the message length is 957 symbols

it is divided into two: the first one containing 600, and the

second containing 357 symbols (the remaining 243 symbols

are filled with zeroes). Appropriately selected l value allows

to use less number of insignificant symbols, in our case it’s

zero.

Messages from various users, stripped of markup, in Rus-

sian and English languages are added in the RandomMessage

table. All messages should be cleared from markup, images,

and other attachments. The minimum length of the message

should be at least 300 characters.

B. Training stage

For each user, the system must train a model based on his

writing style characteristics. For training, the system should

use only sent text messages. Training model of hidden leak-

ages detection algorithm is presented below.

Algorithm 1 Training model of hidden leakages detection

1: Create a list of type MessUX.

2: Select all messages sent by the user.

3: Clear all messages from HTML tags, pictures, and tables.

If the message is a “reply to”, then only the reply is saved.

4: For each message check for the correct length. If the

message is more than 600 characters, then it is split into

several messages, each of which is a multiple of 600

characters. If the message is less than 600 characters, then

it is padded with leading zeros so that the last character of

the message is at position 599.

5: Vectorize message, depending on the vectorization and the

feature extraction methods.

6: For each message, an instance of an object of type MessUX

is created, to which a unique key is generated in the id value,

the message takes the message value, vector the vector

value, and MuFlag is true.

7: Each message is added to an instance of the object.

8: Random messages from the table “RandomMessage” that

do not belong to the user are added to the list in a ratio of

5: 100, where 5 are user messages. (MuFlag – false, vector

– vector message).

9: Shuffle list.

10: Train model based on the values of the Vector and

MuFlag fields.

11: If the accuracy of the model is less than 70%, then

the algorithm ends. The training will be restarted after an

increase in the number of relevant user messages by 10

12: The UserModelData entity is added to the database table

with values (userLogin – user login, StateNetwork – saved

user model, Accuracy – model accuracy).

For each user, the system must train a model based on his

writing style characteristics. For training, the system should

use only sent text messages.

The system starts training only if there are at least 50 mes-

sages per user. Parameters such as model tolerance accuracy

can be set locally. The maximum message length can also be

set depending on the specifics of the work. For training, the

MessUX class is used, the structure of which is shown in Table

IV.

TABLE IV. USERMODEL TABLE
STRUCTURE

Name Type Size Description
Id int - ID, primary key

Message String 600 User’s message
Vector - - Vector message representation

MuFlag Bool - Indicate if the message belongs to the user

C. Detection of leaks

At the second stage, it is detected whether text steganogra-

phy was applied to the text of the sent message of the user. The

message is checked for the correct length. If the message is

more than 600 characters, then it is split into several messages,

each of which consists of less than 600 characters. If the

message is less than 600 characters, then it is padded with

leading zeros so that the last character of the message has

position 599. In algorithm 2 the leaked detection process is

described.

Algorithm 2 Detection of leaks

1: Based on the user, the UserModelData object is loaded and

the model is initialized based on the StateNetwork property.

2: A list of type MessUX is created.

3: The message is presented in the form of a vector, depending

on the vectorization method and the method of feature

extraction

4: For each message, an instance of an object of type MessUX

is created, to which a unique key is generated in the id

value, the message takes the message value, vector the

vector value, and MuFlag is true. Each object is added to

the MessUX list.

5: Each message goes to the trained neural network, after

which the result of the calculation is written to the object.

The result of the calculation is a boolean variable.

6: Next, the result is calculated by the formula (
∑

n ∗
k)/(count(n)), where n is the results of message calcu-

lations.

7: If the probability of a mismatch is less than the threshold

value (P), then the information security service is notified.

In the algorithm above is used following notation: P is

a threshold value that determines whether a message does

not contain hidden leakage, the default value is 0.7, k is the

multiplying factor for the algorithm to trigger, n is the result

of the model for each message (in 600 characters).

D. Extended model training

If it turns out that a false alarm has occurred, as a result of

the investigation of an incident by the security service, then

there is an opportunity to train the model. To do this, the

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 180 --

UserModelData object is unloaded for a specific user and the

system is retrained using the specified message.

Eight possible resulting Key Quality Indicators (KQI) are

identified: identification accuracy, False Rejection Rate (FRR),

False Acceptance Rate (FAR), identification speed, error,

training time, resource intensity, and quality indicator. For the

study, both standard and field-specific indicators were selected.

E. Neural network configuration

In this work, we use an RNN is a class of neural networks

that are good for modeling data sequences such as time series

or natural language [22-23]. We will consider RNN, LSTM,

GRU and CNN networks.

RNN is a classic recurrent neural network that contains

feedback and allows you to store information. This network

has a significant disadvantage such as a vanishing gradient. As

the length of the analyzed text increases, the network loses its

ability to connect information. Therefore, information cannot

be stored for a long time [23].

Long short-term memory (LSTM) is a kind of recurrent

neural network architecture capable of learning long-term

dependencies.

Gated Recurrent Units (GRU) is one of the types of recur-

rent neural networks, similar in structure to LSTM, but it has

fewer parameters, there is no input gate.

The structure of the neural network is described below:

• Embedding

• RNN/LSTM/GRU – 200

• RNN/LSTM/GRU – 400

• BatchNormalization

• RNN/LSTM/GRU – 100

• BatchNormalization

• Dense

IV. EXPERIMENTS AND RESULTS

A. Text corpus and dataset

To examine the accuracy of the proposed framework and

consumed resources were carried out series of experiments.

In experiments, we used text corpus including texts of various

topics both in Russian and English. For each text author is set.

The text corpus consists of open datasets and collected data:

• Habr – a set of articles by various authors on the topic

of information technology.

• VK – a set of posts of users from a social network.

• Echo of Moscow – a collection of blogs by various

journalists, politicians, economists, writers, and historians

on various topics.

• LiveJournal is a collection of blogs from different users

on different topics. Often used for online diaries.

In total, the corpus contains 189,328 texts for 1,200 authors.

Fig. 3 shows the distribution of the text’s length.

It is recommended to use ten or more relevant texts per

author. Accordingly, the more texts the author has, the more

accurately it is possible to identify his characteristics. Fig. 4

shows the distribution of the number of texts and authors.

Fig. 3. Distribution of texts length

Fig. 4. Distribution of the number of texts per author

Following Fig. 3 and 4, all texts in the corpus can be used

for the task of countering hidden leakages of information.

The final dataset includes 50 000 texts, with a minimum

length of 300 characters. For training NN we have used texts in

proportion 1:50 (text of the author ua: texts of other authors).

For several texts of each author steganographic methods were

applied: Unicode stego tags, advanced stego tags, Butt Ugly

Latin Wide, trailing spaces, and syntax methods.

B. Study influence of text preprocessing on the accuracy of
leakages detection

Each person has a different writing style. This includes

usually the most common word series, punctuation marks,

and even spelling errors. Table V shows the results of the

experiment showing the effect of using text preprocessing on

the accuracy of determining information leakage. 4-grams are

used as a feature extraction method.

TABLE V. IMPACT OF TEXT PRE-PROCESSING ON LEAK DETECTION
ACCURACY

Type of text Accuracy,%
RNN LSTM GRU CNN

With pre-processing 34 43 40 40
Without pre-processing 73 87 85 80

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 181 --

Many text recognition tasks using neural networks require

eliminating insignificant words and applying normalization for

each word. However, shown in Table V, text preprocessing de-

creases leak detection accuracy. In this case, the system works

almost at random. Preprocessing of the text removes most

of the markers that are left by the steganography algorithms.

Especially text preprocessing is detrimental to methods based

on formatting, adding punctuation characters, and trailing

spaces. Let’s consider the effect of text preprocessing for

binary user classification. The experimental results are shown

in Table VI.

TABLE VI. INFLUENCE OF TEXT PREPROCESSING ON THE ACCURACY OF
BINARY CLASSIFICATION

Type of text Accuracy,%
RNN LSTM GRU

With pre-processing 89 91,12 90
Without pre-processing 98,93 99,26 99,02

According to Table VI, for the problem of user iden-

tification, text preprocessing also reduces the identification

accuracy, however, in contrast to the problem of determining

hidden information leakage, the accuracy decreases not so

critical. This allows us to conclude that the set of features

for these two tasks is different.

All the further experiments are performed without prepro-

cessing. Text preprocessing not only significantly affects the

accuracy of the experiments, but also consumes computation

time.

C. Analysis of various features extracting methods accuracy

We have performed experiments to estimate the accuracy

of hidden leakages detection with the use of various feature

extraction methods: manual feature extraction (listed in Table

I), dictionary coding, and 4-grams. The experimental results

are shown in Table VII.

TABLE VII. COMPARISON OF FEATURE EXTRACTION
METHODS

Method Accuracy,%
RNN LSTM GRU CNN

Manual feature extraction 16 21 19 18
Dictionary coding 37 45 44 42
Character 4-gram 73 87 85 80

Experiments results showed that the manual feature extrac-

tion method and dictionary coding have the lowest accuracy.

This means that the selected most informative features are

not applicable to identify hidden information leaks. Dictionary

coding also showed low accuracy since it does not consider

spaces and character substitutions.

The best result in this experiment shows character 4-grams.

N-grams allow you to define dependencies up to N characters.

This means that every letter, extra space, or unknown character

will be counted. N-grams allow you to consider the text from

the point of view of each character combination separately.

It should also be noted that LSTM networks show the best

results compared to GRU and RNN. This is largely due to the

internal structure of the networks. Since n-grams showed the

best accuracy, we will use them in a future experiment.

D. Study influence n-gram size on hidden leakages detection
accuracy, GPU time, and memory consumption

A series of experiments were carried out to estimate the

dependence processor time and memory consumption during

training, and hidden leakages detection accuracy from n-gram

size. Results are shown in Fig. 5 - 7.

Fig. 5. Hidden leakages detection accuracy with n-grams of various size

Fig. 6. GPU time on training stage with n-grams of various size

All experiments were carried out within the same session.

As shown in the figures above, with an increase of n-grams

size the accuracy increases. Since with an increase of n-

grams size, the feature space dimension also enlarges, and

the separability of classes increases with an increase in the

dimension of the feature space. But memory consumption also

grows significantly.

According to the results of the study, the most appropriate

way to extract features is n-grams. This method allows you

to extract the user’s linguistic characteristics used in messages

and identify their changes with the greatest accuracy.

With a relatively small increase in hidden leakages de-

tection accuracy between 3-grams and 5-grams, the memory

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 182 --

Fig. 7. Memory consumption on training stage with n-grams of various size

consumption increased up to tenfold. It is proposed to use

character 4-grams. The average accuracy is 87%. In hiding 190

bits of information per 300-character text, the leak detection

accuracy reaches up to 100%.

V. CONCLUSION

Steganography, like any other instrument, has two sides.

It can be used legally and also it can be used as a tool for

committing crimes. In this work, we have proposed a steganal-

ysis approach allowing detection use of the text steganography

methods based on authorship attribution or linguistic user

identification methods. This approach allows to detect hidden

leakages while detecting changes in the user’s writing style

using LSTM and 4-grams. Also, the framework for hidden

leakages detection was developed. Experiments showed that

the developed framework improves the accuracy of detecting

hidden, implicit information leaks. The average accuracy while

detecting hidden leaks in mixed mode reaches up to 87%. This

tool is useful both for preventing information leaks and can

assist in the hidden leakage investigation.

The impact of text preprocessing on the accuracy of identi-

fying the use of steganography methods was assessed. The

use of text preprocessing does not allow the use of many

of the basic linguistic characteristics. In mixed mode, the

detection accuracy decreased by 20%. It is recommended not

to preprocess the texts.

In experiments, the LSTM networks showed the best ac-

curacy (comparing with RNN, CNN, and GRU). This archi-

tecture is actively used for tasks related to natural language

processing due to its structure, which allows you to remember

previous states.

The dependence of the performance and identification ac-

curacy for 1-gram, 2-gram, 3-gram, 4-gram, and 5-gram was

studied. With an increase in the dimension of n-grams, there

is an increase in the accuracy of detecting hidden leaks, as

well as a decrease in processor time for operating, but this

also increases memory consumption. Any algorithm needs a

state that allows it to achieve a high level of accuracy with the

most optimal resource consumption. As shown in the results

of the experiment, the most effective way is to use 3-grams.

When the bit depth is increased to 5 grams, the leak detection

accuracy increases by only one percent, while the consumed

memory is tenfold.

REFERENCES

[1] A.A. Vorobeva, “Influence of Features Discretization on Accuracy of
Random Forest Classifier for Web User Identification”, Proceedings of
the 20th Conference of Open Innovations Association FRUCT, pp. 498-
504, 2017.

[2] L. A. Kothari, K. Lipi, T. Rikin “Survey on Techniques of Data hiding
on Web”, International journal of innovative research in technology,
Volume 9 – 2016.

[3] Y.J. Bao, ”Text Steganalysis with Attentional L STM-CNN”, 2020 5th
International Conference on Computer and Communication Systems
(ICCCS), IEEE pp. 138-142, 2020.

[4] M. Chaumont, “Deep learning in steganography and steganalysis”,
Digital Media Steganography. – Academic Press, pp. 321-349, 2020.

[5] M. Salomon, “Steganalysis via a convolutional neural network using
large convolution filters for embedding process with same stego key:
A deep learning approach for telemedicine”, European Research in
Telemedicine, pp. 79-92, 2017.

[6] M. Agarwal, “Text steganography approaches: a comparison”, Interna-
tional Journal of Network Security Its Applications (IJNSA), vol. 5, Jan
2013.

[7] I. Avcibas, N. Memon, B. Sankur “Steganalysis using image quality
metrics”, IEEE Transactions on Image Processing, vol. 12, pp. 221-229,
2003.

[8] R. Chandramouli, “A mathematical framework for active steganalysis”,
ACM Multimedia Systems, vol. 9, no. 3, pp. 303-311, 2003.

[9] J. J. Harmsen, W. A. Pearlman, “Steganalysis of additive noise mode-
lable information hiding”, Proceedings of the SPIE, Security, Steganog-
raphy, and Watermarking of Multimedia Contents VI, pp. 131-142, Jan
2003.

[10] K. Sullivan, U.Madhow, S.Chandrasekaran, B. Manjunath, “Steganalysis
for Markov cover data with applications to images”, EEE Transactions
on Information Forensics and Security, vol. 1, no. 2, pp. 275-287, 2006.

[11] Z. Yang, K. Wang, J. Li, Y. Huang, Y. Zhang, “TS-RNN: Text Steganal-
ysis Based on Recurrent Neural Networks”, IEEE Signal Processing
Letters, vol. 26, Dec 2019.

[12] P. Meng, L. Hang, W. Yang, Z. Chen, H. Zheng, “Linguistic Steganog-
raphy Detection Algorithm Using Statistical Language Model”, Inter-
national Conference on Information Technology and Computer Science,
2009.

[13] A.A. Vorobeva, ”Otbor informativnykh priznakov dlya identifikat-
sii Internet-pol’zovateley po korotkim elektronnym soobshcheniyam”,
Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki
i optiki, pp. 117–12, 2017.

[14] Y.V. Dmitrin, D.S. Botov, J.D. Klenin, I.E. Nikolaev, ”Comparison of
deep neural network architectures for authorship attribution of rus-
sian social media texts”, Komp’juternaja lingvistika i intellektual’nye
tehnologi, 2018.

[15] H. J. Escalante, T. Solorio, “Local histograms of character n-grams
for authorship attribution”, In Annual Meeting of the Association for
Computational Linguistics: Human Language Technologie, pp. 288–298,
2011.

[16] U. Sapkota, S. Bethard, M. Montes-y Gomez, T. Solorio, “Not all
character n- grams are created equal: A study in authorship attribution.”,
In Human Language Technologies: The 2015 Annual Conference of the
North American Chapter of the ACL, pp. 93–102, 2015.

[17] M. Popescu, C. Grozea, “Kernel methods and string kernels for author-
ship analysis”, LEF 2012 Evaluation Labs, 2012.

[18] A. Bartoli, A. Dagri, A. D. Lorenzo, E. Medvet, F. Tarlao, “An
author verification approach based on differential features”, CLEF 2015
Evaluation Labs, 2015.

[19] I. Rahul, “A Machine Learning Framework for Authorship Identification
from Texts”, Language Technologies Institute, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, USA, Aug 2019.

[20] T. Litvinova, O. Litvinlova, O. Zagorovskaya, P. Seredin, A. Sboev,
“Ruspersonality: A Russian corpus for authorship profiling and decep-
tion detection”, FRUCT Conference on Intelligence, Social Media and
Web (ISMW FRUCT), pp. 1–7, 2016.

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 183 --

[21] A.A. Vorobeva, “Examining the Performance of Classification Algo-
rithms for Imbalanced Data Sets in Web Author Identification”, Proceed-
ings of the 18th Conference of Open Innovations Association FRUCT,
pp. 385-390, 2016.

[22] A.A. Khazagarov, A.A. Vorobeva, “Protivodeystviye skrytym utechkam
informatsii s pomoshch’yu metodov lingvisticheskoy identifikatsii”, Ku-
laginskiye chteniya: tekhnika i tekhnologiya proizvodstvennykh prot-
sessov: sbornik statey, vol. 1, pp. 44-47, 2019.

[23] G. Margarov, “Investigation of Web Based Hidden Dara”, Web Intelli-
gence and security, 2010.

[24] H. Huanhuan, Z. Xin, “Adaptive Text Steganography by Exploring
Statistical and Linguistical Distortion”, 2017 IEEE Second International
Conference on Data Science in Cyberspace (DSC), Aug 2017.

[25] Z. Yang, “A Fast and Efficient Text Steganalysis Method”, IEEE Signal
Processing Letters, vol. 26, Apr 2019.

[26] A. Naharuddin, A. Dharma, S. Sumpeno, “A High Capacity and Im-
perceptible Text Steganography Using Binary Digit Mapping on ASCII
Characters”, 2018 International Seminar on Intelligent Technology and
Its Applications (ISITIA), May 2019.

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 184 --

