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Abstract—In the paper, we proposed a method of space-time
diversity on the transmitting side, combining a closed feedback
and quasi-orthogonal space-time coding technique called closed-
loop control with quasi-orthogonal space-time block coding (QO-
STBC). For a configuration 4x1-4x4 with four transmit and one
receive antennas and four symbols per four resource elements,
our method allows the QO-STBC to be completely orthogonalized
what maximizes the diversity gain. It is shown that the developed
approach can also be used for the 4x2-4x2 configuration. In this
case, it is not possible to orthogonalize QO-STBC completely, but
the level of inter-channel correlation is considerably reduced. A
statistical modeling was carried out to study the characteristics
of noise immunity of the proposed transmission scheme. We show
that it is sufficient to use a one-bit command to control the phase
of two transmitting antennas. A gain of 1.4 dB is achieved for
the 4x1-4x4 scenario and 2.5 dB - for the 4x2-4x2 case. Phase
control of transmitting antennas used in this method of signal
transmission does not change the interference conditions.

I. INTRODUCTION

In [1], a Space-Time Transmit Diversity (STTD) algorithm

was proposed for two transmit antennas. This algorithm used

Orthogonal Space-Time Block Coding at a coding rate of

1 and allowed maximizing the diversity gain from spacial

distribution of two transmit antennas.

Subsequently, numerous attempts were made to find similar

codes for a larger number of antennas, e.g. for four transmit-

ting antennas and more. In the end, the impossibility of the

existence of such codes with a rate of 1 for 4 transmitting

antennas was proved in [2]. However, similar codes have been

found with coding rates 3/4 and 1/2 [3]. At the same time,

numerous combinations of STTD and Orthogonal Transmit

Diversity (OTD) have been investigated in [4], [5], [6]. The

proposed approaches are simple for encoding and decoding,

but when used alone, they provide a modest diversity gain of

two with four transmit and one receive antennas [7], [8].

However, by concatenating such space-time codes with error

correcting codes (e.g., convolutional or Turbo codes), the

diversity gain is increased. This is due to the fact that when the

received signal is processed, two sequences of symbols with

independent fading are formed. In this case, the correcting

ability of the error-correcting code is used more effectively.

However, the maximum possible diversity gain is achieved

only at low coding rates.

In the above listed diversity transmission algorithms, infor-

mation about the state of the communication channel is not

used at the transmitting side, since it is usually not known at

there. Such systems are usually referred to as open-loop.

Another approach to use transmit diversity to improve the

efficiency of communication systems is to control the transmit

antenna weights based on channel information transmitted

from the mobile station back to the base station. Such systems

are called closed-loop control systems. The effectiveness of

such systems largely depends on the amount and accuracy of

information transmitted from the mobile station to the base

station to control the transmitting antennas.

Therefore, in this paper, we explore the possibility of using

the known STTD and closed-loop control circuits together

to improve the energy efficiency of cellular communication

systems.

The rest of the paper is arranged as follows. In the next

section, we define our system model. In Section III, quasi-

orthogonal space-time bloc codes (QO-STBC) for the 4x1

MIMO system with closed-loop feedback are derived. In the

following Section IV, similar QO-STBC are derived for the

4x2 system. Section V contains modeling results and their

analysis. Finally, we conclude in Section VI.

II. SYSTEM MODEL

We will consider a systems with M transmitting and N
receiving antennas. We assume that slow nonselective fading

takes place in the communication channel. In this case, the

model of the received signal is:

Y = HX + η, (1)

where

• H ∈ CN×M is a complex channel matrix constructed

from arbitrary transmission coefficients hij between j-th

transmitting and i-th receiving antenna.
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• η ∈ CN is N -dimensional complex Gaussian vector of

observation noise with zero mean and correlation matrix

2σ2
ηIN , where IN is unit matrix of size (N ×M).

• X ∈ CM is M -dimensional vector j-th element of which

represents the complex information symbol transmitted

by the j-th antenna.

• Y ∈ CM is the vector with elements received by i-th
antenna.

Such a model is illustrate in Fig. 1. Systems with sequential

cascading of error-correcting code and STTD schemes [8], [9],

[12], [14], [15] are considered.

Fig. 1. Communication system with M transmitting and N receiving 
antennas

In the following derivations, we need to pass from a

complex-valued model to a real-valued representation. In

this case, each complex variable is associated with a two-

dimensional vector, the product of complex numbers is de-

scribed as the product of a two-dimensional vector by a matrix

of size (2x2).

An example of transition from complex-valued vectors and

matrices for the case M = N = 1 is given below:[
y1,r
y1,i

]
=

[
h11,r −h11,i

h11,i h11,r

] [
z1,r
z1,i

]
+

[
η1,r
η1,i

]
,

where the subscript r means the real part and the subscript

i means the imaginary part of the corresponding complex

element. The transition from a complex model to a real one

is described in more detail in [16].

III. QUASI-ORTHOGONAL SPACE-TIME BLOCK CODES FOR

THE 4X1 MIMO SYSTEM WITH CLOSED-LOOP FEEDBACK

The following variants of quasi-orthogonal space-time codes

with a minimum number of nonzero cross-correlation coeffi-

cients are known [7], [10]. These codes are described by the

following matrix transformation rules:

F (1)(S) =

⎡
⎢⎢⎣
s1 −s′2 −s′3 s4
s2 s′1 −s′4 −s3
s3 −s′4 s′1 −s2
s4 s′3 s′2 s1

⎤
⎥⎥⎦ , (2)

F (2)(S) =

⎡
⎢⎢⎣
s1 −s′3 −s′4 s2
s2 s′4 s′3 s1
s3 s′1 −s′2 −s4
s4 −s′2 s′1 −s3

⎤
⎥⎥⎦ , (3)

F (3)(S) =

⎡
⎢⎢⎣
s1 −s′4 −s′2 s3
s2 −s′3 s′1 −s4
s3 s′2 s′4 s1
s4 s′1 −s′3 −s2

⎤
⎥⎥⎦ , (4)

where si are complex QAM symbols.

To analyze further the properties of the reduced STBC

matrices, we pass to the real-valued representation. Let us

consider this transfer using an example of a matrix of the

form (2). In its real-valued form, it can be written as follows:

F (1)(S) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1,r −s2,r −s3,r s4,r
s1,i s2,i s3,i s4,i
s2,r s1,r −s4,r −s3,r
s2,i −s1,i s4,i −s3,i
s3,r −s4,r s1,r −s2,r
s3,i s4,i −s1,i −s2,i
s4,r s3,r s2,r s1,r
s4,r −s3,r −s2,r s1,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where sk,r and sk,i are real and imaginary components of kth

complex QAM symbol.

Generation of this matrix can be described in the following

way:

F (1)(S) =
[
F

(1)
1 S F

(1)
2 S F

(1)
3 S F

(1)
4 S

]
,

where S = [s1,r s1,i . . . sk,r sk,i . . . s4,r s4,i] is 8-dimensional

vector of information symbols, and F
(1)
1 , F

(1)
2 , F

(1)
3 , F

(1)
4 are

generating matrices of the following form:

F
(1)
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

F
(1)
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

F
(1)
3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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F
(1)
3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using matrices (2) - (4), the model (1) for the channel with

configuration (4x1) takes the form:

Y = hF (S) + η,

where Y is a four-dimensional complex row-vector of observa-

tions, with elements equal to the samples obtained at one time

interval; h is a four-dimensional complex channel row-vector;

F (S) - STBC matrix with size (4x4), which is described by

one of expressions (2) - (4); S - four-dimensional complex

vector of transmitted QAM symbols; η is a four-dimensional

row-vector of complex noise.

Let us pass to the real-valued notations and consider the

model for one time interval:

yk =

[
yk,r
yk,i

]
= hF

(1)
k S + ηk, k = 1, . . . , 4,

where [[
h11,r −h11,i

h11,i h11,r

]
. . .

[
h41,r −h41,i

h41,i h41,r

]]
is a real-valued channel matrix with configuration (4x1) and

of shape (2x8). Taking last equation into account we can in-

troduce an equivalent channel matrix for the kth time interval:

hk = hF
(
k1).

By joining two-dimensional real-valued observed vectors

into one vector, it becomes possible to formulate the following

model:

Y =

⎡
⎢⎢⎣
y1
y2
y3
y4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣
hF

(1)
1

hF
(1)
2

hF
(1)
3

hF
(1)
4

⎤
⎥⎥⎥⎦S + η.

The matrix

H̃(1) =

⎡
⎢⎢⎢⎣
hF

(1)
1

hF
(1)
2

hF
(1)
3

hF
(1)
4

⎤
⎥⎥⎥⎦

is the equivalent channel matrix for the STBC code generated

by a matrix of the form (2). The properties of the STBC code

will be determined by the matrix

R(1) =
(
H̃(1)

)T

H̃(1)

which is, in fact, a correlation matrix for the columns of the

equivalent channel matrix. For an orthogonal STBC code, this

matrix will be diagonal.

Space-time codes (2), (3) and (4) correspond to the follow-

ing correlation matrices of the equivalent virtual channel:

R(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d 0 0 0 0 0 −2a 0
0 d 0 0 0 0 0 −2a
0 0 d 0 2a 0 0 0
0 0 0 d 0 2a 0 0
0 0 2a 0 d 0 0 0
0 0 0 2a 0 d 0 0

−2a 0 0 0 0 0 d 0
0 −2a 0 0 0 0 0 d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(5)

R(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d 0 2b 0 0 0 0 0
0 d 0 2b 0 0 0 0
2b 0 d 0 0 0 0 0
0 2b 0 d 0 0 0 0
0 0 0 0 d 0 −2b 0
0 0 0 0 0 d 0 −2b
0 0 0 0 −2b 0 d 0
0 0 0 0 0 −2b 0 d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

R(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d 0 0 0 2c 0 0 0
0 d 0 0 0 2c 0 0
0 0 d 0 0 0 −2c 0
0 0 0 d 0 0 0 −2c
2c 0 0 0 d 0 0 0
0 2c 0 0 0 d 0 0
0 0 −2c 0 0 0 d 0
0 0 0 −2c 0 0 0 d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

where

d =

M∑
m=1

|hm|2,

a = �{h2h
′
3 − h1h

′
4},

b = �{h1h
′
2 − h3h

′
4},

c = �{h1h
′
3 − h2h

′
4},

It can be seen that the correlation coefficients for each of the

given matrices are determined by one value. So, for example,

for the space-time code (2) we have:

|2a| = 2|�{h2h
′
3 − h1h

′
4}|.

Let us introduce the following identical turning factor for

the 1st and 2nd transmitting antennas:

Θ1,2 = exp{jθ1,2}. (8)

Then the value of the correlation coefficient, taking into

account the turning factor (8), will be equal to:

|2a| = 2|�{Θ1,2(h2h
′
3 − h1h

′
4)}|.

If we choose the phase of the turning factor equal to

θ1,2 =
π

2
− arg(h1h

′
4 − h2h

′
3), (9)
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then all the correlation coefficients in the correlation matrix

R(1) from equation (5) will have zero value. If the number

of receiving antennas is greater, and the configuration of

the space-time code does not change, then the value of the

correcting phase of the turning factor in (8) will be calculated

in the same way, using the following formula:

θ1,2 =
π

2
− arg(

N∑
n=1

h1,nh
′
4,n − h2,nh

′
3,n). (10)

Thus, by adjusting the phases of the first and second

transmitting antennas by the same value θ1,2, the correlation

matrix R(1) from (5) corresponding to the space-time code

can be orthogonalized. In this case, the diversity order will

have a maximum value of 4 (with one receive antenna).

Similarly, for the second version of the space-time code (3),

we have:

|2b| = 2|�{h1h
′
2 − h3h

′
4}|.

For this option, it is necessary to adjust the phases of the

1st and 3rd transmitting antennas to the same angle:

θ1,2 =
π

2
− arg(h1h

′
2 − h3h

′
4). (11)

For the third version of the space-time code (4) we have:

|2c| = 2|�{h1h
′
3 − h2h

′
4}|.

For this option, the phases of the 1st and 4th antennas are

adjusted by the value:

θ1,2 =
π

2
− arg(h1h

′
3 − h2h

′
4). (12)

A block diagram of the formation of a diversity signal on

the transmitting side, taking into account the turning factor for

the first version of the space-time code (2), is shown in Fig.

2.

Fig. 2. Quasi-orthogonal space-time code in a closed loop system

It should be noted that in the proposed version of space-time

coding in a closed loop system, all the necessary calculations

for adjusting the phase of the antennas are performed at

the mobile station. Only one real number is transmitted on

the return channel, regardless of the number of receiving

antennas. This significantly reduces the amount of transmitted

information and imposes less stringent requirements on the

throughput of the reverse control channel.

IV. QUASI-ORTHOGONAL SPACE-TIME BLOCK CODES FOR

THE 4X2 MIMO SYSTEM WITH CLOSED-LOOP FEEDBACK

Consider the possible options for combining a quasi-

orthogonal space-time code and a closed loop system with a

4x2 configuration. With this configuration, it is possible to use

Punctured Quasi-Orthogonal STBC, which is formed from a

conventional quasi-orthogonal space-time code by puncturing,

in this case by discarding the last two columns of the code

matrix. So, for example, from a matrix of the form (2) we

obtain the following encoding matrix

F̃ (1)(S) =

⎡
⎢⎢⎣
s1 −s′2
s2 s′1
s3 −s′4
s4 s′3

⎤
⎥⎥⎦ . (13)

It is easy to see that further puncturing (discarding the last

column) will lead to the usual spatial multiplexing scheme

with a maximum space-time coding rate of 4.

The correlation matrix shown in equation (14) corresponds

to coding schemes of the form (13). The following notations

have been used in (14):

A = |h1|2, B = |h2|2, C = |h3|2, D = |h4|2,
E = h1,rh2,r + h1,ih2,i, F = −h1,ih2,r + h1,rh2,i,

G = h1,rh3,r + h1,ih3,i, H = −h1,ih4,r + h1,rh4,i,

K = h1,rh4,r + h1,ih4,i, L = −h1,ih4,r + h1,rh4,i,

M = h2,rh3,r + h2,ih3,i, N = −h2,ih3,r + h2,rh3,i,

Q = h2,rh4,r + h2,ih4,i, P = −h2,ih4,r + h2,rh4,i,

R = h3,rh4,r + h4,ih3,i, S = −h3,ih4,r + h4,rh3,i.

In these expressions an index r corresponds to the real part

and an index i - to the imaginary part of the complex number.

The total power of the correlation peaks (taking into account

several receiving antennas) for the correlation matrix (14) will

be equal to∑
|R|2 = (G+Q)2 + (H − P )2 + (M −K)2 + (N + L)2 =

= |H31 +H24|2 + |H32 −H14|2,
where

H31 =
N∑

n=1

h3,nh
′
1,n, H24 =

N∑
n=1

h2,nh
′
4,n,

H32 =

N∑
n=1

h3,nh
′
2,n, H14 =

N∑
n=1

h1,nh
′
4,n.

Let us introduce, as in the previous Section, a turning factor

Θ1,2 = exp{jθ1,2} common for the first and second antennas.

Then the total power of the correlation peaks will depend on

the phase of the turning factor as follows:∑
|R(θ1,2)|2 = |H31e

−jθ1,2 +H24e
jθ1,2 |2+

+|H32e
−jθ1,2 −H14e

jθ1,2 |2
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R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A+B 0 0 0 G+Q −H + P K −M −L−N
0 A+B 0 0 H − P G+Q L+N K −N
0 0 B +A 0 M −K −N − L Q+G −P +H
0 0 0 B +A N + L M −K P −H Q+G

G+Q H − P M −K N + L C +D 0 0 0
−H + P G+Q −N − L M −K 0 C +D 0 0
K −M L+N Q+G P −H 0 0 D + C 0
−L−N K −N −P +H Q+G 0 0 0 D + C

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

Fig. 3 shows the dependencies of the normalized value

λ(θ1,2) =

∑ |R(θ1,2)|2∑ |R(0)|2
on the value of the angle θ1,2 of the turning factor for several

realizations of the random elements of the channel matrix. It

can be seen from them that the dependencies are sinusoidal

and have a clear minimum.

Fig. 3. Dependence of the normalized value λ(θ1,2) on the value of the angle 
θ1,2 of the turning factor

Thus, by adjusting the phases of the first and second

transmit antennas to the same value, it is possible to reduce

the total level of the correlation peaks of the space-time matrix

for the (4x2) configuration. The structural diagram of the

system will be the same as in the previous version, except

for the use of a truncated coding matrix. The control requires

the transmission of one real number on the reverse control

channel, regardless of the total number of receiving antennas.

It should be noted that complete suppression of correlation

peaks by rotating the phases of the transmitting antennas

in this case is impossible. Therefore, the use of additional

turning factors for other antennas does not increase the energy

efficiency.

V. MODELLING RESULTS

In order to study the characteristics of the proposed al-

gorithm, modeling was carried out for channels with slow

independent Rayleigh fading. The simulated system corre-

sponds to the structural diagram shown in Fig. 2, i.e. sequential

cascading of error correcting code and quasi-orthogonal space-

time code with phase control of two transmitting antennas is

used. The 8-state Turbocode [11], [13] was used as the error-

correcting code.

Fig. 4. Characteristics of noise immunity of various variants of a system with 
quasi-orthogonal space-time coding for the configuration 4x1-4x4

Fig. 4 shows the dependencies of frame error rate (FER) on

energy per bit to noise power spectral density ratio (Eb/No)

for the following options for constructing a communication

system with a space-time matrix (2):

• System without feedback [7];

• A closed loop system with a turning factor (9) with a one-

bit control command (two phase values θ1,2 ∈ {0; π
2 });

• A closed loop system with a turning factor (9) with

a two-bit control command (four phase values θ1,2 ∈
{0; π

4 ;
π
2 ;

3π
4 });

• A closed loop system with a turning factor (9) with a

three-bit control command (eight phase values θ1,2 ∈
{0; π

8 ;
π
4 ;

3π
8 ; π

2 ;
5π
8 ; 3π

4 ; 7π
8 } ).

The frame length is 1277 bits, using QPSK modulation,
1
2 rate turbo code. The system uses 4 transmit antennas and

1 receive antenna. The MMSE demodulator was used for

all variants. Evaluation of complex channel multipliers and

transmission of control commands were assumed to be ideal.
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Fig. 5. Characteristics of noise immunity of various variants of a system with 
quasi-orthogonal space-time coding for the configuration 4x2-4x2

It can be seen from the given dependences that at FER = 1%,

the introduction of only one-bit control command increases the

energy efficiency by 1.4 dB in comparison with the system

without feedback.

For a one-bit control command, the phase of the turning

factor takes only two values θ1,2 ∈ {0; π
2 }. Multiplication by

such a twisting factor is equivalent to swapping the imaginary

and real parts of the complex modulated symbol. A further

increase in the number of phase quantization levels does not

lead to a significant effect. Therefore, it is recommended to

use a one-bit control command.

Fig. 5 shows similar dependences of FER on Eb / No for

MIMO 4x2 and QO-STBC with a coding rate of 2 (4 symbols

per 2 clock cycles) with a space-time matrix (13).

For this configuration, it can be seen that even in the case

of using a one-bit command, a gain of 2.5 dB is provided.

VI. CONCLUSION

In the study, we have shown that for a 4x1 MIMO config-

uration, it is possible to completely orthogonalize the quasi-

orthogonal space-time code by rotating the phases of the two

transmitting antennas by the same value depending on the

channel factors. In this case, a maximum diversity order of

4 can be obtained with one receive antenna.

The calculation of these phase values is carried out on

the receiving side, i.e., at the mobile station, and only one

real number is transmitted over the reverse control channel.

Simulations performed for this configuration (4x1) have shown

that just a one-bit phase command is sufficient to obtain a

maximum gain of 1.4 dB in comparison to a similar open-

loop system. For a 4x2 MIMO and QO-STBC configuration

with a coding rate of 2 (4x2), the gain using a 1-bit control

command is 2.5 dB.

The proposed space-time diversity method on the trans-

mitting side is a combination of quasi-orthogonal space-time

coding and feedback. It is important that the structure of the

receiver and transmitter does not change, i.e., the proposed

method is universal. In addition, the control of the phases of

the transmitting antennas used in this method does not change

the power of the emitted signal, which does not lead to a

deterioration in the interference environment.
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