
Reducing the Time to Detect Cyber Attacks -
Combining Attack Simulation With Detection Logic

Juuso Myllylä, Andrei Costin
University of Jyväskylä

Finland

juuso.p.myllyla@student.jyu.fi, ancostin@jyu.fi

Abstract—Cyber attacks have become harder to detect, causing
the average detection time of a successful data breach to be over
six months and typically costing the target organization nearly
four million dollars. The attacks are becoming more sophisticated
and targeted, leaving unprepared environments easy prey for
the attackers. Organizations with working antivirus systems and
firewalls may be surprised when they discover their network has
been encrypted by a ransomware operator. This raises a serious
question, how did the attacks go undetected? The conducted
research focuses on the most common pitfalls regarding late or
even non-existent detection by defining the root cause behind the
failed detection.

The main goal of this work is to empower defenders to
set up a test environment with sufficient logging policies and
simulating attacks themselves. The attack simulations will then
be turned into actionable detection logic, with the help of the
detection logic framework. The framework is designed to guide
defenders through a quick and agile process of creating more
broad detection logic with the emphasis on tactics, techniques
and procedures of attacks. The results in this study approach
the detection issues in a broad and general manner to help
defenders understand the issue of threat detection, instead of
providing readily implemented solutions.

I. INTRODUCTION

Detecting cyber threats and attacks in an IT-environment

is a result of combining different things together. These

include audit and logging policies, using a centralized logging

solution and understanding the incoming log events and their

significance. Commercial solutions exist, where the logs are

forwarded towards the product which then analyses the logs

and creates automated alerts for the defenders. This is not

effective, since the capability of threat detection lies in the

hands of the vendor, not the defenders. By empowering the

defenders with the right knowledge and tools, the defenders

achieve better results and are independent of any vendor

providing detection capabilities.

Relying on the defenders expertise in threat detection, the

capability of creating novel use cases and correlations will

return the investment multiplied. Defenders, who rely on

automated detection from a third party often feel power-

less compared to defenders, who independently modify and

improve the existing detection capabilities and create new

ones, generating more involvement for the latter group. All

of the simulations are done with open source tools and

test environment is also an open source project, aiming to

lower the barrier for more inexperienced security teams to

delve into the realm of attack simulation and threat detection.

This research is a qualitative study in creating own detection

capabilities without depending on external parties. The study

also has empirical elements in the form of attack simulation,

when attacks are conducted in the test environment. The log

events generated from the simulations are then observed and

evaluated, according to the detection framework.

A. Contributions

This research aims to contribute to the information security

research field in describing the reasons behind failed threat

detection, how threats can be detected and how security pro-

fessionals can improve their understanding of how simulated

attacks can help in understanding and creating more robust

detection capabilities.

The findings of the study are targeted towards all the

security teams trying to monitor their networks and find threats

by introducing a simple framework, which helps eliminate

weak detection. The research incorporates log analysis, threat

hunting and hints of purple team exercises as methods to

understand what the threats are, how different attacks can be

seen from the vast amount of log data and how that data can

be turned into actionable detection logic, ultimately trying to

reduce the dwell time of an attacker being inside the network.

B. Organisation

The rest of this paper is organized as follows. In Section II

we present the current work and research being done in

regards of threat detection. We present our experimental setup

in Section III. After defining the necessary components for

meaningful threat detection capabilities, the threat detection

framework is presented in Section IV. The last chapter V is

focused on how the critical vulnerability Zerologon was ex-

ploited in the experimental setup.We conclude with Section VI.

II. CURRENT WORK AND RESEARCH RELATED TO THREAT

DETECTION

Threat detection can be divided into two separate categories,

the scientific and research-based approach, embracing the

possibilities machine learning provides for log analysis and to

what the current situation in human based detection consists

of. Both approaches attempt to find the most optimal methods

of gathering information from available logs generated on the

monitored environments. As the data tends to be similar across

different environments, machine learning can be applied by

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



transforming said log into training data sets, where as the

human based approach is more related to being able to make

correlations and understanding the context. In the future by

combining these two, threat detection should become more

accessible to all organizations, reducing the average dwell time

of attackers lurking around in a network.

A. Theoretical work and research on threat detection

The threat detection research in academic setting is naturally

trending towards machine learning solutions. Machine learning

can for example step in, once the amounts of system logs

become too much for a human analyst, as described in a

research released a few years ago about using deep learning

for catching insider threats [1]. Similar research was conducted

a few years earlier to also detect insider threats, based on

behavior-based access control (BBAC), where the machine

learning model analyses network traffic on multiple different

layers [2]. The studies mentioned earlier leverage machine

learning algorithms for sorting out vast amounts of logs to

create conclusions that a user account might be compromised,

as it exhibits common traits for a known, compromised user.

This technology has also made its way to commercial solutions

today, generally referred as UEBA (User and Entity Behavior

Analytics). The user and entity behavior analytics monitors

an environment by using machine learning algorithms, like

the earlier examples in this chapter. A study about the topic

explained that to detect anomalous behavior, normal behavior

must first be established (the baseline) by evaluating the users

past behavior compared to earlier behavior and comparing the

same behavior to their co-workers [3].

All the previously listed uses of machine learning were

targeted against detection insider threats and compromised

accounts, which seemed to be a rising trend from 2015 to

2017.

B. Machine learning in threat detection

In 2018, a research was published, which used machine

learning correlation analysis to detect advanced persistent

threats. This research has interesting comparisons to this

research, as the threat detection theme is rather similar. Instead

of simulating attacks in a test environment, the machine

learning correlation analysis was able to detect threat actors in

three stages, detecting the initial threat from previously known

patterns of threat actors, correlating the alert, and finally

predicting the probability of an attack, which is ultimately

confirmed by the analysts [4].

Based on the current research regarding machine learning in

threat detection, it is apparent that currently machine learning

algorithms are becoming increasingly efficient in detecting

anomalies in log data by being able to compare the behavior

of a user or an endpoint to previously known good behavior.

This method is also commonly used by humans in analysis, by

comparing the newly detected anomalous behavior to what the

user or machine has previously done and is there an explana-

tion for the behavior. Since the methods are rather similar,

efficient machine learning algorithms could replace current

ways of working in threat detection and in security operations

centers by making the most repetitive tasks obsolete. This

would then provide the human analysts an opportunity to have

better contextual information about the incident at hand to

make better decisions, instead of spending too much time on

manually searching for the same abnormal behavior.

C. Practical and current work on threat detection

The current work and research done in threat detection has

evolved to newer domains, such as artificial intelligence, but

detecting threats in normal IT environments persists today.

Currently, the most notable research towards this is the Mitre

ATTCK Framework, which contains vast amounts of knowl-

edge regarding most notably advanced persistent threats and

what kind of documented tactics, techniques and procedures

they have used in various campaigns. However, the ATTCK

framework requires sophisticated and mature environments

and logging policies to detect most of the tactics, techniques,

and procedures [5].

Since most organizations are not prepared for such scrutiny,

a right balance needs to be reached in designing environ-

ments to achieve the most beneficial results in security. Most

guidelines and research done in logging and its best practices

are starting to become outdated, which is why they need

to be verified, whether the guidelines are still applicable.

A reputable source for this is the NIST Special Publication

800-92, Guide to Computer Security Log Management [6].

Although the publication is 14 years old at the time of

authoring the research, most of the concepts are still applicable

to this date, however the technologies have become mostly

obsolete.

Research about blue team operations is also becoming a

bit outdated, since the focus has shifted from the standard

reactive approach to a more proactive approach in detecting

and deterring threats from a network. Most importantly, the

lack of research aimed at detecting threats within a blue

team is limited. The current work in blue team research is

mostly related to the vast array of operations blue teams

have, as described in the recently published article by F-

Secure Consulting [7]. A more thorough view of blue team

/ security operations center operations is covered in a Mitre

publication, which is the foundation of how a modern blue

team operates [8].

The two main disciplines, machine learning and practical

threat detection will form the scientific basis for this research.

As the current trend in threat detection is more based on

threat hunting, this research will contribute to the fundamental

detection baseline, which is required in order to successfully

hunt for threats actively in an environment, as stated by Kerwin

in his article published by the SANS institute [9].

D. Threat hunting versus threat detection

An important distinction between threat detection and threat

hunting must also be made for clarification. The threat detec-

tion in this research is focused on generating search queries,

which will constantly query the incoming log events in SIEM,

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 466 ----------------------------------------------------------------------------



generating alerts for analysts. These search queries are gener-

ated with the proposed threat detection framework, producing

high quality alerts and most importantly, reducing the amount

of low value alerts.

Threat hunting is a proactive discipline, where the analysts

form hypotheses and execute manual searches to actively

search the logs for signs of potential misuse. A hypothesis is

the basis of a threat hunt, and the aim is to prove the hypothesis

as false. Such example could be that the monitored environ-

ment is known to run SMBv1, which is prone for distributing

ransomware. The threat hunter then forms a hypothesis that

SMB (Server message block protocol) is used to distribute

ransomware. If no signs are found, the hypothesis is proven

wrong and the hunt can be concluded and it can be said with

certainty that SMBv1 was not used to distribute ransomware,

based on the generated queries and their results.

Threat hunting is a newer discipline in cybersecurity field,

where the threat detection focus is shifted towards analysts

proactively creating potential scenarios and searching for those

events. Once the proactive approach generated search query

finds misuse, it can be then transformed to the detection

baseline using the threat detection framework. While using

the threat detection framework, the analyst is actually doing

threat hunting by creating hypotheses by identifying the threat.

Threat hunting is not however intended to only produce

detection rules, but to actively search the environment for signs

of compromise.

III. EXPERIMENTAL SETUP

The detection lab test environment is a very minimal and

simplified version of an enterprise environment, containing

only four computers. One might wonder, how can a whole

enterprise architecture be simulated with just four computers?

To understand that, each of the computers serve a critical

purpose and all of them can be scaled / duplicated to match an

actual enterprise environment. The two most important hosts

are the domain controller and the domain-joined workstation.

These two hosts form the active directory environment. The

most useful aspect of this is that the active directory is already

configured, and the defenders do not need to spend additional

time setting up a working Active Directory environment.

The domain controller and the workstation send their event

logs to a centralised location, the Windows Event Forwarding

server. The purpose of the Windows Event Forwarding server

(later WEF) is to act as a centralized location to handle all

the forwarded event logs, which are then sent from the WEF

server to a SIEM (Security information and event monitoring)

system. In this environment, the logs are sent to the Splunk

instance and the Fleet server.The log forwarding can be easily

configured via using Active Directory group policies, avoiding

the need to install separate log forwarding agents onto all the

hosts and servers. [10]. The last host is a Linux host running

the Splunk instance and other various tools bundled with the

detection lab package.

IV. THREAT DETECTION FRAMEWORK

The threat detection framework is created with the design

science research method approach by modifying the six steps

to turn them into questions. As per the design science research

method, the six steps for the framework are described below.

A diagram was created to demonstrate the cyclical approach

in threat detection, starting from identifying the threat and

ultimately reaching the communication of the results phase,

where the detection logic is ready to be shared with the

security community.

Fig. 1. Threat detection framework and the six phases

The diagram is a cyclical process, which starts from iden-

tifying the threat and ending with communication and is

read clockwise. The goal was to create a non-restrictive and

iterative process which can be used by anyone working with

threat detection. The process can be cycled multiple times

over when creating a single SIEM use case for detection, as

the demonstration with logic evaluation might show unwanted

results and the search must be specified to narrow down the

results which are defined in the identify and detect phases of

the process. Every use case can be created with this framework

since the goal of the framework is to provide a thought process

to guide through the detection logic creation.

A. Threat identification

In the first phase, the threat must be identified and defined,

and motivation must be given why this problem needs to be

identified. When creating detection logic, the more accurate

the threat definition, the less there are false positives and alert

fatigue originating from the detection logic [11]. To create

an accurate description of the threat, tactics, techniques, and

procedures should be considered.

A small thought process can be helpful to demonstrate the

logic behind the accurate description and identification of the

threat. As an example, the defenders want to detect possible

data exfiltration to external destinations. In order to detect this,

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 467 ----------------------------------------------------------------------------



the problem needs to be specified using tactics, techniques

and procedures. Data exfiltration itself is a tactic, with nine

techniques associated to it in the ATTCK framework, making

a general detection for data exfiltration nearly impossible.

The defender then chooses the most probable technique, data

exfiltration to cloud services. Lastly after the defenders have

narrowed down the original idea from detecting general data

exfiltration to data exfiltration to third part cloud services,

which in turn is (usually) large amounts of outgoing traffic

from a single endpoint to an external cloud service. Detecting

abnormal amounts of outgoing data from a single endpoint to

any or specific cloud service is more detailed and specified

threat than attempting to create a general rule to detect data

exfiltration.

B. Detecting the identified threat

Once the threat has been identified and defined, and the

motivation behind it has been stated, the defenders can follow

the framework into the next phase, detecting the threat. This

is also the second step of the design science research method,

defining objectives for a solution [12]. During this threat

detection phase, the defenders must now be able to identify the

detection capabilities for the threat. The objective is to define

and create detection capabilities to detect the threat identified

in the previous phase.

When considering the possibilities of detecting the identified

threat, the defenders must refer to their logging capabilities

and audit policies and determine first and foremost whether

the detection is even possible with the current policies and

available event logs. The ability to detect threats with the

detection logic framework is often related to being able to col-

lect the necessary and relevant logs. As defined earlier in the

research regarding threat definitions with the defense-in-depth

model, external network threats can usually be detected from

firewall traffic, such as network flow data, intrusion detection

and prevention system logs. The same applies to outbound

connections. To detect internal network communications, the

threat can be detected from firewall traffic generated inside the

protected network, such as SMB traffic generated in the local

network. Host threats are efficiently detected with Sysmon

and Windows event logging, as the threats appearing in hosts

tend to be malicious processes. The same conclusion was also

reached in a 2018 research conducted in the university of Oslo

regarding Sysmon and threat detection [13].

C. SIEM Use case

The third phase of the framework is to create a SIEM

use case on how the identified threat can be detected. The

third step is also designing and developing the artefact, as

stated in the design science research method [12]. In this case,

the artefact is the SIEM use case. The SIEM Use Case is a

general explanation of a security threat usually explained in

the form of a search query, using the search query language

specific to the SIEM. When building the SIEM use case, the

defender should start by defining the log source for the search

query based on the findings in the previous phase, how to

detect the threat. This will narrow down the search results

significantly, allowing the use of trailing wildcard searches or

simple keyword searches to see what log events are found.

An example of this would be to write a SIEM use case,

where the identified threat is the need to detect any use of

the popular hacking tool Mimikatz in the environment. As

stated in the previous phase, it was determined that the most

probable way of detecting Mimikatz use is from the Sysmon

event logs, related to new process create events. The defenders

now write the preliminary search query, where the Sysmon

event logs are searched for new processes that include the word

‘Mimikatz’. The purpose of writing the SIEM use case is to

incrementally add more search criteria to the query to narrow

down the results in the next steps. Creating very generic SIEM

use cases can be beneficial especially when the defenders are

not certain what log events they are searching for, allowing

them to freely discover useful log events or even find new

ways of detection while narrowing down the results.

D. Detection logic demonstration

Demonstrating the detection logic phase was already men-

tioned in the previous step, where the created SIEM use case

search query is launched and the defenders start investigating

the logs. The demonstration can be thought of as explaining

the detection logic in a “pseudocode” manner, such as: search

for ANY logs FROM Sysmon repository WHERE Event ID

equals 1 AND image (process name) contains *Mimikatz

FROM last 60 minutes. This way the detection logic is clearly

defined, and other analysts can also understand the logic of

what the search query is attempting to accomplish and what

are the search criteria.

By defining the detection logic clearly, the following step of

logic evaluation is more effective, as the defender now begins

to investigate the logs. In a more unspecified scenario, the

defender could be faced with thousands of log events, where

unnecessary events need to be filtered out. In these situations,

the method of elimination is proven to be effective, where the

search query is modified to include values that are not relevant

to the identified threat.

E. Logic evaluation

The logic evaluation phase is heavily involved with the

fourth phase, as the results of the detection logic demonstration

are evaluated here, as stated in the design science research

method. [12]. To evaluate the results, the defender must return

to the first two chapters and now evaluate the results and de-

termine if the original requirements were met with the created

artefact. If not, what kind of modifications need to be made to

the artefact, such as setting new conditions or excluding some

results that generate lots of false alarms. Iterating between the

fourth and fifth phases of the detection logic framework should

be done to achieve the original requirements.

The logic can be considered successful, once the search

query only produces events that are actual security threats and

need to be investigated further. This is however not possible,

as some edge cases always exist and might trigger the SIEM

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 468 ----------------------------------------------------------------------------



use case later, which makes the clear logic of the detection

to be extremely valuable for easier modification of the search

results, such as ignoring all specific events from a specific

host. The defender should also think critically whether the

generated search query is able to detect the issue defined in

the first chapter.

Some useful criteria for this include the amount of log

events should be as close to one as possible, the logic can be

applied to any environment or technology (tactics, techniques,

and procedures) and quick modifications can be easily done.

Should the defender during this phase discover a new use

case that the detection logic can not properly monitor, they

should create a separate detection logic for the new issue by

following the same process as before, except for now having

a very precise and already evaluated identified threat, which

should result an extremely well-functioning detection logic.

F. Communication of the results

Once the original requirements have been met and the

defender is satisfied with the results, the solution and the

artefact can now be shared with the respective audiences [12].

The communication of the problem is based on proper docu-

mentation of the detection logic in a format, which is readable

and understandable by anyone reading it.

The results will be documented in Sigma format, a universal

SIEM search query syntax [14]. By utilizing this method, the

detection logic is stored in a concise and easy to understand

format. When creating the detection rule in the Sigma format,

the same search query can be translated to most of the SIEM

technologies (if used correctly), making the defenders be truly

independent of the vendors. The Sigma format contains useful

information of the detection logic, such as its unique identifier,

author name, date of creation as metadata and the actual

detection logic.

V. CREATING ACTIONABLE DETECTION LOGIC

The detection framework in combination with the test

environment can now be used to create actionable detection

logic into an environment. Actionable detection logic refers to

SIEM search queries and detection rules which can be used

in a production environment to detect actual attacks [15]. In

addition to simulating an attack and creating detection based

on the results, the more important part is to examine why some

procedures and techniques are hard to detect. Some of them

might not leave expected log events behind or the detection

logic detects tens of thousands of similar events and the actual

malicious activity is lost within the sea of other log events.

More advanced adversaries and threat actors are known to take

monitoring into account and prepare their attacks to evade

defenses, as described in a study examining the same issue

but from the perspective of machine learning approach [16].

Suitable method for finding the simulated attack activity is

called simply searching, where the analysts search for relevant

log events, as described in four commonly used threat hunting

methods [17].

This chapter also ties in rest of the design science research

method, where the artifact (the detection logic framework)

will be demonstrated, evaluated, and finally communicated in

the form of finalized detection logic. The demonstration of

the artefact is shown after each sub-chapter, after the attack

was simulated and detection logic is built upon the findings

in the logs. Evaluation is also heavily combined with the

demonstration, as mentioned in the earlier chapters when the

detection framework was introduced. The final phase of the

design science research method of communicating the artefact,

as proposed by Peffers et al. [12] will be done by publishing

the detection logic in Sigma format, ready to use for everyone.

The published artefacts, the detection logic framework and

the newly created detection logic also add to the body of

knowledge in information systems research. The purpose of

this chapter is to demonstrate an attack lifecycle and how it

can be detected in each step of the lifecycle. To demonstrate

how the detection framework in combination with a simple

test environment can be used to create detections, a new

critical vulnerability was chosen for its severity and ease

of use, making it attractive to actual attackers. The chosen

vulnerability to demonstrate the detection framework and the

test environment is the recent “Zerologon” vulnerability, CVE-

2020-1472 [18]. Creating detections for new vulnerabilities is

often complicated and the detection framework aims to help

alleviate the pressure in detecting the most recent attacks and

exploit attempts.

A. Detecting Zerologon in Active Directory environment

Zerologon is a critical vulnerability, which allows a non-

privileged user to gain domain admin privileges. The attack

is also a later stage exploit, meaning the attacker must have

a solid foothold in the environment, such as a domain joined

workstation to form a TCP connection to the domain con-

troller [19]. The vulnerability works in such manner, that an

attacker sends 256 Netlogon packets to the domain controller,

in which one of the packets sets the computer account of

the domain controller’s password to eight zeroes. The attacker

can then change the password to their liking and have gained

domain admin rights in doing so. [20]. Once an attacker has

domain admin rights in an environment, they have successfully

compromised the entire environment and are able to do any

modifications in the domain, such as deploying ransomware

to each workstation, as discussed in an article written about

human operated ransomware [21].

The following sub chapters will describe the simulated

attacks and most importantly, what log events were left behind

and how those were turned into actionable detection logic.

B. Detecting initial compromise and domain enumeration in
attack simulation phase one

The goal of the attacker is to gather the necessary infor-

mation in this phase about the target, the domain controller.

First, the attacker wants to know if the built-in “Administrator”

account is present, as it already has domain administrator

access rights, making it a perfect target. The attacker does

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 469 ----------------------------------------------------------------------------



not need to escalate their privileges or attempt other attacks if

they are successful in compromising a domain admin account.

Secondly, the attacker must discover the domain controllers

name, which will be target of the attack.

When referring to the defense in depth model, the attacker is

now branching out from the host-based threats towards internal

network layers, where the enumeration uses built-in tools for

the domain controller and the hosts to communicate between

each other. Monitoring internal network layer becomes more

difficult, as the vast amounts of logs generated from regular

Active Directory functions clutter the SIEM and the defenders

will not be able to spot any irregularities easily.

Same logic applies to lateral movement, as the internal

network traffic and internal domain traffic log volumes are

staggering. Also having sufficient traffic monitoring in internal

networks is crucial, as local to local traffic might be even more

valuable to monitor compared to external network traffic, as

also proposed by Pepe Berba in a detailed article regarding

lateral movement and its detection [22].

Both goals can be achieved with abusing built-in function-

ality in Windows Active Directory environment. The attacker

also needs to find the domain controllers IP address, but it will

not be created into detection logic since it can be found out

with a simple ping command, which is widely used in nearly

any Active Directory environment. Based on that, the detection

logic frameworks first question is now answered, the defenders

need to be able to detect internal reconnaissance, mainly from

using net.exe and gpresult, native Windows tools. Since the

detection needs to be based on native tools, the defenders

must be ready to observe how the logic works in production

environment to suppress regularly occurring normal activity to

spot the anomalies.

The most logical method is to monitor both processes with

Sysmon and build the detection around the command line

arguments to be able to detect the potentially malicious usage.

The domain enumeration can be detected with monitoring

newly started processes with Sysmon event ID 1 (New process

was created). The same applies to detecting new processes

of gpresult.exe, with Sysmon event ID 1 (New process was

created). This enables the defenders to quickly see which

workstation or server started the processes and conduct investi-

gations should they be anomalous. The SIEM use case for both

processes will be monitoring Sysmon event ID 1. For net.exe,

the detection will be built on the command line arguments

presented in the attack simulation, “net user /domain”. The

same logic applies to the usage of gpresult.exe. The logic is

built on command line arguments: “gpresult /Z”.

The fourth stage of the detection logic framework suggest

explaining the logic behind the detection. The SIEM will

search for any events, where Sysmon Event ID is 1 (Newly cre-

ated process), the image (process name) equals to “*net.exe”

and “*gpresult.exe”, to be able to detect the usage of both

processes regardless of the directory they are being executed

from. Then finally, the used command line arguments will

be the main logic, as the purpose is to find the usage of

both “gpresult /Z” and “net user /domain”. Rather simple

logic, as Sysmon provides invaluable information to defenders

of launched processes and their command line arguments,

leveling the playing field against attackers. The hypothesis of

being able to detect the enumeration using native Windows

tools was successfully achieved, as can be seen from the

screenshot below:

C. Detecting Zerologon exploitation

After the simulation has transformed into active exploita-

tion, detection becomes harder. There are many ways of

monitoring the previously presented exploitation. Since the

goal is to create as robust and scaling detection logic as

possible, understanding the vulnerability and how it was

exploited becomes more important. In this research, a total

of three detection logic were created to detect the threat. The

threat that needs to be detected is the sudden spike in Netlogon

authentication packets from a workstation, resetting a com-

puter accounts password, and lastly the use of Mimikatz.exe.

The reason for creating three different detection logic is that

creating detection logic around the tool (procedure) often ig-

nores other tools, or more importantly what the tools are trying

to achieve (tactics and techniques). Advanced threat actors also

tend to have their own versions of Mimikatz [23] rendering

basic process monitoring obsolete. Based on the Zerologon

research, we understand that the vulnerability is exploited

by barraging the domain controller with many Netlogon

authentication packets and changing the domain controllers

machine account password to a null value. Similar themes

were examined in a recent research done in University of

Luxembourg, where graphs were used to investigate malicious

logon events [24].

Based on the brief overview of the present above, referring

to the defense-in-depth model can be helpful, as the attacker

now starts to exploit both the host and internal network layer.

The exploitation happens on the compromised host, but the

exploitation affects the target host. The attacker and the victim

communicate in internal network between each other, making

the detection require two approaches. The first approach is

to monitor malicious processes being executed on hosts and

the second approach is to create network detection logic for

malicious internal network traffic, such as one host generating

a sudden spike of Netlogon authentication requests. Since the

result of the successful Zerologon exploit leads to changing

the domain controller’s computer account’s password to a null

value, the threat can be categorized to host-based threats once

more.

The three threats mentioned above can be detected from

three different sources. Firstly, to detect any scripts attempting

to test whether a domain controller is vulnerable to Zerologon,

the monitoring can be focused on network traffic instead of

traditional Sysmon monitoring. To help with that, the defend-

ers can set up a packet capture to see what kind of network

traffic is generated during the test to help write a SIEM use

case. The second threat of domain controllers machine account

password change can be detected from Windows security

auditing logs, by monitoring event ID 4742 [25]. Finally, using

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 470 ----------------------------------------------------------------------------



Fig. 2. Example of a SIEM use case - Detecting domain enumeration

Mimikatz can be detected by Sysmon (would also be caught

by most antivirus products, but can also be detected without),

by monitoring newly created processes.

To create a SIEM use case for the large amount of Netlogon

authentication traffic can be done with the help of packet

capture. In this experiment, Wireshark (network traffic analysis

tool) was set to record traffic on the domain controller to pro-

vide a clear picture of what the Mimikatz Zerologon module

does, without needing to understand the code behind the tool.

The captured traffic showed a TCP connection between the

client and the server, using the RPC Netlogon protocol. (The

only requirement for successfully exploiting the Zerologon

vulnerability). The most important part is the packet analysis

of ”NetrServerAuthenticate2” request, where Netlogon was

attempted to account: dc (the computer account of the Domain

Controller) with 16 zeroes as the password, and the response

was successful. In the test environment, the network traffic

was also visible in the SIEM solution, but it did not offer

such deep insight into the traffic contents, thus eliminating the

idea of creating detection logic around two packets where the

request is 16 zeroes to a domain controller machine account

and the response is “OK”, the next best solution is to inspect

the amount of RPC Netlogon traffic from a single host to a

domain controller. The successful exploit of the vulnerability

can be detected from monitoring event ID 4742 and comparing

the results to see if the computer account that was changed

happened on a domain controller. SIEM use case for Mimikatz

can be done with a simple Sysmon based detection logic, like

the ones created previously.

SIEM use case for the Netlogon vulnerability regarding

network traffic will be created to monitor the number of

events in a specific time window. This way the detection

logic applies to any network traffic tools, without relying on

a specific vendor. The logic was to detect spikes in Netlogon

authentication traffic in a short period of time, very similar

to any generic brute force detection logic. Use case for

computer account password reset needs to search for event ID

4742 and the keyword: “Audit success”, indicating the exploit

was successfully done. Lastly, the use case for Mimikatz

detection will be made to monitor for newly created processes

with Sysmon event ID 1 and the image (process name) is

“*Mimikatz.exe”.

The logic for network traffic-based detection for Netlogon

traffic has the following logic: monitor any traffic, where the

service is dce rpc and destination port is TCP 135 [26]. The

logic then complicates a bit, when specific SIEM function-

alities needs to be used, so the alert only displays events

from a time window of 2 minutes and the number of events

is 50 or more. The time window and the event count can

be adjusted when necessary. Domain controllers might need

to be excluded from the searches, since many hosts use

the protocol for legitimate purposes, focusing the monitoring

to singular workstations. The logic for detecting computer

account password change is much more straight forward, the

SIEM searches for any Event ID 4742 events, where the

attached keywords are “Audit success”. The keyword can be

modified or removed completely to also detect unsuccessful

attempts of changing the computer account. Finally, the logic

behind detecting Mimikatz usage is to monitor all Sysmon

events with event ID 1 (Newly created process) and the image

(process name) is “*Mimikatz.exe”, making the detection rely

on the name of the process.

The logic of detecting a sudden spike in Netlogon traffic

originating from a single host was able to show the source IP

address of the attackers machine creating the Netlogon traffic

against the domain controller. The IDS / IPS solution in the test

environment is Zeek, hence the usage of index = zeek. Service

is also a bit vendor specific but can be easily transferred to

match other environments as well. The detection logic was

able to pinpoint the time when the vulnerability check from

Mimikatz was run, without relying on anything except network

traffic. The defenders can then inspect the source IP address

to determine whether the traffic is normal or not, for example

comparing it to DHCP logs.

The achieved results of the detection logic regarding

Mimikatz match the original hypothesis perfectly, as the

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 471 ----------------------------------------------------------------------------



detection logic was able to detect Mimikatz.exe running on

an endpoint based solely on the image (process name) name.

The detection logic itself is rather weak, and would probably

not detect more advanced threats, since simply changing the

name is sufficient in avoiding detection. String based searches

on processes should however be in place, since they offer easy

wins for the defenders, in case the attacker is lazy and does

not bother to change anything from the Mimikatz binary.

By monitoring commonly used hacking tools used by actual

threat actors, the defenders can create similar detection logic

for other tools also, such as Bloodhound, Empire, Metasploit

etc., as stated in the Crowdstrike report regarding the most

used penetration testing tools used by threat actors from

January to June in 2020 [27].

D. Detection domain controller exploitation

According to the threat detection logic framework, the

answer to which threats need to be detected is once more

divided into multiple answers. First, the defenders must be able

to detect any modifications to ntds.dit file, since it is a critically

sensitive file, containing usernames and their password hashes

among other things. Secondly, the defenders to be able to

detect login with NTLM hash, as pass-the-hash is rather hard

to detect. Referring to the defense in depth model introduced

in chapter two, the attacker has now penetrated all the layers of

the model and has reached the data layer, where the successful

exfiltration of the sensitive file is the end goal.

The second use case of authentication with NTLM hash

is moving back to the internal network threats and the host-

based threats, as the attacker now can successfully laterally

move to the final destination, the domain controller with

full admin user access rights. Since detecting pass-the-hash

is problematic,a workaround is to monitor logins with the

NTLM authentication. Some environments might still use

NTLM for authentication for legacy reasons, rendering this

detection logic useless. However, NTLM authentication is

rather outdated and should be monitored according to best

practices [28], especially when an administrator is logging in

with the outdated authentication. The threat can be detected

by monitoring successful logins, event id 4624 bundled with

NTLM authentication method. The goal is to detect NTLM

logins from administrative accounts, this can be achieved by

either monitoring certain accounts and manually typing them

into the detection logic, or by having a dynamic list, which

the SIEM reads and uses for detection logic.

Ntds.dit modifications are harder to detect, since file mod-

ifications and access is rarely actively monitored [29] due to

the sheer amount of log events. The attack originated from a

non domain joined host in this scenario, making the detection

rely on network traffic between the attacker and the domain

controller.

The SIEM use case for the legacy authentication for admin-

istrator user accounts can be easily monitored (depending on

the environment) by searching for successful logins, Windows

event id 4624 [30]. By using the event ID and the existing

fields, NTLM authentication can be detected by having a

wildcard search for NTLM in event ID 4624 logs, using the

AND operator. Use case for detecting the ntds.dit extraction

can be built on the information provided by the open-source

tool and monitoring network traffic “DRSGetNCChanges” and

“drsuapi”. These two keywords can be combined into the

search query with the AND operator to find the initial traffic,

adjusting and modifying as needed once the traffic is found

from the SIEM. The logic in both searches is rather simple, as

the attacks were mostly conducted with Windows native tools,

making keyword searches effective as the tools and protocols

are usually not in danger of modification, such as renaming

malicious security tools as described in the Mimikatz.exe

example earlier.

By applying the logic mentioned above to detect NTLM

authentication for administrator accounts, the SIEM use case

was able to detect the successful legacy authentication login

for the “Administrator” account. The search query was modi-

fied a bit to include the term “Logon Process”=”NtlmSsp” and

“Authentication Package”=”Ntlm” to narrow down the results

as much as possible to avoid any unnecessary false positive

detections.

Since the ntds.dit was extracted with the open-source tool

to a remote host, the logical choice is to monitor network

traffic with the keyword “DRSGetNCChanges”. By doing this,

the event was visible in network traffic, clearly indicating the

source IP address to be the attacker’s Kali Linux machine, and

the target being the domain controller.

Monitoring only network traffic to detect the successful

extraction of the ntds.dit file is probably not a good idea, as

different tools might be able to achieve the same result with

different methods, leaving the defenders in the dark. A more

universal detection logic would be to monitor file modifica-

tions, as demonstrated by Stealthbits in their article regarding

Ntds.dit password extraction [31]. Below is a screenshot of

the contents of the ntds.dit file that was used to compromise

the whole domain, using the open source tool to extract the

contents of the file and providing the attacker the keys to the

kingdom.

VI. CONCLUSION

The main purpose of this work was to introduce the reader

to attack simulation and detection engineering. In order to do

that, a recent critical Windows cryptographic vulnerability was

exploited in the demonstration phase and the attack life-cycle

was documented and actionable detection logic was created

upon the findings. The concrete end results of this work

were the detection logic framework for generating detection

logic for SIEM systems and the secondary product were the

detection logic rules created during the demonstration.

The detection logic framework was proven to be efficient in

guiding the thought process of detection logic creation. How-

ever, during the testing it became apparent that background

knowledge of attacks and detection infrastructure is crucial.

The detection logic framework is best suited for security

analysts, who are actively creating new detection logic, as they

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 472 ----------------------------------------------------------------------------



Fig. 3. Obtaining the password hash of the administrator account by exploiting
the Zerologon vulnerability

will benefit the most from it by being able to think of possible

ways of detection.

The framework was not as agile and flexible as initially

thought, since the initial step of identifying the problem

defines the following steps rather strictly, as mentioned earlier.

This might not be an issue, if the reader fully understands

the threat and is able to simulate it. Since more advanced

knowledge of the topic is required, the framework might be a

bit too limiting for less experienced readers. The authors bias

was shown here, as previous work experience in a security

operations center prepared for understanding attacks and their

life cycles, which might be harder for people not working in

directly security monitoring related professions.

Overall, the original research questions were successfully

answered throughout the research and the research results can

be communicated, as per the design science research method

suggests. The detection logic framework is aimed to be helpful

for generating use cases from simulated attack scenarios in a

very general way. Once the framework has been used and

more attacks are simulated, the framework is expected to

change to better suit the purposes of generating actionable,

vendor neutral detection rules for new and emerging threats

in the future. The detection logic framework also incorporates

elements of threat hunting in it, making it usable for threat

hunting as well.

VII. ACKNOWLEDGEMENTS

Authors wish to thank the anonymous reviewers for their

valuable comments and feedback that helped improve the

quality of the paper.

REFERENCES

[1] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson,
“Deep learning for unsupervised insider threat detection in structured
cybersecurity data streams,” CoRR, vol. abs/1710.00811, 2017. [Online].
Available: http://arxiv.org/abs/1710.00811

[2] M. Mayhew, M. Atighetchi, A. Adler, and R. Greenstadt, “Use of
machine learning in big data analytics for insider threat detection,”
in MILCOM 2015-2015 IEEE Military Communications Conference.
IEEE, 2015, pp. 915–922.

[3] M. Shashanka, M.-Y. Shen, and J. Wang, “User and entity behavior
analytics for enterprise security,” in 2016 IEEE International Conference
on Big Data (Big Data). IEEE, 2016, pp. 1867–1874.

[4] I. Ghafir, M. Hammoudeh, V. Prenosil, L. Han, R. Hegarty, K. Rabie, and
F. J. Aparicio-Navarro, “Detection of advanced persistent threat using
machine-learning correlation analysis,” Future Generation Computer
Systems, vol. 89, pp. 349–359, 2018.

[5] B. E. Strom, J. A. Battaglia, M. S. Kemmerer, W. Kupersanin,
D. P. Miller, C. Wampler, S. M. Whitley, and R. D. Wolf,
“Finding cyber threats with attck-based analytics,” 2015. [On-
line]. Available: https://www.mitre.org/publications/technical-papers/
finding-cyber-threats-with-attck-based-analytics

[6] K. Kent and M. P. Souppaya, “Sp 800-92. guide to computer security
log management,” 2006.

[7] D. Green, “Building cyber resilience by changing your approach
to testing,” 2020. [Online]. Available: https://www.f-secure.com/en/
consulting/our-thinking/cyber-security-resilience

[8] C. Zimmerman, “Cybersecurity operations center,” The MITRE Corpo-
ration, 2014.

[9] J. Kerwin, “Applying the scientific method to
threat hunting,” Tech. Rep., 2020. [Online]. Avail-
able: https://www.sans.org/reading-room/whitepapers/threathunting/
applying-scientific-method-threat-hunting-39610

[10] Microsoft, Use Windows Event Forwarding to help with
intrusion detection, Microsoft, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/security/threat-protection/
use-windows-event-forwarding-to-assist-in-intrusion-detection

[11] C. Wang, J. Clark, and D. Wilcox, “The state of the soc,”
2018. [Online]. Available: https://fidelissecurity.com/resource/report/
the-state-of-the-soc/

[12] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A
design science research methodology for information systems research,”
Journal of management information systems, vol. 24, no. 3, pp. 45–77,
2007.

[13] V. Mavroeidis and A. Jøsang, “Data-driven threat hunting using sysmon,”
in Proceedings of the 2nd International Conference on Cryptography,
Security and Privacy, 2018, pp. 82–88.

[14] F. Roth and T. Patzke, What is Sigma, 2020. [Online]. Available:
https://github.com/Neo23x0/sigma#what-is-sigma

[15] G. Couchard, W. Qimin, and T. L. Siew, “Catching
lazarus: Threat intelligence to real detection logic - part
one,” 2020. [Online]. Available: https://labs.f-secure.com/blog/
catching-lazarus-threat-intelligence-to-real-detection-logic/

[16] Q. Chen and R. A. Bridges, “Automated behavioral analysis of malware:
A case study of wannacry ransomware,” in 2017 16th IEEE International
Conference on Machine Learning and Applications (ICMLA). IEEE,
2017, pp. 454–460.

[17] Sqrrl, “Hunt evil - your practical guide to threat
hunting,” 2021. [Online]. Available: https://www.threathunting.net/
files/hunt-evil-practical-guide-threat-hunting.pdf

[18] Microsoft, Netlogon Elevation of Privilege Vulnerability - CVE-
2020-1472, 2020. [Online]. Available: https://msrc.microsoft.com/
update-guide/vulnerability/CVE-2020-1472

[19] M. Simakov and Y. Zinar, “Zerologon (cve-2020-1472):
An unauthenticated privilege escalation to full domain
privileges,” 2020. [Online]. Available: https://www.crowdstrike.com/
blog/cve-2020-1472-zerologon-security-advisory/

[20] T. Tervoort, “Zerologon: Instantly become domain admin by subverting
netlogon cryptography (cve-2020-1472),” 2020. [Online]. Available:
https://www.secura.com/blog/zero-logon

[21] V. Vissamsetty, “Protection against targeted
active directory ransomware,” 2020. [On-
line]. Available: https://medium.com/attivotechblogs/
protection-against-targeted-active-directory-ransomware-edf86fbbb389

[22] P. Berba, “Data analysis for cyber security 101: Detecting lateral
movement,” 2020. [Online]. Available: https://towardsdatascience.com/
data-analysis-for-cyber-security-101-detecting-lateral-movement-2026216de439#
9c29

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 473 ----------------------------------------------------------------------------



[23] Secureworks, “Bronze union cyberespionage persists despite
disclosures,” 2017. [Online]. Available: https://www.secureworks.com/
research/bronze-union

[24] F. Amrouche, S. Lagraa, G. Kaiafas, and R. State, “Graph-based
malicious login events investigation,” in 2019 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM). IEEE, 2019,
pp. 63–66.

[25] Microsoft, 4742(S): A computer account was changed, 2017.
[Online]. Available: https://docs.microsoft.com/en-us/windows/security/
threat-protection/auditing/event-4742

[26] M. Felton, “Digging deep into the ad ds workstation logon process –
part 3,” 2017. [Online]. Available: https://journeyofthegeek.com/2017/
03/23/digging-deep-into-the-ad-ds-workstation-logon-process-part-3/

[27] Crowdstrike, “Nowhere to hide – 2020 threat hunting
report – insights from the overwatch team,” 2020. [On-

line]. Available: https://go.crowdstrike.com/rs/281-OBQ-266/images/
Report2020OverWatchNowheretoHide.pdf

[28] Microsoft, Network security: Restrict NTLM: Audit NTLM authentica-
tion in this domain, 2017. [Online]. Available: https://docs.microsoft.
com/en-us/windows/security/threat-protection/security-policy-settings/
network-security-restrict-ntlm-audit-ntlm-authentication-in-this-domain

[29] J. Petters, “Complete guide to windows file system
auditing,” 2020. [Online]. Available: https://www.varonis.com/blog/
windows-file-system-auditing/

[30] Microsoft, https://www.varonis.com/blog/windows-file-system-auditing/,
Microsoft, 2017. [Online]. Available: https://docs.microsoft.com/en-us/
windows/security/threat-protection/auditing/event-4624

[31] Stealthbits, “Ntds.dit password extraction,” 2020. [Online]. Available:
https://attack.stealthbits.com/ntds-dit-security-active-directory

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 474 ----------------------------------------------------------------------------




