
Towards Practical Cybersecurity Mapping of
STRIDE and CWE – a Multi-perspective Approach

Anne Honkaranta, Tiina Leppänen, Andrei Costin
University of Jyväskylä

Jyväskylä, Finland

anne.honkaranta@gmail.com, leppatii@gmail.com, ancostin@jyu.fi

Abstract—Cybersecurity practitioners seek to prevent software
vulnerabilities during the whole life-cycle of systems. Threat
modeling which is done on the system design phase is an
efficient way for securing systems; preventing system flaws is
easier and more efficient than patching the security of the
system later on. Therefore, many Secure Software Development
methods include threat modeling as an integral part of the
methodology. STRIDE is a popular threat modeling method
used by many practitioners. Threat modelers using the STRIDE
method work with abstract threat categories, and would benefit
learning about the information about current system weaknesses
and vulnerabilities. The information is available on the weakness
and vulnerability databases (such as the CWE and the CVE). To
our knowledge, there exists no mapping between the STRIDE
threats and the actual weaknesses and vulnerabilities listed on the
databases, thus hindering the effectiveness of the threat modeling
and the DevSecOps and Secure Software Development Life Cycle
methods as a whole.

This work attempts to bridge the gap by exploring possible
mappings between the STRIDE threats and the CWE weaknesses,
with the goal of improving the cybersecurity processes from
end to end. The paper explores three different approaches for
mapping the STRIDE to the CWE weakness database, and
discusses the findings. The paper concludes that the mapping
between the STRIDE and the CWE ”Technical Impact” and
”Scope” elements of the CWE entries is the most prominent
for the mapping. Paper also shows that other mappings were
challenged by the different conceptual backgrounds between
the threats and the weaknesses. The paper also discusses the
challenges caused by the inherent vagueness of the items within
the frameworks and the CWE and CVE databases, causing that
the mappings to these databases remain largely as a manual
tasks, which should be carried out by the domain experts.

I. INTRODUCTION

Currently almost all systems are networked together, and

people are increasingly dependent on software and its avail-

ability on everyday life. It may be harder to exclude oneself

from the networked infrastructure than to be part of it. Appli-

ances from toothbrush and fridge to cars and manufacturing

systems are all online by default. As the complexity of

software systems grows, new vulnerabilities emerge. Increased

networking and system complexity stress out the requirement

for securing the systems [1], [2], [3]. System security should

be managed with a proactive way instead of focusing on

putting out fires [1]. According to [3], on H2/2018 there was

an increase on the malware by 151 %, and it was estimated

that cyber-crime caused damages reach $6 trillion yearly cost

by 2021.

Means for tackling the software security are many. Threat

modeling “is the practice of identifying and prioritizing po-

tential threats and security mitigation to protect something of

value, such as confidential data or intellectual property” [4].

Threat modeling should be started on the early days of the

system design, as it is one of the most efficient ways for

ensuring the software security [5]. All software should go

through sufficient security testing. Yet security testing in

practise may be carried out on a light-weighted manner or

neglected for shortening the systems time-to-market, or not

being considered feasible enough to justify the expenses of

the testing [1]. Secure design is not enough, because some

vulnerabilities emerge after a long time of use, potentially

triggered by an advancement of other software and technology.

To patch up, most of the software vendors provide advisories

for maintaining the security of their systems.

This paper is organized as follows. Section II introduces

the key concepts related to software security and the two

compact most-known vulnerability frameworks: OWASP [6]

and Seven Pernicious Kingdoms [7]. OWASP is evaluated

with relation to the presented concepts, as an example. Section

also presents the weakness type database known as Common

Weakness Enumeration (CWE) [8], and the Common Vulner-

ability Enumeration (CVE) vulnerability database [9], both

maintained by the Mitre Corporation. Section III describes

the STRIDE threat framework and provides an example of

using it in a threat modeling task. Section III also describes

the three alternative ways for mapping STRIDE threats with

the Mitre CWE database items: mapping by using existing

OWASP 10 mapping as a mediator, mapping to the CWE Top

25 weaknesses, and mapping to the CWE database by using

two elements of CWE database schema (Technical Impact and

Scope). Section V discusses and summarizes the findings.

II. RELATED CONCEPTS, VULNERABILITY

FRAMEWORKS AND DATABASES

This chapter presents the concepts related to software

security, and two compact frameworks of software or code

vulnerabilities. Both frameworks are handy for anyone wishing

to use brief listings of vulnerabilities. We also present the other

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

end of the spectrum, i.e. the huge databases containing detailed

information about the weaknesses and the vulnerabilities iden-

tified on the real-life.

A. Related concepts

While most people are familiar to the concepts of confiden-
tiality, integrity, availability, vulnerability and weakness, these

concepts provide the pillars for the software security.

Confidentiality, Integrity and Availability (CIA, or

AIC) [10]. Availability means that the information is

accessible and available to authorized people when needed.

Availability assumes that also appropriate security is provided

for the information. Hence, availability is more than just

letting the information flow; it is about providing the

information to the rightful actors, and by appropriate means.

It also means that the information should be able to be

recovered, if something unexpected happens to the storage.

Integrity means that information must be whole, original, and

reliable. If there are multiple versions of the information, one

must be able to identify the original piece of information,

as well as the most recent one. Confidentiality assumes that

the information is kept secret from those who do not have

authorized access to it. It also means that information should

be kept secret at rest, i.e., when stored, and also at transit,

i.e., when information is transferred to a reader, other storage

medium, or other format than the original [10].

The CIA triad provides as basis for estimating the severity

of the vulnerability. It is used by the Common Vulnerability

Scoring System (CVSS) – a framework for measuring the

impact of software vulnerabilities [11]. Severity consists of

the exploitability of the vulnerability and the impact of its

exploitation, which is estimated by using the CIA triad. The

value of the final CVSS score is between 0.0-10.0. The main

advantages of common scoring system are standardized and

application-neutral scores, contextual scoring and transparent

scoring framework. The CVSS score does not provide strate-

gies for mitigation [11].

Raggad [12] claims that the CIA triad is not enough, and

that it needs to be appended by authentication and non-

repudiation to form a so-called security star, which is depicted

in Fig. 1.

In the heart of the security star lies Risk. Risk is an

essential factor striving businesses to focus on security. Busi-

ness managers are focused on managing risks, not security.

Not storing your information securely enough may risk the

company brand, or it may cause high fees to the company. For

example, if one rudely neglects to keep EU citizen’s personal

information safe according to the GDPR regulation guidelines,

one may end up having up to 20 MC or maximum of 4 % of

annual revenue as an administrative fine [13].

There is an interplay between threat and risk. Harris and

Maymi [10] (pp. 6) define threat and risk as follows: 1)

Fig. 1. The security star (image by Raggad [12])

”A threat is any potential danger that is associated with the

exploitation of a vulnerability”; 2) ”A risk is the likelihood of a

threat source exploiting a vulnerability and the corresponding

business impact”.

Hence, vulnerability is the weakness that one has utilized to

jeopardize the software. And, there is a risk that information

confidentiality, integrity or availability is lost, as a whole or

partially. Same outcome, i.e., the risk, may be triggered by

multiple different threats.

National Institute of Standards and Technology (NIST) [14]

defines vulnerability as:

”A weakness in the computational logic (e.g., code) found

in software and hardware components that, when exploited,

results in a negative impact to confidentiality, integrity, or

availability”. Hence a vulnerability is the result of exploiting

a weakness. In the real world, the concepts become mixed,

perhaps due to viewpoint or scope change, or because the

difference is not seen as remarkable. If someone wishes to

process information by automated means, the concepts must

be used in a semantically consistent way.

B. Owasp top 10 vulnerability framework

The Open Web Application Security Project® (OWASP) is

a nonprofit foundation that works to improve the security of

software [6].

OWASP Top 10 Application Security List contains a list of

the 10 most common security risks for Web Applications [6].

OWASP is familiar to many and it is commonly used also as a

checklist for penetration testers. The OWASP Top 10 is often

referred as the list of the Top 10 Web vulnerabilities. From

the perspective of the concepts discussed above, it may also

be considered as a mix of vulnerabilities and risks.

OWASP Top 10 is interesting for this paper in two ways:

1) It is an example of a compact framework of vulnerabilities.

Compact frameworks are needed and they may be used as

checklists for security testers. 2) Even if the list is called as

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 151 --

”the 10 most common security risks for Web Applications” it

is commonly referred as a list of Web Application common

vulnerabilities. Hence, the intertwined relation between risks

and vulnerabilities is present on the listing, illustrating the

problem with compact vulnerability categories; some of the

items are actually risks by their nature, some may be classified

as vulnerabilities. The problem is inherent; if one needs to

provide a compact list containing the most critical and most

commonly identified application vulnerabilities, the classes are

deemed to be differing by their grain size and the level of

abstraction.

Following list provides three examples of the OWASP Top

10 threats [6] and their characterizations with regard to the

concepts of risk and vulnerability.

1) Injection: Examples of injection flaws are SQL, NoSQL

and LDAP injection [6]. When untrusted or malicious

data is sent to application as a part of command or

query the activity is called as injection. Injection is a

type of vulnerability, and the risk is that the information

is exposed/disseminated or malicious code is run on the

system.

2) Broken Authentication: Occurs when an application

does not implement correct authentication procedure

or session management. The application may reveal

passwords, keys, or tokens to the attacker, or to provide

the attacker with false identity and privileges on the

system. Consequently, attacker may disseminate (loss

of confidentiality), falsify (loss of integrity), or destroy

information (loss of availability), and run code with false

/elevated privileges, leading to potential system unavail-

ability (loss of availability) as an extreme outcome.

3) Sensitive Data Exposure: A risk, which may be caused

by weak protection of sensitive information. Vulner-

ability may come in a form of not encrypting the

data at rest or at transit (i.e., storage or traffic is not

encrypted to protect the data), and it seems obvious that

confidentiality is at risk here.

C. The “Seven Pernicious Kingdoms” frame-work

A taxonomy of common coding errors called as the Seven

Pernicious Kingdoms is provided by [7]. The framework

operationalizes the concepts of phylum (a kind/category of

a coding error) and a kingdom (a group of phyla with some

shared features between them) from biology.

The authors of the Seven Pernicious Kingdoms emphasize

that the taxonomy of coding errors/vulnerabilities is needed

for spreading out the understanding of software vulnerabilities

within the coding community, and for enforcing security of the

code used on novel applications [7]. The authors point out that

almost half of all software vulnerabilities may be tracked back

to the source code level. They also bring out the need for a

simple, compact list of main software vulnerabilities instead

of an overwhelming encyclopedia of software bugs. Therefore,

the authors have built a taxonomy of software vulnerabilities

consisting of 7+1 classes. Why 7+1? Because it has been

proven by the psychologists that a human memory is capable

to manage information in chunks consisting of 7+/-2 items.

The taxonomy of software vulnerabilities by Tsipenyuk et

al. [7] is as follows:

1. Input Validation and Representation; 2. API Abuse; 3.

Security Features; 4. Time and State; 5. Errors; 6. Code

Quality; 7. Encapsulation + Environment.

D. The CVS database

Software vulnerabilities were reported in differing ways

by the software and hardware vendors until the MITRE

Corporation created a common method and a database for

vulnerabilities in 1999 [15]. Since then the Common Vul-

nerabilities and Exposures (CVE) Initiative has been building

the common dictionary and structure for describing software

vulnerabilities [9]. The key objective of the CVE is that the

name and the description of each vulnerability is defined

only once, and in a standardized way in the dictionary. The

definitions of vulnerabilities are not provided in detail for a

variety of reasons, one of them being to prevent attackers from

taking advantage of the descriptions [16].

Each vulnerability is encoded in the following way: CVE

prefix, year, and sequence number digits (for example, CVE-

2019-1010200). The trademark and copyright of CVE is

managed by MITRE Corporation to legally protect use of it

and specially to secure a free and open standard [17].

Fig. 2 shows the CVE as ”a link hub” to the related

data sources. Additional information about solution, impact

level or technical details can be found on other sources like

the National Vulnerability Database (NVD) and the Common

Vulnerability Scoring System (CVSS) [18].

Fig. 2. The CVE is a dictionary which refers to the external databases [15]

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 152 --

CVE is referred as the central of vulnerability and exposure

databases. Currently there are 149841 vulnerabilities on the

database [9]. The large number of the vulnerabilities identified

is an advantage for users, but it also brings out challenges. As

new and more complex technologies open new possibilities

for attackers, more vulnerabilities are identified, causing the

requirements on timeliness and accuracy of the CVE as a

master dictionary to be elevated [19].

E. The CWE database

Weaknesses expose the systems causing them to be vulner-

able to attacks. The Common Weakness Enumeration (CWE)

is a classification and a common language for identifying

and describing these weaknesses. The CWE list is maintained

by the MITRE Corporation and it is available in the Mitre

website [14].

The idea of the CWE list is to provide a detailed infor-

mation of common software and hardware weakness types.

Information about the weaknesses has been especially relevant

for software developers for avoiding the use of the known

types of the security flaws. Recently the CWE categories of

hardware have become increasingly important because all sorts

of devices include information and network related technology.

Categories of hardware weaknesses were added to the CWE

in 2020 [8].

The CWE is also one of the repositories that the CVE

database refers to. The CWE identifier is linked to each

vulnerability thus allowing the vulnerabilities to be navigated

by using the CWE ID. According to [20] mapping between

the CVE and the CWE items is done manually by domain

experts. Manual work is slow and laborous, which effects on

the availability of the CVEs for proactive threat mitigation.

The CWE database is presented as a hierarchy of classes

where each CWE entity refers to one vulnerability type. There

are no limitations on how the weaknesses may be referenced or

classified. For example, the CVEs can be mapped to different

levels of the classification. This is necessary because of the

varying specificity levels of the CVEs [21].

The CWEs are grouped into three hierarchical classifica-

tions: Software development, Hardware design and Research

concepts. The top level of the Software development and the

Hardware design are defined as classes which are based on

categories. Category is the root element and a container for

the weaknesses that share the similar characteristics. Each cat-

egory contains class, base and/or variant weaknesses. Classes

are like categories: independent of any implementation. The

base level weaknesses are more specific, but not as detailed

as the variant weaknesses. The research concepts class con-

tains more levels of abstraction than the other classification

schemes. Top level elements of the research concepts class are

pillars which describe mistakes but do not specify their impact

nor the the exact point affected. The Pillars can contain class,

base, or variant weakness [22].

III. THE STRIDE THREAT FRAMEWORK AND AN

EXAMPLE OF A STRIDE MODEL

Threats may be modeled, analyzed and detected in a nu-

merous ways. For example, the Diamond Model for Intrusion

Analysis [23] is based on a long practical experience on

intrusion analysis. The Diamond Model provides four views

for Intrusion analysis: adversary, infrastructure, capability,

and victim. The Diamond Model embeds certain features

from the ”Kill Chain” analysis model [23]. The Kill Chain

model [24] was developed for analyzing Advanced Persistent

Threats (APT’s).In this method, the phases of the intrusion

are analyzed, and mitigation for each of the detected phase of

the intrusion are planned. The authors selected the STRIDE

method for the analysis for the following reasons: 1) The

method is well-known amongst practitioners, because it is

a part of the Microsoft’s Secure System Development Life

Cycle model, 2) The method uses a simple, yet comprehensive

classification of threats, and 3) The STRIDE method may be

embedded to the actual system design phase, in which the

system is designed, and 4) The method was identified as the

most mature on a comparison carried out by Shevchenko [3].

This section discusses the STRIDE threat framework and

provides an example of the STRIDE threats as identified on a

exemplar data flow diagram.

A. The STRIDE threat framework

STRIDE is an acronym that stands for the possible threats

towards a system. The STRIDE framework is also used

as an integral part of the Microsoft Security Development

Lifecycle (SDL) method [25]. The acronym ”STRIDE” defines

the six threat categories for a system: Spoofing, Tampering,

Repudiation, Information disclosure, Denial of service and

Elevation of privilege [26]. While the CIA (Confidentiality,

Integrity, Availability) triad [10] defines the three pillars for

secure systems, the STRIDE presents six threat types relevant

to the CIA.

Table I presents the STRIDE [27] threats along with the

authors’ layman explanation for the acronyms. It also presents

a mapping to the CIA triad, thereby mapping the threat classes

with the actual risks.

Threat modeling based on the STRIDE threat framework

has been studied from several perspectives. For example, [28]

pointed out that STRIDE is a popular threat modeling method,

but empirical studies about its application are lacking. There-

fore, the authors organized a broad empirical study in which

57 students applied the STRIDE threat modeling for a given

task. [29] found out that STRIDE is a lightweight, yet efficient

framework for modeling threats in systems compromising of

critical infrastructures and industrial control systems, which

they characterized as complex Cyber-Physical Systems (CPS).

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 153 --

TABLE I. MAPPING OF STRIDE FRAMEWORK ELEMENTS TO THE
CIA TRIAD

Threat
Name

Explanation/Example Relation to CIA:
what is risked

Spoofing Malicious user (or agent) pretends
to be someone else, (s)he uses
other user’s credentials to access
the system [27].

Confidentiality,
Integrity

Tampering The content within the targeted
system is altered by the malicious
external party.

Integrity

Repudiation Content or system has been mis-
used or tampered, but we cannot
prove it due to absence of proof,
such as audit trail.

Integrity

Information
disclosure

The information is exposed to par-
ties which do not/should not have
access to it [27]. Information leak
and data breach are common exam-
ples of information disclosure.

Confidentiality

Denial of
service

System/information is not available
to a legitimate user.

Availability

Elevation of
privilege

Malicious or rightful user gets
more privileges on the content than
is entitled to.

Integrity, Confi-
dentiality

B. An example of the STRIDE threat model

To illustrate the use of the STRIDE framework, this sub-

section provides an example of using the STRIDE on the threat

modeling phase.

Microsoft [30] (pp. 1) defines the threat modeling as a

process that contains five steps:

“1. Defining security requirements, 2. Creating an applica-
tion diagram, 3. Identifying threats, 4. Mitigating threats, and
5. Validating that threats have been mitigated”.

According to the Web Applications Threat Modeling Guide-

line [25] each of the five steps contain several tasks to carry

out. For example, step 1 “Defining security requirements”

considers defining security requirements related to the CIA

and the business branch in which the software is used. In

step 2, numerous diagrams are created, including the data flow

diagrams and use case diagrams.

The threat modeling tool [31] provided by Microsoft con-

tains templates for the threat modeler and some templates that

can be used for modeling threats for the Azure cloud platform.

Fig. 3 provides an example of a data flow diagram model

within the Microsoft threat modeling tool. The diagram is

used for studying the STRIDE threats of a system. The data

flow diagram is shown on the upper-hand window of the

picture. The lower-hand picture shows the STRIDE threat list

provided by the tool. The threat modeler first draws the data

flow diagram. Once the modeler chooses a component on

the diagram, the tool shows related threat categories (system

weaknesses) as well as their outcomes, i.e., risks as well as

their descriptions on the lower-hand pane. The picture lists all

potential threats on the diagram because user has not selected

any component of the data flow diagram. Once the threats

are detected, the modeler can start planning the mitigation for

them, by designing appropriate security controls to be put into

appropriate places.

IV. STRIDE-CWE MAPPINGS

This section presents three differing trials that were carried

out in order to map the STRIDE threats with the CWE

database weaknesses.

The CWE database contains description of 916 weaknesses

at this moment [22]. The weaknesses in the CWE database are

not so detailed and technical as in the CVE database. Therefore

mapping trial from the STRIDE threats was carried out against

the CWE database.

A. Mapping STRIDE and OWASP TOP10

While the CWE database can be browsed, searched and

navigated in many ways, the current version (4.3) of CWE

list [22] also offers mappings to following external frame-

works: OWASP Top Ten (from year 2017 [32]), Seven Perni-

cious Kingdoms (7PK [33]), Software Fault Pattern Clusters,

SEI CERT Coding Standards, Architectural Concepts, CISQ

Quality and Data Protection Measures. These mappings are

downloadable in several file formats (HTML, CSV, XML).

Each CWE entry referenced from the external mapping has

also references to other related mappings. The mappings are

defined in the ”Taxonomy Mappings” section of the CWE

entry. The Mapped taxonomy name is an attribute which

identifies the framework that was mapped with the CWE

(for instance, OWASP Top Ten 2007) and Mapped node
name contains the entry point used for the mapping (for

instance, Injection Flaws). The Mapping Fit element contains

description of how close the CWE item mapped is to the

responding entry in the framework. Possible values are Exact,

CWE More Abstract, CWE More Specific, Imprecise and

Perspective. These attributes specify more information about

the external mapping than just a title. Especially the mapping

fit values provide analysed estimation how external entry is

equivalent to the CWE entry in case.

External mappings provided by the CWE database may be

used for multiple purposes [22]. Top level definition page

of each external taxonomy mapping contains an “Audience”

section. It contains short descriptions what kind of benefits the

mapping offers for different stakeholders. The key benefits

of the external mappings for differing audiences may be

summarized as:

• Software developers: Tool to ensure that code quality

issues are considered throughout the design process,

useful view with familiar concepts, weaknesses can be

detected using source code analysis tools, a starting point

to code more securely and prevent the weaknesses, help

for tool acquisition.

• Product customers: A way to ask software development

teams to follow minimum expectations for secure code,

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 154 --

Fig. 3. A screenshot of the STRIDE threat modeling tool [30] in action

a view to requirements that must be met when software

developers claim to follow standard in question.

• Product vendors: A view to help understanding code

quality issues.

• Assessment tool vendors: A starting point to understand

what a software with good code quality is consisted of

and possible quality issues.

• Educators: Can be used as training material, multiple

ways to create views for different subjects.

An external mapping has three output formats: booklet.html

(view), csv.zip or xml.zip. The booklet.html [32] is shown as a

tree-like relationships where the top-level items of the selected

framework are depicted as categories, which are associated

with CWE entries. An example of OWASP Top 10 [6] mapping

is shown in Fig. 4.

As depicted in Fig. 4, the framework category name may be

mapped to a vulnerability at any level of the CWE category:

Category (depicted by letter “C” on a dark red rectangle-

shaped background), Pillar, Class (depicted by letter “C” on

top of green balloon icon), Variant (depicted by letter “V” on

top of lilac balloon shape), Base (depicted by letter “B” on

top of blue balloon shape) or Composite (is not shown on this

picture). The schema used for external mapping does not seem

to limit the CWE entry types to any specific level of the CWE

vulnerability category.

The existing mappings [32] can be used as a mediator be-

tween the STRIDE and the CWE database. The first mapping

trial was carried out by mapping the STRIDE with the OWASP

Top 10. The result is shown in Table II.

As shown in the Table II, OWASP vulnerabilities 2, 3, 5,

and 10 can be mapped one-to-one with STRIDE threats. A

STRIDE modeler may thus find the related weaknesses to

Spoofing, Information disclosure, Elevation of privilege, and

Repudiation by using the existing OWASP mapping view.

By using these mappings, the modeler can also drill down

from the direct mappings by using the “booklet.html” tree

view, and selecting the related sub-weaknesses, as shown in

Fig. 4. Because each of these weaknesses have in turn a

description defining the related weaknesses, as well as upper

and lower-level weaknesses, a modeler may find lots of related

weaknesses and their descriptions.

Fig. 5 represents an example where the STRIDE modeler

selected the OWASP vulnerability number 3 “Sensitive Data

Exposure” because (s)he wants to study the weaknesses related

to the STRIDE threat “Elevation of privilege” by using the

mapping. From the tree-like view exposed, (s)he has further

selected a related weakness categorized as “Exposure of Pri-

vate Personal Information to an Unauthorized Actor”.

Because the OWASP mapping only provided partial results,

two other mapping trials were carried out.

B. Mapping STRIDE and CWE TOP 25

“CWE Top 25 Most Dangerous Software Weaknesses

(2020)” [34] is a listing prepared by Mitre. It lists the most

common weaknesses that were identified on the previous two

years. The list is not solely based on the Mitre CWE database;

it utilizes the CVE database by Mitre and the National Vul-

nerability Database, as well as the CVSS vulnerability scoring

system as a basis for listing [34].

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 155 --

Fig. 4. A snapshot of “booklet.hml” view on OWASP – CWE vulnerability database mapping [32]

Fig. 5. Example of navigating the weakness by using the OWASP mapping to find related weaknesses to STRIDE threat “Information Disclosure”

The 2020 CWE Top 25 was built by first obtaining the

vulnerability data from NVD database (years 2018-2019).

Then analysts designed the complex scoring system which

uses many elements, including the vulnerability’s CVSS score

and the vulnerability’s number of occurrences on the weakness

category [34].

Mapping from CWE Top 25 to STRIDE was done by

scrutinizing each of the Top 25 weaknesses on the CWE Top

25 list with STRIDE elements, one by one. The name of the

weakness was not descriptive enough for reasoning about to

which element of the STRIDE the item should be mapped

to. Each item on the ”Top 25 list” was studied by using the

weakness enumeration page, which was available by clicking

on the hyperlink attached to the weakness name. Technical

impact information on the weakness’ detail page provided

sufficient information for mapping.

Table III shows our mapping between the CWE Top 25

weaknesses (as listed in the CWE Top 25 [34]) and STRIDE.

This mapping shows that all STRIDE threats have related

weaknesses in the Top 25 listing. The listing of the Top 25

weaknesses contains weaknesses of differing kinds and scope;

for example, NULL pointer reference is clearly a weakness

related to coding, and perhaps specific to some of the coding

languages commonly in use. It is very specific of its nature.

Improper privilege management may be a consequence of poor

code, but also an outcome of not protecting the password

database. It is clearly broader by its nature, and not so much

dependant of a language used for software construction.

The authors of the Top 25 list bring out that during the

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 156 --

TABLE II. MAPPING OF STRIDE FRAMEWORK TO THE OWASP
TOP 10 [6]

OWASP vulnerabil-
ity/risk category

STRIDE Threat Category

1. Injection Has not direct counterpart, injection can
lead most probably to the Elevation of priv-
ilege, Information disclosure or Tampering.

2. Broken Authentica-
tion

Spoofing (Elevation of privilege)

3. Sensitive Data Ex-
posure

Information disclosure

4. XML External en-
tities

Has not direct counterpart, injection can
lead most probably to the Elevation of priv-
ilege, Information disclosure or Tampering,
perhaps even to Denial of Service.

5. Broken Access
Control

Elevation of privilege

6. Security Miscon-
figuration

Elevation of privilege, and may lead also to
Information dissemination, Tampering, and
Denial of Service

7. Cross-site scripting
(XSS)

Same as (6).

8. Insecure Deserial-
ization

Same as (6).

9. Using Components
with Known Vulnera-
bilities

All STRIDE threats apply.

10. Insufficient Log-
ging and Monitoring

Repudiation

past year the weaknesses related to the Authentication and

Authorization have been rising on the listing. Also, a move

towards more specific weaknesses has emerged recently [34].

C. Mapping STRIDE and CWE’s technical impact and scope

The key to a common language within the CWE database

is the common grammar which is defined by the CWE

Schema [35]. It represents the CWE data structure which is

used for the CWE entries, and it defines several enumerations

for describing the attributes for each of the CWE items.

Schema of the CWE provides alternative means for carrying

out the mapping between the CWE and the STRIDE. As the

mapping from the CWE Top 25 to the STRIDE was carried

out, the information in the CWE entry page section titled

as “Scope” and “Technical impact” was found beneficial for

the mapping. These items were also present at the schema

[36]. Technical impact defines the anticipated outcome of

the weakness and Scope is related to the system security

requirements. The Scope uses the Security Star as a base, and

appends it with Access Control element.

Process and method used in the STRIDE schema item

mapping was pragmatic. Accurate values of both enumera-

tions were listed from the CWE schema XSD description

first [36]. Second, each category of STRIDE was linked with

one or more enumerations of the Technical Impact. Finally,

the relations between the Scope and Technical Impact were

defined by searching the CWE list with ”technical impact” as

the keyword. Scopes were also checked against the STRIDE

TABLE III. MAPPING OF CWE TOP 25 WEAKNESSES AND STRIDE
THREATS

CWE ID and Name STRIDE Threat
CWE-79 Improper Neutralization of
Input During Web Page Generation
(’Cross-site Scripting’)

Elevation of privilege, Infor-
mation disclosure, Tampering
and Denial of Service.

CWE-787 Out-of-bounds Write. Scope:
Integrity Availability

Same as above

CWE-20 Improper Input Validation Same as above.
CWE-125 Out-of-bounds Read Information disclosure, Denial

of Service
CWE-119 Improper Restriction of Op-
erations within the Bounds of a Mem-
ory Buffer

Information disclosure, Denial
of Service. Possible also: Tam-
pering.

CWE-89 Improper Neutralization of
Special Elements used in an SQL Com-
mand (’SQL Injection’)

Information disclosure, Tam-
pering, Spoofing, Elevation of
privilege.

CWE-200 Exposure of Sensitive Infor-
mation to an Unauthorized Actor

Information disclosure

CWE-416 Use After Free Denial of Service, Tampering,
Information disclosure

CWE-352 Cross-Site Request Forgery
(CSRF)

Spoofing, Elevation of priv-
ilege, Information disclosure,
Tampering, Denial of Service.

CWE-78 Improper Neutralization of
Special Elements used in an OS Com-
mand (’OS Command Injection’)

Denial of Service, Information
disclosure, Tampering, Repu-
diation.

CWE-190 Integer Overflow or
Wraparound

Denial of Service, Tampering,
Elevation of privilege.

CWE-22 Improper Limitation of a
Pathname to a Restricted Directory
(’Path Traversal’)

Elevation of privilege, Tam-
pering, Information disclosure,
Denial of Service.

CWE-476 NULL Pointer Dereference Denial of Service, Tampering,
Information disclosure

CWE-287 Improper Authentication Elevation of privilege, Spoof-
ing

CWE-434 Unrestricted Upload of File
with Dangerous Type

Information disclosure, Tam-
pering. Can also lead to Ele-
vation of privilege, Denial of
Service.

CWE-732 Incorrect Permission Assign-
ment for Critical Resource

Spoofing, Elevation of priv-
ilege, Information disclosure,
Tampering, Denial of Service.

CWE-94 Improper Control of Genera-
tion of Code (’Code Injection’)

Elevation of privilege, Spoof-
ing, Repudiation.

CWE-522 Insufficiently Protected Cre-
dentials

Spoofing, Elevation of privi-
lege

CWE-611 Improper Restriction of
XML External Entity Reference

Elevation of privilege, Spoof-
ing, Denial of Service.

CWE-798 Use of Hard-coded Creden-
tials

Spoofing, Elevation of privi-
lege, Information disclosure.

CWE-502 Deserialization of Untrusted
Data

Tampering, Denial of Service.

CWE-269 Improper Privilege Manage-
ment

Spoofing, Elevation of privi-
lege.

CWE-400 Uncontrolled Resource Con-
sumption

Denial of Service, Elevation of
privilege.

CWE-306 Missing Authentication for
Critical Function

Spoofing, Elevation of privi-
lege.

CWE-862 Missing Authorization Elevation of privilege, Infor-
mation disclosure, Tampering,
Repudiation.

categories to finalize the mapping. The result of the analysis

is presented in the Table IV.

This mapping provided the best outcome in two ways. First,

the concepts of the STRIDE and the Weakness elements were

shown to be quite well comparable with each other, they are

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 157 --

TABLE IV. MAPPING OF STRIDE FRAMEWORK TO “TECHNICAL
IMPACT” AND “SCOPE” ELEMENTS OF THE CWE ENTRY

STRIDE CWE/Technical Im-
pact

CWE/Scope

Tampering Modify data Integrity
Information
disclosure (privacy
breach or data leak)

Read data Confidentiality

Denial of service DoS: unreliable exe-
cution

Availability

Denial of service DoS: resource con-
sumption

Availability

Elevation of privilege Execute unauthorized
code or commands

Confidentiality
Integrity Availability
Access control

Spoofing Gain privileges / as-
sume identity

Access Control Au-
thentication

Elevation of privilege Bypass protection
mechanism

Access Control Au-
thentication

Repudiation Hide activities Non-Repudiation Ac-
countability

“more same calibre” than the STRIDE-CWE pairs identified

on the previous mapping trials. Second, this mapping was also

easier to do. As a downside, we found out that there is no view

available on the CWE for this mapping. This view would be

one topic for further development of the CWE.

As an outcome of the trials it may be concluded that the

CWE entry’s Scope and Technical impact elements provided

the most appropriate and straightforward outcome. As it is

not always possible to compare oranges with apples, finding

an exact fit between threats and weaknesses was found as a

challenging task. The concepts of threat and weakness come

from different scenes; one is quite abstract and on a low level

of detail, while the other one is more technical and more or

less related to a detailed finding on a real-life.

This mapping rehearsal did not cover the relation between

vulnerability database (CVE) and STRIDE. Vulnerabilities are

exact findings in specific software packages, and threats are

quite abstract entities, thus the mapping is perhaps just as diffi-

cult as the mapping trial we carried out between vulnerabilities

and weaknesses. The NIST vulnerability database provides

links from vulnerabilities to CWE weaknesses’ “crossings”,

using the CWE weaknesses as classification mechanism for the

vulnerabilities [14]. These links may provide a starting point

for those wishing to make mappings from the weaknesses to

the related vulnerabilities.

The CWE authors and maintainers themselves had recog-

nized the need to study the inter-operability of the CWE with

other resources related to software security. They carried out a

study in which two analysis tools and one secure programming

reference was chosen, and a trial mapping from CWE to them

was carried out [37]. The authors sum up that exact mappings

were found for 45,72% of the items. As a summary, the authors

denote that mapping to CWE entities is not as straight-forward

as one might think [37]. Even though the modest mapping

rehearsal carried out by the authors does not provide enough

information for statistical analyses, it however supports the

finding made by Loveless [37].

V. CONCLUSION

This paper explored and implemented three different map-

pings from the STRIDE threats to the CWE weaknesses. We

found out that the CWE weakness type (category) names

are not sufficient for a novice user to perform an effective

mapping. Detailed information about the weaknesses on the

corresponding CWE details page was essential for carrying

out the mapping. The firts two mapping attempts; the mapping

by using the OWASP as a mediator (Section IV-A) and the

second mapping to CWE Top 25 weaknesses (Section IV-B),

both provided only partial mapping to STRIDE elements. The

third mapping from the STRIDE to the CWE schema elements

(Scope and Technical Impact) (Section IV-C), was found to

provide the most optimal outcome. However, this mapping

calls upon further development from the CWE maintainers,

because the view related to this mapping is not yet available

on the CWE external mappings list.

The authors wish that the findings presented on this paper

will help the threat modeling practitioners to identify practical

information about weaknesses and vulnerabilities for threat

estimation and mitigation. Additionally, the software develop-

ers and security researchers may find our mapping trials and

related findings helpful for practical and research purposes.

VI. ACKNOWLEDGEMENTS

Authors wish to thank the anonymous reviewers for their

valuable comments and feedback that helped to improve the

quality of the paper.

REFERENCES

[1] G. Erdogan, P. H. Meland, and D. Mathieson, “Security testing in agile
web application development-a case study using the east methodology,”
in International Conference on Agile Software Development. Springer,
2010, pp. 14–27.

[2] Y. Ayachi, E. H. Ettifouri, J. Berrich, and B. Toumi, “Modeling the
owasp most critical web attacks,” in International Conference Europe
Middle East & North Africa Information Systems and Technologies to
Support Learning. Springer, 2018, pp. 442–450.

[3] N. Shevchenko, “Threat modeling: 12 available methods,” URL:
https://insights. sei. cmu. edu/sei blog/2018/12/threat-modeling-12-
available-methods. html [accessed: 2020-05-24], 2020.

[4] J. Brandon, “What is threat modeling and how does it impact application
security?” SecurityIntelligence, 2019.

[5] W. Xiong and R. Lagerström, “Threat modeling–a systematic literature
review,” Computers & security, vol. 84, pp. 53–69, 2019.

[6] OWASPFoundation, “Owasp to 10 web application risks,” URL:
https://owasp.org/www-project-top-ten/ [accessed: 2021-02-24], 2017.

[7] K. Tsipenyuk, B. Chess, and G. McGraw, “Seven pernicious kingdoms:
A taxonomy of software security errors,” IEEE Security & Privacy,
vol. 3, no. 6, pp. 81–84, 2005.

[8] TheMitreCorporation, “Cwe - common weakness enumeration,” URL:
https://cwe.mitre.org/ [accessed: 2021-02-24], 2021.

[9] ——, “Cve database,” https://https://cve.mitre.org/index.html [accessed:
2021-02-20], 2021.

[10] S. Harris and F. Maymi, CISSP all-in-one exam guide. McGraw-Hill
Education New York, NY, USA, 2016.

[11] P. Mell, K. Scarfone, and S. Romanosky, “Common vulnerability scoring
system,” IEEE Security & Privacy, vol. 4, no. 6, pp. 85–89, 2006.

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 158 --

[12] B. G. Raggad, Information security management: Concepts and practice.
CRC Press, 2010.

[13] EU, “Regulation eu 2016/679 of the european parliament and
of the council of 27 april 2016,” Official Journal of the Eu-
ropean Union. Available at: http://ec. europa. eu/justice/data-
protection/reform/files/regulation oj en. pdf (accessed 20 September
2017), 2016.

[14] NIST, “Nvd, national vulnerability database,” https://nvd.nist.gov/vuln
[accessed: 2021-02-20], 2021.

[15] R. A. Martin, “Integrating your information security vulnerability
management capabilities through industry standards (cve&oval),” in
SMC’03 Conference Proceedings. 2003 IEEE International Conference
on Systems, Man and Cybernetics. Conference Theme-System Security
and Assurance (Cat. No. 03CH37483), vol. 2. IEEE, 2003, pp. 1528–
1533.

[16] M. Schiappa, G. Chantry, and I. Garibay, “Cyber security in a complex
community: A social media analysis on common vulnerabilities and
exposures,” in 2019 Sixth International Conference on Social Networks
Analysis, Management and Security (SNAMS). IEEE, 2019, pp. 13–20.

[17] TheMitreCorporation, “Mitre frequently asked questions,”
https://cve.mitre.org/about/faqs.html [accessed: 2021-02-20], 2021.

[18] T. Bhuddtham and P. Watanapongse, “Time-related vulnerability looka-
head extension to the cve,” in 2016 13th International Joint Conference
on Computer Science and Software Engineering (JCSSE). IEEE, 2016,
pp. 1–6.

[19] TheMitreCorporation, “The future of vulnerability management
(1/2) - hackuity’.riskinsight, 10 feb. 2021,” https://www.riskinsight-
wavestone.com/en/2021/02/hackuity-shake-up-the-future-of-
vulnerability-management-threat-status-and-current-issues-in-
vulnerability-management-1-2/ [accessed: 2021-02-25], 2021.

[20] E. Aghaei and E. Al-Shaer, “Threatzoom: neural network for automated
vulnerability mitigation,” in Proceedings of the 6th Annual Symposium
on Hot Topics in the Science of Security, 2019, pp. 1–3.

[21] A. Tripathi and U. K. Singh, “On prioritization of vulnerability cate-
gories based on cvss scores,” in 2011 6th International Conference on
Computer Sciences and Convergence Information Technology (ICCIT).
IEEE, 2011, pp. 692–697.

[22] TheMitreCorporation, “Cwe list,” https://cwe.mitre.org/data/index.html
[accessed: 2021-02-20], 2021.

[23] S. Caltagirone, A. Pendergast, and C. Betz, “The diamond model of
intrusion analysis,” Center For Cyber Intelligence Analysis and Threat
Research Hanover Md, Tech. Rep., 2013.

[32] TheMitreCorporation, “Cwe - common weakness enumeration. cwe
view: Weaknesses in owasp top ten (2017). view id: 1026,”
URL: https:/cwe.mitre.org/data/slices/1026.html [accessed: 2021-02-
24], 2021.

[24] E. M. Hutchins, M. J. Cloppert, R. M. Amin et al., “Intelligence-driven
computer network defense informed by analysis of adversary campaigns
and intrusion kill chains,” Leading Issues in Information Warfare &
Security Research, vol. 1, no. 1, p. 80, 2011.

[25] Microsoft, “Threat modeling web applications,” URL:
https://docs.microsoft.com/en-us/previous-versions/msp-n-
p/ff648006(v=pandp.10) [accessed: 2021-02-24], 2010.

[26] Wikipedia, “Wikipedia, 2021,” URL:
https://en.wikipedia.org/wiki/STRIDE(security)[accessed :
2021− 02− 24], 2021.

[27] Microsoft, “The stride threat model,” URL:
https://docs.microsoft.com/en-us/previous-versions/commerce-
server/ee823878(v=cs.20)?redirectedfrom=MSDN [accessed: 2021-02-
24], 2009.

[28] R. Scandariato, K. Wuyts, and W. Joosen, “A descriptive study of mi-
crosoft’s threat modeling technique,” Requirements Engineering, vol. 20,
no. 2, pp. 163–180, 2015.

[29] R. Khan, K. McLaughlin, D. Laverty, and S. Sezer, “Stride-based threat
modeling for cyber-physical systems,” in 2017 IEEE PES Innovative
Smart Grid Technologies Conference Europe (ISGT-Europe). IEEE,
2017, pp. 1–6.

[30] Microsoft, “Threat modeling tool,” URL: https://www.microsoft.com/en-
us/securityengineering/sdl/threatmodeling [accessed: 2021-02-24], p. 1,
2021.

[31] J. Geib, D. Couter, J. Martinez, M. Baldwin, and B. Keiss,
“Getting started with the threat modeling tool,” URL:
https://docs.microsoft.com/en-us/azure/security/develop/threat-
modeling-tool-getting-started [accessed: 2021-02-24], 2017.

[33] ——, “Cwe - common weakness enumeration. cwe
view: Seven pernicious kingdoms. view id: 700,” URL:
https://cwe.mitre.org/data/slices/700.html [accessed: 2021-02-24],
2021.

[34] ——, “Cwe top 25 most dangerous sofware weaknesses,”
https://cwe.mitre.org/top25/archive/2020/2020cwetop25.html[accessed :
2021− 02− 20], 2021.

[35] ——, “Cwe database. xsd schema documentation. schema version
6.3,” https://cwe.mitre.org/data/xsd/cweschemalatest.xsd[accessed :
2021− 02− 20], 2020.

[36] ——, “Schema documentation - schema version 6.3.”
https://cwe.mitre.org/documents/schema/ [accessed: 2021-02-20],
2018.

[37] M. Loveless, “Cwe mapping analysis,”
https://cwe.mitre.org/documents/mappinganalysis/index.html[accessed :
2021− 02− 20], 2008.

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 159 --

