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Abstract— Methods of machine learning are currently very 
widespread, popular and are used in number of sectors - whether 
it is medicine, industry or the transportation. In many industries, 
machine learning is a factor of improvement which streamlines the 
process of disease diagnosing, speeds up the process of object 
identification at airports or eliminates number of errors which 
may occur in the production process based on previous testing. 
Machine learning applied to data retrieval processes in various 
types of databases, whether relational or non-relational ones, can 
bring more benefits than minimization of data retrieval time or 
reduction of database server usage. Based on the previous research 
– which focused on a comparison of the time required to obtain 
data in relational and non-relational databases - we concluded that 
it is more appropriate to implement methods and processes of 
machine learning to non-relational key-value type databases such 
as MongoDB or DynamoDB. Our proposed solution works with 
two principles. The first one is the principle of monitoring 
unfinished commands (operations) and their subsequent transfer 
to the buffer memory. The second principle is based on definition 
of the limit at which can machine learning efficiently provide 
appropriate transfer of the supposedly requested data to the 
buffer. This action can not only speed up the time required to 
obtain data, but also provide proposal of data selection operations 
based on previous queries of the user.      

I. INTRODUCTION  
With the arrival of artificial intelligence in the cloud 

computing, two significant tools have come together in one 
system - availability of powerful computing resources directly 
on the network and new sophisticated methods which can find 
patterns, relationships and correlations even in large amounts of 
data. Platforms such as Amazon, Azure or Google Cloud make 
it much easier to work with these systems, as some of the related 
complex processes allow them to be configured with the use of 
intuitive user interface. 

Artificial intelligence, in the broadest sense of the term, 
points to the fact, that machines can perform tasks that we 
generally consider smart. We once thought that something like 
this could only be achieved in a completely new way of 
programming, something revolutionary and complex, which is 
right on the edge of possible knowledge and maybe even further. 
One of the oldest approaches to creating artificial intelligence is 
to simulate the functions of the human brain. In 1959, Arthur 
Samuel introduced work, which contained the term "machine 
learning," in which he suggested that instead of programmers 
teaching computers, they should let these machines learn on their 
own. Paradoxically, machine learning is currently based on a 
simple set of relatively old statistical algorithms that are 
performed very quickly and repeatedly and work with large 

amounts of data. This alone is enough to talk about a revolution. 
Machine learning can find knowledge, relations, patterns, 
correlations, estimate unknown values, identify anomalies or 
classify seemingly unclassifiable in datasets with sizes beyond 
anything standard tools can process. This turned programming 
methods upside down: we no longer need to write algorithms to 
solve problems, the algorithms are written by the computer itself 
with the use of monitoring of large amounts of data. 

Working with large amounts of data and the correct 
statistical models, it is possible to find patterns and correlations 
even in data which seem too complex at first glance and their 
detection without the help of a large computational capacity is 
more than complicated. Identifying the dependencies and 
patterns hidden in this data can be used in finding solutions to 
number of problems faced by various organizations worldwide. 
As an example, by studying various factors - such as the age and 
history of client or time and place of payment - indications of 
suspicious payments in the bank environment can be found. 
Machine learning can be used to predict future revenue of 
organizations, estimate events which cause customer to change 
mobile operators, choose movies for user to watch, determine 
which machine in factory is inclined to defects soon or uncover 
any other problem where large amounts of collected data is 
available. 

It is the large amount of data associated with non-relational 
databases which led several researchers to implement machine 
learning into multiple types of databases - such as relational and 
non-real databases. The objective of this action was not only to 
reduce the number of select, update, insert and delete operations 
while working with the data in database but also to optimize 
memory requirements for management of large amounts of data 
in the mentioned operations. Due to the growing popularity of 
non-relational databases, researchers decided to apply machine 
learning to non-relational key-value databases [1]. Since it is 
versatile and easily adaptable, the MongoDB database was 
chosen as the basis for this type of applications [2].  

We identified several aspects, which – in our opinion – are 
critical in the data searching process and selection of data, and 
we summarized them in this research article, which addresses 
the following points: 

 monitoring of unfinished data selection commands in 
the relational database Oracle and the non-relational 
database MongoDB, 

 providing proposed data selection operations based on 
previously used queries, 
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module, which can be used in transfer of records from
relational or non-relational database to the in-memory
database Redis.

Presented article is divided into following logical parts - after 
the introduction, we present related research and articles which 
deal with the issues researched in this paper and which served as 
an inspiration for us in designing our solution. In the third 
section, we introduce the modules and various possible methods 
in which we implement machine learning into the process of data 
selection and subsequent transfer of records to the database 
Redis. We experimentally verify and compare proposed solution 
with conventionally used methods in the section four. In the last 
part of the paper, we summarize our solution and present 
possibilities for future research related to the objective of this 
article.

II. RELATED WORK

When researching the area of machine learning, we focused 
on several research articles and other related works. As the most 
influential and interesting for our research, we include research 
presented in [3] which plans a flow-based IDS utilizing two 
machine learning strategies: choice tree J48 and Multilayer 
Perceptron (MLP). For testing reasons, the authors utilize 
UNSWNB15 dataset. Authors of the work found out that the 
utilization of J48 produces better rate of accuracy than straight
MLP, which is 0.985 and 0.910, individually. Furthermore, the
authors also discovered that expanding the number of layers 
raises the precision, even though it increases time of 
computation in the system.

Another research work, which was presented by Muttaqien 
and Ahmad [4], utilizes highlight determination, clustering and 
highlight change on the datasets NSL-KDD and Kyoto 2006. 
Here, clustering is done by executing k-means algorithm whose 
span of clusters is to be the limit for gathering the information. 
This strategy is able to improve the classification execution and 
increase the accuracy of the classification - best results reached 
on the dataset NSL-KDD is 97.42% and 99.72% on the dataset
Kyoto 2006. Research by Thaseen and Kumar presented in [5]
focuses on IDS by making a normalization arrange, rank-based 
chi-square highlight choice and classification with numerous 
SVMs. The proposed strategy is verified on NSL-KDD and 
KDD Cup99 datasets. It is illustrated that their strategy is more 
reasonable for the use with NSL-KDD than KDD Cup99.

In [6] Mukherjee and Sharma explore three correlation-based 
include-choice strategies applying to include determination 
issues: correlation-based, information reinforcement and pick-
up proportions. In the expansion of the work, they also propose 
a modern strategy for feature selection utilizing highlight 
vitality-based lessening strategy to distinguish and after that
iteratively reduce less vital highlights. Utilizing the Credulous 
Bayes classification, they improve performance with the 
diminished dataset. Authors conclude that diminishing the 
number of features leads to better execution of tasks.

Akashdeep et al. [7] propose an IDS with highlight choice 
based on the procurement and relations between data. To choose 
the highlights, they analyze the securing of the data and 
relationship comes about. From this information, an unused 
approach is proposed to sort out highlights which are valuable. 
For this reason, they utilize nourish forward neural arrange 
classification in preparing and testing, in expansion to the 

normalization of the dataset. Compared to that without highlight 
choice, the utilize of include determination appears way better 
comes about. Amiri et al. [8] apply two highlight determination 
strategies to KDD Cup99. They compare the shared information-
based highlight choice strategy with relationship coefficient of 
direct and nonlinear degree for include choice. This strategy has 
high precision in recognizing Inaccessible to Login (R2L) and 
Client to Inaccessible (U2R) assaults.

Kasliwal et al. [9] create a crossover show utilizing the 
Inactive Dirichlet Assignment (LDA) and the Hereditary 
Calculation (GA). LDA is utilized to distinguish the ideal set of 
attributes, while GA is utilized to calculate starting scores for 
wellness esteem assessment to get new features utilized within 
the classification of KDD Cup99 datasets. Ikram and Cherukuri 
[10] propose a half breed IDS show with two approaches: 
Foremost Component Examination (PCA) and Back Vector 
Machine (SVM). The step to do is to perform parameter 
selection optimization with PCA on the SVM classifier bit. With 
optimization of punishment factors and gamma part parameters, 
this strategy can move forward classification performance and 
decrease classification time in preparing and testing.

In another paper dealing with machine learning authors [1]
apply data mining to classifying those anomaly data. This is 
based on the facts that there are many data which are not ready 
for use by a classification algorithm. In addition, that algorithm 
may use all features which actually are not relevant to the 
classification target. According to these two problems, we define 
two steps: pre-processing and feature selection, whose results are
classified by using k-NN, SVM, and Naive Bayes. The 
experimental results show that such pre-processing and 
combination of CFS and PSO are better to apply to SVM which 
is able to achieve about 99.9291% of accuracy on KDD Cup99 
dataset.

The main objective of another paper deals with machine 
learning is focused for training and combining intrusion 
detection datasets. Authors in paper [2] presented a method to 
train and combine several datasets from semi-structured sources 
with the MapReduce programming paradigm under MongoDB. 
It aims to increase the intrusion detection rates. In their work, 
they are focus on KDD99, DARPA 1998 and DARPA 1999 
dataset and with the big data technique MapReduce in 
MongoDB: First, authors selected the most pertinent attributes 
and eliminate the redundancies from the previous datasets. Then, 
authors merged them vertically into the same collection. Finally, 
they analyzed the dataset they used a Bayesian network as K2 
algorithm implemented in WEKA.

 Despite the achieved results, which were presented in works 
of other authors and our previous work [11], [12], [13], [14],
we decided to implement a solution which consists of 
combination of several modules. This combination of modules 
works on the basis of following three tasks: 

replacing the computationally costly workflow
controlled by the machine learning with a faster
workflow similar to the one used with queries,
replacing the complexity of tight models and
supervised learning with a single multipurpose system
and queries similar to SQL and NoSQL databases,
maintaining effective performance and quality of
prediction compared to supervised learning.
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Fig. 1. Diagram of proposed architecture

III. ARCHITECTURE FOR DATA SEARCHING WITH THE USE
OF MACHINE LEARNING

To implement and properly operate machine learning in the 
context of data searching, we created an architecture, which is 
presented in the Fig. 1 and work as follows:

The client enters the data into S3 with the use of the
required structure which triggers Lambda function.
SageMaker Batch Transform job is called to
preprocess loaded dataset for further processing in
proposed model.
Machine learning predictions are created and sent back
onto the S3 bucket.
SQS is set up on given S3 bucket to auto-ingest the
predicted result onto Snowflake
Once the data lands onto Snowflake, Streams and
Tasks are called.

Due to the need for efficient record processing, we created 
a function which is used for transferring data from file to S3 
(Simple Storage Services). For a simpler implementation, we 
created a procedure which moves the records and then stores 
them in two tables of relational database MySQL.

These tables are shown in Fig. 2 - specifically the tables 
order_cancellation and prediction_status, which are filled 
using the mentioned procedure controlled by machine learning. 
The whole principle is covered by Snowflake.

In order to call Batch Transform, we need to create an input 
table which contains data for the model and mandatory fields, 
predictionid which is the uuid for the task, record_seq which is 
unique identifier, for reach input row, a NULL value is stored in 
the prediction column – this column is targer of interest.

The data we tested are presented in the Table I and serve as 
samples, which were then moved from the S3 service to the non-
relational database MongoDB. Since we use number of services 
in the cloud computing solution from Amazon, where there is no 
direct support for the MongoDB, we have chosen a direct 

Fig. 2. Unloading data onto S3

substitute for these purposes and that is the non-relational 
database DocumentDB, which has almost identical properties.

As can be seen in the Table I, the values we used for our 
testing and monitoring of proposed model contains 6 columns, 
while the value in the prediction column is initially set to the 
unknown value NULL. This value indicates that no prediction 
has been performed on the given data yet. Modification of this 
column is focus of the following steps of proposed method –
these NULL values will be adjusted on the basis of a correctly 
or incorrectly performed prediction, created by the user in the 
process of obtaining values using the proposed architecture.

The call_ml_prediction Stored Procedure takes in a user-
defined job name and input table name. Calling it will unload the 
file (using predictionid as the name) onto S3 bucket in the /input
path and create an entry in the prediction_status table. From 
there, Batch Transform will be called to create prediction based
on the input data.

In order to be able to call the procedure, we wrote a command 
which will call the SQL script, which can be found at the
following link:   

https://github.com/romanceresnak/fruct29/blob/main/unload2s3 
_storedproc.sql
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TABLE I. SAMPLE DATA USED IN PROPOSED MODEL

This script directly manages the Snowflake, which calls the 
procedure in case of a query for individual data and then updates 
the values in the tables.

While researching the area and experimenting with proposed 
method some undesirable behavior emerged - in the case of 
multiple users who requested the same data, the individual 
commands were blocked. This fact caused certain delay for one 
of the users. This led us to decision, that it won’t be possible to 
run more requests concurrently. Also, for system simplicity and 
more efficient request management, we have ensured that only 
one file is loaded on S3, but Batch Transform can process 
multiple input files simultaneously as shown in Fig. 3.

TABLE II. PREDICTION STATUS TABLE

In order to create individual predictions, we need to secure 
correct management of data and their subsequent processing.

Once the data is read and moved to S3, the Lambda function 
is called – this function triggers the reading of data and their 
subsequent processing. Due to the frequent loading of data from 
file, we decided to subsequently transfer this data to the non-
relational database DocumentDB, mainly due to easier data 
management and data searching possibilities.

Although in many situations the data prediction was fast, we 
decided to implement the Database module into the architecture 
shown in the Fig. 3. The mentioned database module is 
responsible mainly for data transferring. During the prediction, 
the unfinished command (operation), which is being written by 
user, is obtained from the non-relational database and then, using 
a simple script the records are transferred to the Redis database. 
The script is stored on the following link:

https://github.com/romanceresnak/fruct29/blob/main/cache.js

The created module, which is presented on the Fig. 4, allows 
us to acquire data even faster. Other than that, this module takes 
care of management of data. The prediction of the data searching 
command was relatively inaccurate in the initial steps, and the 
record transferred from the non-relational database to the 
memory database (Redis) used to be inaccurate in the initial 
phase.

For management reasons, the proposed architecture 
takes care of record transferring in the following way:

The algorithm follows the currently written command:

o In the case it has already been found in
previous learning cycles, that the predicted
command is correct, then the record is moved
to the in-memory database.

o If the given command has not yet occurred
during learning, then the data with the largest
volume are transferred to the in-memory
database (the data with the largest volume are
understood as data with the largest number of
tables used by user, eg. records consisting of
data from 5 tables).

Transferred records are used to provide data for
reference to the SageMaker.
However, if prediction fails or is inaccurate, one of
these two situations occurs:

o If a situation occurs that the prediction failed
and the records in in-memory database are
not sufficient, the data is deleted from the
memory and records are retrieved from the
non-relational database.

o In other case, the data is sufficient, and
system reduces based on the new prediction -
not in a non-relational database, but directly
in the in-memory database.

In this way, we obtain values which are transferred to
the file, and at the same time the records in the table
are updated for further learning.

In such case, that the algorithm obtains the correct data, this 
dataset is provided to the SageMaker file. After transfer of the 
data, the Lambda function, which is not set to the default value 
of 5 minutes, is called. The function is set to monitor the action
caused by the filling of the SageMaker file. Subsequently, we 
create a file, which contains a copy of the data. This file is 
provided directly to the user.

In order to make management of the individual process less 
demanding, we decided to share all used files and data not only 
in the users’ process, but also in the processes of other 
participants by introducing files into S3, which can be used in 
other predictions.

For the proper functioning of the architecture and subsequent 
transfer of the records, we created two files, which are run 
automatically based on the process confirmation. These files can 
be found at:

https://github.com/romanceresnak/fruct29/blob/main/lambda_c 
all_batch_transform.py
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Fig. 3. Data flow diagram of proposed architecture

Fig. 4. Design schema of the proposed database module

Once Batch Transform completes, it outputs the result as a 
.csv.out in the /sagemaker path. Another Lambda gets fired 
which will copy and rename the file as .csv to the /snowflake 
path where SQS is setup for Snowpipe auto-ingest.

Once the data is dropped onto the /snowflake path, it is 
inserted into the prediction_result table via Snowpipe. For 
simplicity, since SageMaker Batch Transform maintains the 
order of the prediction, the row number was used as the identifier 
to join to the input table. We did the postprocessing step within 
Batch Transform itself.

The script needed to perform the above-mentioned 
operations is stored on GitHub, specifically at the following 
address:

https://github.com/romanceresnak/fruct29/blob/main/snowf 
lake2sagemaker_snowpipe.sql

Data streaming and running tasks were among the 
subprocesses which were necessary to secure during the process. 
For this reason, we have created a stream, presented on the Fig.
5, in which prediction_result fills prediction_result_stream after 
Snowpipe delivers the data. This stream, specifically the 

system$stream_has_data 'prediction_result_stream, is used to 
schedule populate_prediction_result tasks to call the 
populate_prediction_result stored procedure to fill prediction 
data in the hotel_cancellation table only if there is a stream. 
Unique identifier predictionid is set to be relational variable of 
the task.

To update the values, we had to adjust the procedure, which 
updates the values based on the correct or incorrect prediction. 
The modified procedure can be seen at the following link:

https://github.com/romanceresnak/fruct29/blob/main/snowf 
lake2sagemaker_populate_prediction_result.sql

After applying and implementing the procedure which 
ensures correct prediction, our values have also changed. In the 
table I, prediction was equal to NULL, which means that the 
prediction was not performed or was interrupted. After applying 
our modified procedure, the data in the Table II, specifically the 
prediction column, was updated. We present the modified table 
and its values in Table III.

At the end of the task and when populate_prediction_result
is completed using the system task session variable, the next 
update_prediction_status task updates the prediction status from 
“Sent” to “Completed” (see Table IV). This completes the whole 
process.

IV. EXPERIMENTS ON THE ARCHITECTURE FOR DATA 
SEARCHING WITH THE USE OF MACHINE LEARNING

Even in design and implementation of the proposed 
architecture, we needed to secure and effectively encounter 
several situations which would be able to significantly influence 
and distort the correctness of the achieved results in a negative 
way. Based on these conditions, we started the process with the 
same amount of data and with the default settings of not only 
the entire cluster (while maintaining the "free tier" mode) but 
also the basic settings of database servers, specifically 
DocumentDB and Redis with settings recommended directly by 
Amazon.
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Fig. 5. Flow diagram of piping the data into Snowflake

TABLE III. THE RESULT FROM BATCH TRANSFORM

TABLE IV. PREDICTION STATUS VALUE

The results of experimental evaluation of the proposed 
architecture for data searching with the use of machine learning 
are presented in the Fig. 6.

While implementing our architecture for selecting data from 
a non-relational database, it was clear that the process would be 
more time-effective, but we did not know how effective this 
process would be. As can be seen in the Fig. 6, the overall time 
of computation of the problem is lowered by approximately 
60%. Even though this improvement is satisfying, we improved 
the process even more by introducing proposed database 
module (see Fig. 3).

The advantage of the database model was not significant at 
the beginning of experimental testing since our data 
management between the in-memory and the non-relational 
database was not managed by the prediction management. This 
caused latency in management of records. After the 
implementation of data management for machine learning, the 
server utilization was reduced, and subsequently computational
time of the problem was reduced even more – to approximately 
34% of computational time compared to the time of pure 
machine learning implementation. Therefore, proposed 

approach reduced computational time of the problem to 13,5% 
of its original duration. 

It is necessary to mention one fact when applying this 
method. The time reduction we obtained is significant 
compared to conventional methods, but the usage and 
management of the server increased from 10% to a value of 
approximately 53% while maintaining the "Free tier" account.

Fig. 6. The result of comparison of various methods for the same query
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During the testing, we focused on the influence of change of 
programming language while the algorithms were running. 
Many algorithms were programmed in the python language, 
which allowed us to quickly access the necessary 
functionalities, but unfortunately it also had drawback of lower 
computational speed. When rewriting source codes from python 
to GO (golang), the speed of computation increased as much as 
12 percent. The problem that has arisen with rewriting source 
codes is the length of implementation e.g., the number of lines 
of script originally written in the python language increased by 
almost 79 percent when rewritten in Golang, which caused a 
significant prolongation of the development of the mentioned 
application.

On the other hand, by rewriting the code, server load
increased by 13 percent – this is caused by GOs’ ability to use 
multiple computational units (cores) at the same time, which is 
not implemented as efficiently in the Python. We also note that 
the results we measured may differ diametrically from the 
results that will be obtained on a server with a larger number of 
cores.

V. CONCLUSION

Currently, the growing volume of data causes significant 
problems in various industries and areas of interest. A large 
amount of data must be stored efficiently for system to be able 
to capture the demand for data in a relatively short time and then 
provide the data to the user. Due to this fact, we applied machine 
learning to the process of obtaining data from the non-relational 
database MongoDB, which is considered by many researchers 
to be the most universal non-relational database. Since we 
designed and implemented a module which would also meet the 
versatility of relational databases, we also created a method 
which could work with relational database Oracle.

Use of machine learning in proposed architecture caused 
significant time reduction during the initial implementation of 
the process. Predicted commands were not accurate enough in 
the first steps, but after successful data acquisition, the 
efficiency of the implementation process manifested itself and 
caused the duration of computation of process to be reduced.

The proposed method works efficiently and reliably in two 
steps. The first step is to monitor the unfinished command in the 
database environment, with the method transferring data from 
the requested database to the in-memory database and thus 
speeding up the data acquisition process. If the user uses clauses 
which reduce the amount of data process works with, the 
method does not apply the condition in the used database, but 
in the cache memory. The second step is based on the possibility 
of providing user with commands and operations based on 
previous queries. Even before confirming the proposed 
command records of data are moved into the cache. Based on 
the achieved results, we can clearly state that the process 
proposed in this research article can always obtain the requested 
data faster than with the use of conventional methods.

The implementation of machine learning in search processes 
has the potential to further improve not only the record search 

process itself, but many factors also suggest that a similar 
implementation could help with data update processes. Our 
future goal is to implement the created module for other types 
of non-relational databases and to create a general module that
will provide the functionality we created using a simple access 
point.
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