
PDF Document Rendering on Mobile Devices
in the Case of Aurora OS

Alexey Fedchenko
Open Mobile Platform

St.Petersburg, Russia

a.fedchenko@omprussia.ru

Kirill Chuvilin
Open Mobile Platform

Moscow, Russia

k.chuvilin@omprussia.ru

Moscow Institute of Physics and Technology

Moscow, Russia

kirill.chuvilin@phystech.edu

Abstract—The article is devoted to the problem of displaying
the PDF documents on mobile devices in the case of Aurora OS.
The performance problem becomes extremely important for
mobile applications. Other technical requirements are also for-
mulated. In case of using third-party libraries it is necessary to
take into account the licenses under which they are distributed.
The basic requirements are met by Poppler, PDFium and muPDF
libraries. This article describes the API of these libraries and
analyzes the speed of rendering and the quality of the result.

I. INTRODUCTION

Aurora operating system [1] is designed for the B2B and

B2G segments. One of the most common tasks for these areas

is document handling: viewing, editing, validating, signing.

The PDF is a very common format along with office document

formats (docx, odt). It allows you to transfer documents

between devices without loss of formatting. Therefore, some

Aurora OS applications need to display documents in the PDF

format. Solutions of this type include: office and mail ap-

plications, automation of document management, information

applications.

The PDF processing libraries are needed to meet the needs

of third-party developers of such applications. A united system

component allows developers not to waste time on choosing

the library to use, but to start implementing the application

right away. This approach also makes it easier to keep the

library up to date, which has a positive effect on the security

of the system.

The PDF format is complex. Its documentation is nearly

800 pages long [2], [3].

Each PDF document contains:

• The header specifies the version of the used PDF speci-

fication.

• The body of the document contains text streams, images,

other multimedia elements, etc. The body section is used

to store all the document data that is visible for a user.

• The cross-reference table refers to all the elements from

the body that are used on the pages.

• The PDF trailer specifies how a reader application should

find the cross-reference table and other special objects.

The PDF document contains eight basic types of ob-

jects: booleans, numbers, strings, names, arrays, dictionaries,

streams, and the null object. Objects may be labeled so that

they can be referenced by other objects (Fig. 1) [4].

Fig. 1. PDF format structure

Implementation of a custom solution to work with such a

complex standard is time-consuming and rarely feasible. It is

convenient to use one of the already existing libraries to work

with the PDF [5]. It is important to consider the following

features. Aurora OS is POSIX-compatible [6], so solutions

for Android and iOS cannot be reused. On the other hand,

devices running Aurora OS are smartphones and tablets, and

this imposes performance limitations compared to solutions

for Linux distributions designed to run on desktops.

The peculiarities of the platform form the requirements for

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

the suitable libraries:

1) Work speed is the minimum time spent on document

operations:

a) document object creation (including file loading);

b) page object creation;

c) page rendering;

d) loading of annotations, text, and other additional

information.

2) Criteria of document processing quality are:

a) dimensional accuracy;

b) page content rendering correctness;

c) stability.

3) The development technologies requirement is about what

tools are used to build the library, and what program-

ming languages the library supports. Not all technologies

can be effectively adapted to the mobile platform. In

the case of Aurora OS, it is required that the library

is compatible with C++17 (gcc compiler) [7]. It is also

convenient if there is support for the Qt framework [8].

4) The license requirement reason is that the terms of use

are defined for libraries intended to be used in third-

party projects. It is important to keep in mind that there

are not only licenses that prevent the use of the library

in third-party applications, but also variants that require

disclosure of the source code. For example, if a library

with GPL [9] is used in a project, it is necessary to

disclose the source code of the entire application. And

this is unacceptable for a significant part of third-party

projects. On the other hand, the MIT [10] or BSD [11]

licenses allow use it without such restrictions.

5) The functionality of a library in each case is determined

by the requirements of the application that uses it. But

to summarize all the cases we can say, that the following

functions should be provided:

a) open document and password protected document;

b) extract meta information about a document such

as an author, creation and modification date, page

count;

c) load pages;

d) render pages;

e) render the page at arbitrary scale so that thumbnail

preview or zoom can be implemented;

f) render arbitrary part of the page to opportunity

realize tile render;

g) obtain page information such as number of the

page, page size;

h) obtain annotations, information of annotations:

type, size, and position on the page, the target of

a reference;

i) save changes made by a user to insert comments

or fill forms;

j) obtain page text for the select and copy opportu-

nity.

In the context of the functionality it is worth to note that

it is not always possible to display all the nuances of a PDF

document, especially on a mobile device due to the limited

performance, screen size, etc. In this case, it is easier to display

an image rendered from the document page. Text selection,

annotations and other content could be overlaid if necessary.

When rendering a document, it is often necessary to show its

contents at different scales: displaying page thumbnails, zoom-

ing in on a particular part of the page. To create thumbnails,

it is possible to scale the resulting page render to the desired

size, but it is much more convenient when the library provides

methods to generate the page image at an arbitrary scale. For

larger scale, the situation is slightly different. Usual scaling of

rendered page image is fraught with loss of quality. On the

other hand, on mobile devices at high values of approximation,

there is a possibility of exceeding the maximum size of the

texture buffer [12]. For example, on the Inoi R7 [13] the buffer

is limited to 4096 points per dimension, Having the original

page size of 512x512 pixels it gives a maximum of eight

times the magnification. Also the rendering time of the page

is multiplied, which leads to display delays.

To bypass these restrictions we use tile rendering: small

parts of the page are rendered to construct the needed view.

With such approach the time of rendering decreases, because

the parts out view bounds are not needed. Consumed mem-

ory also decreases, for the same reason. To implement tile

rendering, the library must provide an API for rendering an

arbitrary portion of the page. All libraries in this article have

the corresponding methods.

II. ENVIRONMENT

All actual devices working on Aurora OS, using ARM

architecture.

Aurora SDK is used to develop applications for Aurora OS.

It provides both IDE and build tools. The supplied compiler

is Linaro GCC [14].

Linaro GCC is GCC optimization for ARM platform use.

Aurora OS 3.2.2, current today, uses GCC version 4.9.4.

Besides SDK provides a device Aurora OS emulator, work-

ing on host architecture, for the developing application launch

and debug opportunity, without a physical device.

Since development is done on x86 workstations, cross-

compilation is used to build source code into binaries for

the ARM architecture. To make it easier to build source

code for a target platform (for example, an emulator using

x86 or a physical device using ARM), the SDK uses the

Scratchbox2 [15] toolkit, which automatically configures the

build environment.

The Qt framework is used in the development of application

software. It involves the use of C++ to implement the logic,

and QML to describe the user interface [16], [17]. Qt also

makes efficient use of C++ objects in QML, and data binding

provides the ability to use the MVVM [18] pattern. This

provides opportunities to use C++ libraries to implement

graphics-related functions, including the PDF rendering.

Qt provides API for asynchronous operations and comfort

work with threads besides convenient and effective using of

MVVM. The asynchronous approach to software development

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 119 --

can significantly increase the performance of applications

on devices with multi-core CPUs, including modern mobile

devices. On the other hand, the intensive use of multithreading

for heavy computations leads to a higher battery drain rate,

which can negatively affect the user experience.

The highest available version of Qt for Aurora OS is 5.6 at

the moment. This limit is due to the license restrictions.

To test the speed and quality of the libraries we use Inoi

R7 smartphone: Qualcomm Snapdragon 212 4 cores 1.2GHz,

2GB RAM [13], Aurora OS 3.2.2.20.

III. AVAILABLE SOLUTIONS

One of the requirements for libraries is that they support

the C++ language. There are only a few projects that provide

the corresponding API and are suitable for use in third-party

applications in terms of licenses: poppler, PDFium, muPDF.

These are the libraries which will be discussed in this article.

Development using a particular library requires a set of

files consisting of header files containing descriptions of types,

structures, functions, and object files in the form of a static

or shared library. All libraries provide the ability to build into

either a shared library or a static library. To get such a set

of files, the source code could be built using one of the build

systems: make [19], cmake [20], ninja [21], qmake [22]. These

are the most common build systems. There are more exotic

ones, for example, gn is the build system used by Google for

their products.

The considered libraries use different build systems: Pop-

pler — make, mupdf — cmake, PDFium — gn. The fact that

PDFium uses gn makes it a bit more complicated to build than

other libraries.

All libraries have a C-style interface. This implies the need

for careful handling of allocated memory, because otherwise

there is a possibility of the target application memory leaks.

On the other hand, using Qt with its memory management

features, can minimize the risks. An appropriate wrapper

providing the necessary functionality is required to make full

use of the Qt. Currently, only Poppler has official support

for Qt [23]; the rest have only third party wrappers, with no

performance guarantees. However, a custom wrapper may well

be implemented if necessary.

Qt provides the QtPDF module for displaying and interact-

ing with PDF files [24]. Unfortunately, this module cannot

be used in conjunction with the Aurora OS in third-party

applications for the following reasons:

1) The standard QtPDF builds are done since of Qt 5.15,

whereas only Qt 5.6 is available for the Aurora OS.

2) QtPDF is distributed under a dual license: GPLv3 or

commercial. Both of the approaches are inconvenient.

It is interesting to note that QtPDF uses PDFium to handle

PDF format.

A. Poppler

Poppler [25] appeared as a fork of the Xpdf program in

2005, but it was not until 2011 (with version 0.18) that it

began to be a full implementation of ISO 32000-1, the PDF

format standard [26], [27]. It is the first major free library

for working with PDF and is currently being developed by

the freedesktop.org project. The library is distributed under

GPLv2 [28].

The Poppler can use one of two backends to generate

images: Cario [29] or Splash [30]. Depending on the backend

you use, the available rendering functions will also change.

Despite the backend choice, the speed of the Poppler is

considered slow. The advantages are stability, prevalence.

Poppler is included as standard in many Linux distributions.

The source code can be found in the official repository [31].

Builds are done with cmake, which is also available on most

distributions. Poppler comes with utilities to work with PDF

files:

• pdfdetach extracts embedded documents;

• pdffonts enumerates all the fonts used in the docu-

ment;

• pdfimages extracts all the embedded images in the

source resolution;

• pdfinfo listings all the meta information;

• pdfseparate extracts single pages;

• pdftocairo converts pages to vector graphics or

bitmaps using cairo;

• pdftohtml converts to HTML saving the formatting;

• pdftoppm converts a page to a bitmap;

• pdftops converts the document to the PS format useful

for printing;

• pdftotext extracts the document text;

• pdfunite unites several documents.

Poppler library provides functions to open a document,

render pages, work with annotations, extract text from the

page, and extract meta information.

The code for rendering a document page looks like this:

auto *popplerDocument = Poppler::Document::
load(qUtf8Printable(documentPath));

auto *popplerPage = popplerDocument->page(0);
QImage pageImage =

popplerPage->renderToImage();
pageImage.save(savePath, "PNG");

Poppler supports render settings:

• smoothing text and graphics;

• rotate a page to a fixed angle;

• rendering a part of a page.

In addition to C++, there are Poppler bindings for other

programming languages: JavaScript, C#, php, Lisp.

B. PDFium

The PDFium library was originally developed by Foxit

Software Incorporated as an open source version of their

commercial Foxit PDF SDK [32], and was opened by Google

to the community in 2014. It is part of Chromium and is

actively supported [33]. It is distributed under the Apache v2.0

license [34], which allows you to use it in any project.

The source code of PDFium is publicly available in the

repository [35]. To synchronize the source code and build the

library, custom tools are used: gclient and gn. It also requires

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 120 --

ninja build system, which is more exotic than make and is

available not for all distributions by default.

PDFium provides not only the functions of rendering PDF

documents, but also the ability to edit and create new docu-

ments. The library implements methods of opening password-

protected documents, providing detailed information about

the file. Work with annotations and text on pages is also

supported. PDFium API is stable and contains the necessary

set of functions for full-scale work with documents.

Library methods use the FPDF_* prefix. Any work with

PDFium begins with initializing the library and ends with

closing it:

FPDF_InitLibrary();
...
FPDF_DestroyLibrary();

The FPDF_Load* functions are used to load a document

and a page:

auto document =
FPDF_LoadDocument(path, password);

auto page =
FPDF_LoadPage(document, pageNumber);

When you are done with a document or page, you must

close them with the FPDF_Close* functions:

FPDF_CloseDocument(document);
FPDF_ClosePage(page);

The FPDF_GetPage* methods of obtaining page dimen-

sions are provided:

auto pageWidth = FPDF_GetPageWidthF(page);
auto pageHeight = FPDF_GetPageHeightF(page);

The page is rendered into an image using the buffer created

by the FPDFBitmap_CreateEx function:

FPDF_BITMAP bitmap = FPDFBitmap_CreateEx(...);
FPDF_RenderPageBitmap(bitmap, page, 0, 0,

pageWidth, pageHeight, 0, 0);

Render functions also accept setup flags, for example:

• smoothing of text and graphic;

• discolouration;

• rotation of a page to any angle

• mirroring.

In addition to C++, there are PDFium wrappers for other

programming languages: C#, Python, JavaScript, etc.

C. MuPDF

MuPDF has been developed by Artifex Software, Inc since

2005 [36]. The library emphasizes speed, lightweighting, and

rendering quality. It is included in many distributions by

default. In addition to the library, a set of command line

utilities is also supplied.

The MuPDF implementation is mostly in C. The source

code is distributed under the AGPLv3 [37]. All that is required

to build it is make.

MuPDF supports PDF 1.7, XPS documents and CBZ

archives. Document attributes are also supported: transparency,

encryption, hyperlinks, annotations, etc. There is support for

text extraction, document editing, and creating new documents.

Document page rendering is done with minimal code:

1) context is created to store the cache and exception stack

and types are registered:

auto *context = fz_new_context(...);
fz_register_document_handlers(context);

2) the document and page are opened:

auto *document =
fz_open_document(context, path);

auto *page =
fz_load_page(context, document, 0);

3) the buffer is created to store the result of the rendering:

auto *pixmap =
fz_new_pixmap_from_page(...);

Like the other libraries, MuPDF supports various rendering

settings.

Unlike PDFium, MuPDF was originally developed with

multi-threading support, so rendering speed increases when

there are multiple processing cores [38].

IV. COMPARISON

The following criteria will be used for the functional library

comparison:

• rendering speed;

• rendering quality.

A. Rendering speed

PDF documents were used to estimate the rendering speed:

• 37 pages, the pages contain many vector primitives that

negatively affect the rendering speed,

• 1713 pages, consisting mainly of text and tables.

The documents were processed by each library. Each page

was rendered in its original size. The testing was done without

using multithreading.

Fig. 2. Document pages rendering speed: 37 heavy pages

The results of document processing are shown in the graphs

(Fig. 2 and Fig. 3). MuPDF processes document pages notice-

ably faster than other libraries (2.5 seconds for all pages of

the first document and 10 seconds for almost all pages of the

second document). For light pages, Popple and PDFium are

almost equal in speed. At the same time, Poppler requires

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 121 --

Fig. 3. Document pages render speed: 1713 light pages

TABLE I. DOCUMENT PAGES RENDER TIME (MS): 37
HEAVY PAGES

Poppler PDFium MuPDF
min 2590 1525 308
max 12350 7050 1538

mean 5879 3476 511
total 235766 137053 24060

significantly more time to render heavy pages. Similar results

can be seen in the summary tables I and II.

The summary of this criterion is as follows. Poppler is

slower than the other libraries, regardless of document content.

PDFium renders faster than Poppler, but the simpler document

content makes the gap smaller. MuPDF is the fastest of the

libraries, no matter what the content of the document is, it

takes less time to process it.

B. Rendering quality

To evaluate the quality of rendering, a document was

prepared using the Inkscape graphic editor [39] and exported

in the PDF and PNG formats. The PSNR (peak signal-to-noise

ratio) [40]–[42] value was calculated for the PNG file obtained

from Inkscape, and images obtained using libraries from the

PDF file. The higher the PSNR value, the more accurate the

rendering is. The console utility magick [43] was used to

calculate it. The pages for comparison were rendered with

the default library settings.

Running the comparison (using PDFium as an example) was

done in a such way:

libs@test magick compare -metric PSNR pdfium/
render_page_0.png pdfium/original.png pdfium/
different.png

For each of the libraries, the collages of images were

prepared:

• top image is the result of rendering;

• center image is the reference image,

• bottom image is the difference map generated by magick.

The result for Poppler is shown in Fig. 4. The output is

a grainy picture with coarse curves. The PSNR value is the

lowest, equal to 17.47.

TABLE II. DOCUMENT PAGES RENDER TIME (MS): 1713
LIGHT PAGES

Poppler PDFium MuPDF
min 37 20 4
max 247 146 164

mean 60 58 19
total 109377 99515 38040

Fig. 4. Poppler collage

The result for PDFium is shown in Fig. 5. This text is

rendered quite well, The curves are smoothed, the lines are

of the right thickness. The PSNR value is 29.85.

Fig. 5. PDFium collage

The result for MuPDF is shown in Figu. 6. The MuPDF

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 122 --

rendering quality is very close to that of PDFium, same neat

work with curves, correct line thicknesses. The PSNR value

of 24.02 confirms these conclusions.

Fig. 6. MuPDF collage

It is worth noting that the size of rendered images for all

libraries except Poppler differs from the original. The sizes

are given in the table III.

TABLE III. THE PSNR VALUES AND SIZES OF THE
RENDERED IMAGES

Original Poppler PDFium MuPDF
PSNR 17.47 29.85 24.02

Size 595x842 595x842 595x841 596x842

Based on the results of the tests (see PSNR values in

table III) we can conclude, that the rendering quality of

PDFium and MuPDF is high. However, the size of the resulting

image slightly differs from the size of the original page,

which can potentially affect the proportions. At the same time

Poppler, in spite of the correct size processing, is significantly

inferior in quality.

V. CONCLUSION

Three libraries are available for work with PDF files using

C++ in Aurora OS: Poppler, PDFium, MuPDF. They offer

similar functionality to satisfy the requirements of application

software.

Poppler, despite being used in a large number of Linux

distributions, has a slow rendering speed and insufficient image

quality. In addition, its license requires disclosure of the

application source code, which is not always acceptable.

MuPDF provides good quality and very high speed. How-

ever, the license also restricts its free use in third-party

software.

PDFium offers the best rendering quality and a respectable

speed. In addition, its license is free enough for third-party

applications to use this library. We recommend to use it to

work with PDF files in Aurora OS.

REFERENCES

[1] Aurora os website. [Online]. Available: https://auroraos.ru/
[2] Document management — portable document format — part 1: Pdf

1.7. [Online]. Available: https://www.adobe.com/content/dam/acom/en/
devnet/acrobat/pdfs/PDF32000 2008.pdf

[3] K. Thomas, “Portable document format: An introduction for program-
mers,” MacTech Magazine, vol. 15, no. 9, 1999.

[4] D. Lukan. Pdf file format: Basic structure [updated 2020] - infosec
resources. [Online]. Available: https://resources.infosecinstitute.com/
topic/pdf-file-format-basic-structure/

[5] List of pdf software - wikipedia. [Online]. Available: https:
//en.wikipedia.org/wiki/List of PDF software#Linux and Unix

[6] Posixp1003.1 - standard for information technology–portable operating
system interface (posix(tm)) base specifications, issue 8. [Online].
Available: https://standards.ieee.org/project/1003 1.html

[7] Posixworking draft, standard for programming language c++. [Online].
Available: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/
n4659.pdf

[8] Qt — cross-platform software development for embedded & desktop.
[Online]. Available: https://qt.io

[9] The gnu general public license v3.0 - gnu project - free software
foundation. [Online]. Available: http://www.gnu.org/licenses/gpl-3.0.
html

[10] Mit license definition. [Online]. Available: http://www.linfo.org/
mitlicense.html

[11] Bsd license definition. [Online]. Available: http://www.linfo.org/
bsdlicense.html

[12] Bsdbuffer texture - opengl wiki. [Online]. Available: https://www.
khronos.org/opengl/wiki/Buffer Texture

[13] Inoi r7 product page. [Online]. Available: https://inoi.com/2344/inoi-r7/
[14] Accelerating deployment of arm-based solutions - linaro. [Online].

Available: https://www.linaro.org
[15] Scratchbox2 on mer wiki. [Online]. Available: https://wiki.merproject.

org/wiki/SB2
[16] Qml applications — qt 5.15. [Online]. Available: https://doc.qt.io/qt-

5/qmlapplications.html
[17] D. Laure, A. Vasilyev, I. Paramonov, and N. Kasatkina, “Pdfcross-

platform development for sailfish os and android: Architectural patterns
and “dictionary trainer” application case study,” in 19th Conference of
Open Innovations Association. FRUCT, 2016, pp. 145–150.

[18] Model–view–viewmodel - wikipedia. [Online]. Available: https://en.
wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel

[19] Gnu make. [Online]. Available: https://www.gnu.org/software/make/
manual/make.html

[20] Cmake. [Online]. Available: https://cmake.org/
[21] Ninja, a small build system with a focus on speed. [Online]. Available:

https://ninja-build.org/
[22] qmake manual. [Online]. Available: https://doc.qt.io/qt-5/qmake-

manual.html
[23] Poppler qt5: The poppler qt5 interface library. [Online]. Available:

https://poppler.freedesktop.org/api/qt5/
[24] Qt pdf — qt marketplace. [Online]. Available: https://marketplace.qt.io/

products/qtpdf
[25] Poppler. [Online]. Available: https://poppler.freedesktop.org
[26] Pdfiso - iso 32000-1:2008 - document management — portable

document format — part 1: Pdf 1.7. [Online]. Available: https:
//www.iso.org/standard/51502.html

[27] B. Fanning, “Pdf standards....transitioning the pdf specification from
a de facto standard to a de jure standard,” MacTechAIIM Magazine,
July/August, 2007.

[28] Gnu general public license version 2 — open source initiative. [Online].
Available: https://opensource.org/licenses/GPL-2.0

[29] cairographics.org. [Online]. Available: https://www.cairographics.org/
[30] cairographicssplash - a javascript rendering service. [Online]. Available:

https://splash.readthedocs.io/en/stable/
[31] poppler / poppler · gitlab. [Online]. Available: https://gitlab.freedesktop.

org/poppler/poppler

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 123 --

[32] Foxit pdf sdk. [Online]. Available: https://developers.foxitsoftware.com/
resources/pdf-sdk/c api reference pdfium/index.html

[33] The chromium project · github. [Online]. Available: https://github.com/
chromium

[34] Apache license, version 2.0 — open source initiative. [Online].
Available: https://opensource.org/licenses/Apache-2.0

[35] Github - chromium/pdfium: The pdf library used by the chromium
project. [Online]. Available: https://github.com/chromium/pdfium

[36] Mupdf. [Online]. Available: https://mupdf.com/
[37] Gnu affero gpl version 3 and the ”asp loophole” — open source

initiative. [Online]. Available: https://opensource.org/node/152

[38] Pdfium thread safety. [Online]. Available: https://groups.google.com/g/
pdfium/c/HeZSsM KEUk

[39] Draw freely — inkscape. [Online]. Available: https://inkscape.org/
[40] Peak signal-to-noise ratio - wikipedia. [Online]. Available: https:

//en.wikipedia.org/wiki/Peak signal-to-noise ratio
[41] S. T. Welstead, “Fractal and wavelet image compression techniques,”

SPIE Publication, pp. 155–156, 1999.
[42] R. Hamzaoui and D. Saupe, Document and Image Compression. Signal

Processing and Communications, M. Barni, Ed. CRC Press, 2018.
[43] Imagemagick - command-line tools: Compare. [Online]. Available:

https://imagemagick.org/script/compare.php

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 124 --

