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Abstract—Forest management relies on the analysis of satellite
imagery and time intensive physical on-site inspections. Both
methods are costly and time consuming. Satellite based images
are often not updated in a sufficient frequency to react to
infestations or other occurring problems.

Forest management benefits greatly from accurate and recent
information about the local forest areas. In order to react
appropriately and in time to incidents such as areas damaged by
storms, areas infested by bark beetles and decaying ground water
level, this information can be extracted from high resolution
imagery.

In this work, we propose UAVs to meet this demand and
demonstrate that they are fully capable of gathering this informa-
tion in a cost efficient way. Our work focuses on the cartography
of trees to optimize forest-operation. We apply deep learning for
image processing as a method to identify and isolate individual
trees for GPS tagging and add some additional information such
as height and diameter.

I. INTRODUCTION

Forestry data for long term planning, such as forest inven-

tory, is still gathered manually or by the analysis of satellite-

images. These methods are time consuming and potentially

costly, leading to an insufficient update frequency for reacting

to infestations or other time-critical events.

The average territory managed by a local forester measures

between 2500ha up to 8000ha [1]. Thus, a close observation of

the whole area is challenging to do on foot or by ground based

vehicles. Forestry inventory and planning could be improved

in terms of granularity and time efficiency if this information

could be obtained from aerial photos with the aid of an AI.

This would enable the forestry to identify not only a single

tree, but also the species and monitor the standing volume of

the trees.

If this information is required urgently and on a larger scale,

for example in the case of vast areas damaged by storms,

covered by snow, infested by bark beetles or foliage feeding

larvae of different primary forest pests, satellite imagery might

be of insufficient resolution [2]. Additionally, satellite imagery

might be outdated, as it is usually refreshed periodically. As an

example, Landsat 7 covers a quarter of earths landmass every

16 days. Still, depending on cloud and seasonal vegetation

changes, a refresh of image data is not guaranteed for any

amount of time [3].

Therefore, the usage of drones to collect imagery, combined

with AI based assessment methods for data evaluation, will

speed up the process. In case of catastrophes, like wildfires

or storm damages, high resolution imagery could enable the

following options:

• Affected areas can be located quickly.

• Marketable wood volume of trees and reductions through

pests or storms can be documented.

• The amount and types of new plants and trees for

replanting can be assessed quickly.

• The composition of a forest can be analyzed, which

allows to identify and manage the need for enrichment

planting.

In case of pests, high resolution imagery could enable the

following options:

• Infested trees or tree groups (e.g. by bark beetles) can

be detected in time to react. Fettig et al. recommend that

potential measures are to be conducted immediately after

the detection [4, 5].

• The development of an infestation of leaf and needle

feeding larvae can be detected due to damage of foliage

or appearance of larvae.

• Areas with need for pesticide application can be iden-

tified. AI identification might reduce the area that needs

treatment and thus reduces the harm to non-target species

and also reduces costs for the treatment.

GPS coordinates allow forest laborers to quickly and accu-

rately find affected trees or areas using smart-phones or GPS

devices.

A. Project Goal and Steps

Our goal is to enable forest management on an individual

tree basis. This allows to recognize stress as well as pests early

and gives a forester the possibility to react accordingly.

Our short-term goal is to collect image material of German

forests and identify individual trees. This information will be

compiled into an data base. On a long term scale, this data base
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will be extended with other information that can be extracted

by AI and collected by drones.

To collect this kind of data, we design an affordable

prototype platform, utilizing tree recognition software based

on prototypical AI. We use the flexibility of a hovering

drone with mounted sensors and cameras for navigation and

data collection. Our drone autonomously follows a predefined

path above the trees, captures images of the canopy and

applies deep learning for localization of individual trees. This

approach is scalable and requires minimal human interaction.

Human input is only necessary to define the area and to bring

the drone to its starting area. With this approach, we are able

to obtain GPS coordinates and additional information for every

recognized tree, which then can be added to our data set.

With repeated overflights, our drone can recognize individ-

ual trees in real-time and can append the current information

to the existing data, thus generating a time series of the forest

development. Building on this ability, the data can be extended

in the future by enriching the tree location with other features

such as color, height and approximate age.

B. Related Work

The past years have shown an increased interest in the

observation of forests for multiple reasons, may it be to prevent

forest fires or to ensure the healthiness of the trees. Most of

these observations are conducted using satellites or airplanes,

as seen in [6], [7] and [8]. Especially airborne LIDAR has

been proven to be useful for natural resource assessment [9].

Still, airborne and satellite-based image acquisition is quite

expensive, especially if it has to be conducted repeatedly.

It often requires a trade-off between frequency, scale and

resolution [10]. Unmanned aerial vehicles, on the other hand,

are very cheap, fast and versatile in comparison to satellites

and airplanes [10], which is why there is a lot of research

regarding the use of drones for this task in the last years:

Sankey et al. successfully used drones for forest monitoring

in the southwestern USA [11]. Almeida et al. used a drone

mounted LIDAR to monitor the structure of forest restoration

plantations, evaluating information like canopy height, gap

fraction and leaf area index [12]. They used the collected data

to identify the tree density of previously specified areas, but

do not provide information for individual trees.

Zhang et al. used drones and a canopy forest model with

focus on collecting data for long-term forest monitoring [13].

Their approach does not include any tree detection but focuses

on a digital model to extract and comprehend forest data. In

contrast, our research maps the whole forest with individual

trees for further analysis. Also, Zhang et al. do not provide

any data on the individual trees and their location. They focus

on the overall forest canopy.

Morsdorf et al. use LIDAR for geometric reconstruction at

single tree level for forest wildfire management, which is a

use case pretty similar to the one presented in this work [14].

While their results are very accurate, they also state that they

can only detect the triangular shape of the trees present in

the Ofenpass area in the Swiss National Park. As a result of

this, it is not directly applicable for the more diverse German

forestry with wider trees that do not fit the triangular shape.

Yue et al. compare different segmentation algorithms to

be used on airborne photographs of buildings [15]. While

segmentation is also applied to differentiate forests from fields

or other areas, it struggles with segmentation of similar and

overlapping objects such as trees in a forest. The segmentation

also required high quality and granularity of the input data to

avoid one pixel representing an entire class.

Kampen et al. achieve a similar goal like this work with

airborne multispectral cameras [16]. The main difference be-

tween the work of Kampen et al. and the approach presented

in this paper is the usage of on-device calculations, a simpler

camera and a smaller drone. This leads to massively reduced

costs. A camera feed combined with the height sensor of the

drone suffices as data source for the given task.

The recent years also showed an increased usage of artificial

intelligence to detect single entities in a densely populated

area. Zhao et al. reviewed generic object detection with deep

learning [17]. In a more practical example, Liu and Wang used

deep learning to detect broken corn and Kuo and Lin detected

road signs in DVR images with deep learning [19]. Mery et al.

detected persons in a crowded room with a simple smart phone

camera and the assistance of deep learning [20]. We believe

that these methods can be transferred to the task of detecting

individual trees in a forest.

II. DEFINING THE TECHNICAL SYSTEM REQUIREMENTS

A basic autonomous drone system needs a frame with rotors

and servos, a flight controller, a battery and sensors. To comply

with German and EU regulations, it is a requirement to be able

to fly the drone manually in emergency situations. Therefore,

we additionally require an RC kit consisting of the RC itself

and an antenna on the drone.

A. Drone Requirements

We define following requirements for the sensors mounted

on the drone:

• The sensors must provide sufficient data to the flight

controller to guarantee a stable flight.

• The provided data must allow the flight controller to fly

to predefined coordinates.

• The data also must be sufficient for object detection of

anything that can appear in a forest, including agriculture

vehicles and allow collision avoidance.

• The exact distance to the ground must be known. Conven-

tional height-maps usually don’t account for vegetation

or are outdated, which means they are not suited for

navigation in the given use-case [21].

• The captured images must be sufficient to identify and

map trees.

For evaluating the sensor data and controlling the flight

mission, we need to install another computer on board of the

drone. The computing unit with CUDA cores, specialized in AI

calculations, is tasked with image prepossessing and inference.
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In addition to image processing, our Jetson computing unit

also manages sensor data evaluation and collision avoidance.

B. AI Requirements

Considering the AI, the most important requirement is the

ability to infer the size and location of the trees during

flight. At first, a candidate for classification as a tree has to

be selected and its location has to be calculated. Especially

convolutional neural networks achieved high accuracy with

significantly reduced error rate in classification tasks [22].

The development of neural networks for classification and

localization of objects enables us to provide robust results in

a short period of time [23].

With neural networks, we can identify and locate trees

directly from images without the necessity of manual feature

extraction for model training [24]. In case of traditional

computer vision, it is necessary to create a number of features

for every tree species, which is a time consuming task.

Large scale deep learning models with millions of pa-

rameters, such as ResNet, have a big memory footprint and

require a lot of computing time [25]. As defined in the project

goals, the drone has to locate and identify the trees in real-

time. This is especially important due to a lack of adequate

mobile communication coverage, a continuous connection to

GPU cloud computing providers is not ensured above German

forests.

Uploading the taken images for later inference would pro-

vide disadvantages in operation. As trees are tracked over mul-

tiple images, grave errors like blurry images can be detected

and counteracted immediately.

Another requirement considering the AI architecture is the

number of detected objects per image. For our use-case, the

AI has to locate multiple objects of the same type in an image,

without being limited by a maximum number of objects.

The project goal requires the AI to identify individual trees

in a forest. This task includes the tasks of knowing what kinds

of objects exist in the image, as well as where they are located.

Neural Nets with focus on segmentation such as TreeSeg-

Net [26] can recognize forest area but would fail to of

identify individual trees. These requirements shorten the list

of applicable AI architectures significantly, as neural networks

such as VGG [27] and AlexNet [28] focus on identifying

objects in the image instead of locating them.

The selection of the computing unit is restricted by the

chosen AI-Architecture in terms of required memory, type and

amount of computing units. Additional requirements are their

weight and price. The power requirements of the system are

not considered in detail, as the amount of power used is low

compared to the amount required for flying.

Additionally, we formulate following requirements for the

AI:

• The AI must infer the image in near real-time on our

computing unit.

• The AI has a robust model for transfer learning with the

ability to identify plants.

• The AI architecture provides capabilities to reduce over-

and under-fitting risk.

• The output of the AI consists of bounding boxes and

confidence values.

• Training should be possible on partially labeled images.

• The AI should be able to process images from an HD

camera.

III. COMPONENT SELECTION

The drone is required to carry all the required sensors for

a sufficient amount of time to fulfill the given task. Thus,

we decided to utilize an industrial-sized drone frame as a

base, which provides space for future extensions as well as

a sufficient flight time.

This left us with two options available: Using a bare-bone

DJI S1000+ frame [29] or an already complete set up with a

DJI M600 Pro [30]. The M600 comes with a A3 Pro flight kit

including multiple GPS antennas and a flight controller [31],

while the F550 and the S1000+ only consist of the frame, the

rotors and the servos. The DJI Flight Controller’s API proved

to be too inflexible for autonomous flight as it provides limited

control over the flight itself. Therefore, we decided to use

the S1000+ with a Pixhawk 2.1 Cube [32] that provides the

necessary interface to control autonomous flight and 3 IMUs.

Considering the sensors for the closed-loop system control-

ling the flight, we choose the three redundant on-board IMUs

of the Pixhawk Cube.

Next, we chose a Here 2 GNSS to further enhance po-

sitioning with a gyrometer, compass, accelerometer and a

barometer. This provides global positioning and the correction

of possible accumulating errors from the IMUs. The Here

2 GNSS supports the GPS, GLONASS, Galileo and BeiDou

positioning systems as well as the satellite based augmentation

systems WAAS, EGNOS, MSAS and GAGAN [33]. The Here

2 is able to reach centimetre-level accuracy.

We chose LIDAR systems for collision avoidance, as they

have a high range and accuracy while keeping a high update

rate. However, fixed LIDAR systems on drones do have disad-

vantages like reflections, materials that are not detected and a

small angle of beam spread. Thus, we decided to additionally

use ultrasonic modules to compensate these weaknesses and

allow testing and flight in and near urban areas.

We decided to use a CAA L-8 system by EmQopter [34].

This system consists of 8 LIDAR and 12 ultrasonic sensors,

which are distributed equally in one plane, as displayed in

figure 1. The system is running on an update frequency of

100 hertz.

We added a Garmin LidarLite v3 Sensor to allow for accu-

rate height measurements [35]. For the camera, we decided to 
go for a Zed mini. It has an inbuilt gyroscope, an accelerometer 
and two image sensors with 4 Megapixels each. The different 
relations of resolution and frames per second can be seen in 
Table I. As the drone is in motion, a high video frame 
rate may compensate blur.
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Fig. 1. CAA L-8 system, the LIDAR system used in the presented example

Resolution 2.200p 1080p 720p WV GA
Frames per Second 15 30 60 120

TABLE I
RESOLUTION COMPARED TO FRAMES PER SECOND

For computing, we utilized a NVIDIA Jetson platform,

which supports GPU computing based on CUDA. This allows

us to run AI operations on the GPU, which is faster and means

less load on the CPU. In addition to Tensorflow, the Jetson

also runs frameworks such as ROS, OpenCV, and Matlab. This

flexibility is the reason, we decided to add a Jetson TX2 Nano

with a Developer board. It brings computing power to process

the camera pictures, the collision avoidance and high-level

flight planning.

For the remote control, we selected the Taranis X9D [36] as

a remote control and the FrSky X8R [37] receiver because of

its 1.5km range and 16 channels. We chose 6S lithium polymer

batteries with 22.2V and 16Ah. More information on wiring,

connectors and the source code can be provided on request.

A. AI Component

Two AI architectures matching our requirements are

YOLO v3 [38] and Faster R-CNN with Inception v2 [39]. Both

networks predict objects on different scales to avoid vanishing

gradients with more complex models. The approach of each

neural network differs in regards to creating bounding boxes

but also in fundamentals such as convolution size.

YOLO v3 gains its real-time performance benefits by work-

ing with fixed sub-image sizes and bounding boxes [38]. In

contrast, Inception V2 focuses on smaller convolution sizes

and auxiliary classifiers [39]. To avoid incorrect classification

due to over-fitting to a certain object type, we selected Incep-

tion V2 as our deep neural network for on-device computing,

although YOLO v3 can process more images per second [40].

Following the benchmark results by NVIDIA developers on

their Jetson TX2 Nano platform, a double digit amount of

frames per second can be achieved when utilizing the Inception

V2 network [41].

The Inception V2 with 216× 216 pixels in the input layer

is smaller compared to the resolution of YOLO v3 with

416 × 416 pixels. Inception v2 also utilizes 42 layers in

comparison to YOLO v3 with 53 layers with convolutions of

size 3×3. In addition, Inception V2 computes faster compared

to others networks such as VGG [39] with convolutions of

the same size [27]. Smaller convolutions packed in groups

are also advantageous for low memory GPUs such as the

NVIDIA Jetson TX2 Nano, which we decided to use. In case

of a memory shortage, currently unused convolutions can be

swapped out of memory.

We chose a combination of Faster R-CNN with Inception

V2, which provides us with robust results in recognition,

good training capabilities, acceptable image resolution and low

computation time [40]. The Faster R-CNN approach for region

selection [42] enables us to switch the internal neural network

architecture if needed.

IV. HARDWARE AND SOFTWARE ARCHITECTURE

Figure 2(a) shows the hardware architecture. The Pixhawk

2.1 Cube flight controller is connected to a Here 2 GNSS for

better accuracy and access to the satellite navigation networks

GPS, Galileo, GLOSNASS and BeiDou. Additionally, we

connected it to our fallback remote control via the FrSky

X8R. This is required by regulatory standards in Germany

and allows an operator to take control of the drone in an

emergency. In normal operation mode however, the drone

flight is controlled on a higher level by the NVIDIA Jetson

computing unit using the Robot Operating System (ROS)

framework [43]. It controls the Pixhawk by transmitting target

coordinates. In this way, it also manages object avoidance. To

be able to recognize objects, it is connected to a CAA L-

8 system that transmits its sensor data via UART and to an

additional LidarLite v3 Sensor that measures distance to the

ground.

The imagery taken by the Zed Mini is directly forwarded to

the NVIDIA Jetson that analyzes these pictures on-device and

in real-time. The results and images are saved on an internal

storage for potential improvement of the deep learning model

and the data base. The distance to the tree tops is reported by

the zed mini and the height sensor. Together with topological

maps from the Bayerische Vermessungsverwaltung [44], tree

height can be calculated.

In addition, we are able to transmit the results directly via

Wi-Fi to the user. With this data, a forester will be able to

inspect trees of interest.

V. AUTONOMOUS DRONE MOVEMENT

For optimal results, the drone should fly autonomously. This

reduces manual labor and helps to keep a steady distance to

the trees, which increases accuracy of the collected imagery.

In order to be able to fly autonomously, the drone includes a

flight plan builder and a simple object avoidance system.

The software QGroundControl [45] generates a flight plan,

which then can be transferred to the drone itself. It receives

a set of GPS coordinates which it then uses to generate its

flight path. The drone smooths the movement of the drone

internally, which reduces motion blur on the images. As flying
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(a) Schematic of the hardware architecture (b) M600 drone with LIDAR, Camera, Pixhawk, and Jetson
GPU

Fig. 2. Overview of the hardware used in the presented experiments

purely on the data provided by QGroundControl would rely

on information that can be out-dated, an additional object

avoidance system is required. Also, the possibility of moving

obstacles such as cars, humans and animals strongly implies

adding an object avoidance system.

The object avoidance system we implemented relies on

LIDAR and ultrasonic sensors on a horizontal plane and a

simple LIDAR height sensor. When an obstacle is detected,

the mission is paused and the height is adjusted so that the

drone can raise its altitude and continue its mission.

VI. TREE DETECTION AND LOCALIZATION

The task of the AI is to detect and map every tree in a forest

for further data aggregation and monitoring. With the marked

trees and their GPS coordinates, a forestry office is able to

monitor and plan accurately.

A. Data and Labeling

Our initial data set consist of open source images taken

from drones or planes with specific angle and distance found

on image platforms such as Flickr. We are not able to train

our neural network with satellite image because of different

altitude and resolution. The suitable analogy would be the

training of an AI in a simulated environment and improve

the weights over time with real data, resulting in a failure

due to unknown factors and differences in the image pixel

manifolds [46].

We labeled an average of 20 trees on each of 50 images,

resulting in approximately 1000 labeled trees. The low number

of trees per image is due to the altitude and the uncertainty

in labeling. We decided to label only the trees that can be

clearly identified to avoid creating errors in the training and

evaluation data for our AI.

Other approaches, such as simulated environments and data

augmentation, were not used because of high complexity and

unknown factors in simulating natural growth processes of

trees, for example with fractals [47]. Trees usually follow a

specific growth schema considering available light, distance

to other trees, adaption of the tree to its environment, time

of year, weather, and others [48]. Therefore, simulating this

complex data was out of the scope for this project. The

high variability of forest image data leads to the rejection of

additional data augmentation techniques, including changing

color of the image.

B. Segmentation and Bounding Boxes

Several challenges arise for image segmentation in case of

forests or trees. Trees of the same species in images often

have no clear outline marked by a color change. Additionally,

differentiation between background and foreground is hard to

achieve with images from high altitude. Saha applied a state-

of-the-art neural network to the straightforward problem of

road detection with limited results [49].

To avoid this, we choose an object detection method with

boxes that meet an adjustable confidence threshold. Thus, the

risk of not identifying blending trees as one tree is lower, as a

neural network also learns the shape of the boxes and thus the

shape of the tree and its limits. In Addition, with the bounding

boxes from the deep neural network the tree diameters can be

approximated.

C. Architecture

The researchers of TreeSegNet propose a neural network

to localize trees in aerial images [26]. They identified the

challenge of easily confused classes in tree classification and

detection. Their goal was to differentiate trees from other

classes in aerial images. However, we and are not interested

in other classes and already know that there are trees, as the

user wants to map his forest.

The architectures YOLOv3 and Faster R-CNN with Incep-

tion v2 were considered as they meet our requirements. The

Custom Object Detector is based on the Faster R-CNN with

Inception v2 provided by Tensorflow implementation with a

pre-trained model to classify objects into the 90 different

categories of the MSCOCO data set as presented by [50]. This

model was selected due to its high accuracy and reliability in
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detecting and marking objects with a bounding box [40]. The

MSCOCO data set contains common objects such as bottles,

cars, and cats. Around 10 000 out of 886 000 instances of all

segmented objects are dedicated to potted plants [51]. This

provides opportunity for transfer learning.

An example of our initial data is shown in Figure 3. Our data

set is not large and diverse enough to train to train a custom

deep neuronal network from scratch. Thus, a transfer learning

approach was chosen to decrease training time and increase

robustness of the network against over- and under-fitting.

Fig. 3. Example image of multiple trees labeled with LabelIMG

With transfer learning, we take advantage of the ability

of detecting different objects from the pre-trained and robust

model. We modified and retrained it to detect trees, since

our interest in the local cat population was limited. Since we

only classify two categories, tree or no tree, our data proved

sufficient for acceptable results.

VII. EVALUATION

The presented platform, consisting of the flying platform

and the AI software, will be evaluated in the following

sections. The AI evaluation is split into the training phase

and a brief discussion.

A. Flying Platform

The cost of the system sums up to approximately 1 500. This

is still low compared to the costs of aerial and satellite based

data. As DJI stopped producing the S1000 frame, a frame with

similar capabilities would be required to extend or reproduce

this project.

Our platform was able to fly over forests, successfully

avoided contact with vegetation and took images that can be

used for tree detection. Combining distance measurements to

tree tops from the Zed-Mini with topological ground maps

from the Bayerische Vermessungsverwaltung [44] allowed us

to calculate height information for individual trees. Flight time

was around 20 minutes, so for commercial application, we

recommend a battery casing that can be swapped quickly.

B. Training and Evaluation of Faster R-CNN with Inception
V2

Our limited, but sufficient amount of 50 images with around

20 object instances per image are trained for 10 000 steps, with

evaluation every 500 steps in between. The neural network

can train to detect trees from around 1000 labeled object

instances. The high amount of training steps compared to the

available data is necessary for the transfer learning approach.

We targeted small weight changes over longer periods of time

to diminish probability of catastrophic forgetting [52].

Following the 80/20 rule for splitting the data in training

and evaluation sets [53], 10 images are taken for evaluation

of the Faster R-CNN Inception V2 network. The approach of

splitting a data set does not prevent over-fitting of a network,

but lessens the probability by continuous evaluation during the

training. Approximately every 500 steps, the network loads

a snapshot of the currently trained networks and evaluates it

using the evaluation data set. Training and evaluation are done

on two GPUs, which enables us to execute it simultaneously

but also leads to variations in the intervals of the evaluation.

We enabled dropout with a rate of 0.2 to increase the

generalization of the network. We also enabled the dropout

without retraining the network with the entire COCO data set.

This decreased the learning capabilities of the network, but

decreased over-fitting.

Training parameters are set to a batch size of two images,

the use of a momentum optimizer and a slightly increasing

warm-up learning rate for the first 2 500 steps. The remaining

7 500 steps were trained with a cosine decaying learning rate

at the base of 0.16.

In Figure 4 the results of our training are presented. The

localization and classification loss decrease over time. The

loss for the classification of trees ended at 0.22 and the loss of

the localization at 0.19. We smoothed the values for a better

visibility the training loss with a moving average of 5 values.

As seen in Figure 4, the evaluation values fluctuates at the low

end during the training. We are concerned about the increase

of the evaluation value towards the end of the training. We

suspect, this could be due to the limited number of object

instances contained in the training data and the comparatively

high number of training steps. In the future, we will utilize

this drone platform to significantly increase the number of

images and retrain the network again which we expect to

result in a lower evaluation loss. Currently, the evaluation loss

for the classification and localization are at 0.25 and 0.21,

respectively. We accepted trees detected with a confidence of

at least 75%.

C. Discussion of AI

A pre-trained neural net with 90 original classes was

transferred to a model with two classes. This may lead to

over- or under-fitting, so we have successfully made some

adjustments to limit this. Our model can recognize tree and

non-tree objects, which needs to be extended in further works

to differentiate tree species and tree related object such as

bushes. Other deep learning models such as Detectron2 with

object segmentation in its focus would also provide similar

data but are expected to also merge multiple trees into one.

Our transfer trained detector’s loss values vary between 0.15
and 0.25. While this might be improved by adding more and
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Fig. 4. Localization and classification loss of Faster R-CNN Inception v2 after 10000 training steps with an evaluation every 500 steps. The training graph 
has been smoothed with a moving average over 5 values

diverse training data, this work shows that the trained detector

is capable of classifying and localizing trees.

VIII. CONCLUSION

Our drone platform achieves a stable flight with all neces-

sary equipment and sensors above the targeted area without

colliding with any obstacles. The user is able to plan a flight

path, which the drone will then follow, hovering above the

trees and takes images of the canopy. The on-board computer

processes these images using a deep learning approach to

identify and localize individual trees. The inference speed

and accuracy of the localized trees computed on the Jetson

TX2 Nano meet our requirements as discussed in Section II-B.

Using the point cloud and a digital terrain model, the tree

heights are calculated. Using the bounding box sizes from

the deep neural network, the tree diameters are approximated.

This data is then stored with the GPS position of the tree and

prepared to be extracted after landing.

IX. FUTURE WORK

This paper presents a starting point for discussions on how

to set up a drone for gathering data about trees. We encourage

everyone to employ a similar architecture to create an exten-

sive data set of trees, landmarks or other features of interest.

We are always happy to share data sets, drone architectures and

discuss possible improvements to the presented architecture.

If more airtime is required or a larger area has to be

surveyed, the drone concept could be adjusted. A tilt-wing

drone design could provide a longer flight time while still

not needing a starting and landing strip. However, the flight

plan would become more difficult to construct, as changing

direction needs either more space or a change of flight mode

from horizontal to VTOL flight mode and back. Also, terrain

with cliffs might impose a challenge for the object avoidance

system and might require a higher minimum distance to the

forest. This change could lead to higher requirements for the

camera resolution as the distance to the trees increases.

As we managed to propose a system that allows creating

a database of trees and some information, the information

could still be extended by more data or sensors. Tree health

information can be gathered by multi-spectral sensory.

Also, differentiation of tree species based on the collected

data might be added. With a growing data base, supervised

machine learning could be applied to implement this feature.

For repeated flights over the same area, the flight plan could

also be further optimized by using the collected height data to

improve path finding and flight duration.

With this platform, we plan to collect forest images in the

desired amount of at least 1000 images with at least 10000

object instances per tree species. With that data, we expect to

improve our AI significantly and add tree species detection.
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