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Abstract—The problem of driver identification is an urgent
one, and many publications propose various methods to solve it.
Most of these papers use sensor data from the car's CAN bus to
get a driver's fingerprint. However, at the moment, not all the
sensors mentioned in these works are available without knowing
the protocol details of a particular vehicle model, and this fact
severely limits practical use of the existing methods in many
applications. This paper explores the possibility of identifying the
driver using information only from sensors listed in SAE J1979
specification. It turns out, that it is still possible to identify vehicle
driver using these sensors. However, the identification accuracy
decreases by approximately 15% compared to methods, in which
the driver is identified with the full set of sensors, and is 79%
versus 91% on the full set of sensors (on the dataset of ten
drivers).

[. INTRODUCTION

A modern car is not just a vehicle, but a full-fledged smart
device with various multimedia functions, additional security
systems and a large number of different sensors. Until the 70th
year of the last century, any car was equipped with a maximum
of three sensors: fuel level, coolant temperature and oil
pressure. They were connected to magnetoelectric and light
display devices on the instrument panel. Their purpose was
only to inform the driver about the features of the engine and
the amount of fuel. At that time, the device of car sensors was
very simple. Today, a car is a computer network consisting of
at least 20 specific microcomputers in its composition and on
average even with 30-40 network members. All these
microcomputers communicate with each other in real time, so
that the driver's trip is safe and comfortable, and the engine
operation is efficient.

The number of connected cars is projected to reach 353
million by 2023. Connected cars are cars that communicate
with other systems outside of the car. These systems can be
other cars, various devices (traffic lights, garage doors),
networks and services. Services can provide discounts on
insurance services depending on the driving style [1], monitor
the condition of the car in real time and advice on maintenance,
route information, tips for improving driving style and fuel
consumption. Connecting a car to third-party servers and
collecting data from it poses security problems, and the car
becomes more vulnerable to theft. As cars become more
intelligent, attacks targeting them also become more intelligent.
In modern times, attackers use various methods to steal a car
key. It is enough for the hijacker to get into the car and start it,
after that the car becomes at his/her full disposal. For additional
protection, it is suggested to use biometric authentication tools
based on both the driver's physiological characteristics, such as
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fingerprinting, scanning the eye shell, face or voice recognition,
and behavioral characteristics. One of the ways to improve the
security is to analyze the driver's driving style. Each driver has
specific driving habits: specific acceleration and braking habits,
overtaking maneuvers, and changing lanes — all of which can
be used to identify the driver, and therefore, detect situations of
unexpected driver’s change (due to the theft). The features of
the driver's driving style are reflected in the trip's telematics
data and can be deduced with a help of intelligent data analysis
methods. In addition, driver identification can be an important
source of personalization for various in-car infotainment
systems and driver support applications.

Most of the data characterizing the driving style can be
accessed via the vehicle's CAN bus. CAN (Controller Area
Network) is an internal network that connects all the sensors of
the car and through which they communicate with each other.
It is very difficult to connect directly to it; therefore, the OBD
(On-board Diagnostic) interface is typically used, allowing one
to request data from the CAN bus. However, obtaining the
required data sometimes can be problematic. Although a huge
amount of data passes through the data bus every second, one
needs to know the identifier (ID) of each specific parameter
that needs to be extracted. Most parameter IDs are vendor-
specific, non-public (not described in public documentation),
therefore, it is very difficult to get these sensors' data (as well
as interpret them). For example, such parameters as brake pedal
position, steering angle and some others that are obviously very
informative in identifying the driver are not public, therefore,
their OBD IDs are not described in public documentation and
may vary on different vehicle models. The authors of previous
studies [2], [3], [4], that address the problem of driver
identification using CAN bus data, use many non-public
features, which allows to obtain good identification accuracy,
but may severely limit the practical applicability of these
methods (especially, with respect to applications, not associated
with particular car vendor).

In this paper, we investigate driver identification using
telematics data, obtained from the vehicle's CAN bus via OBD-
IT interface. Specifically, in this paper we analyze the role of
non-public parameters in identifying the driver and evaluate the
possibility of identifying the driver using only public ones.
Therefore, unlike the earlier works that addressed this problem,
we construct driver identification models using only public
telematics data (with public OBD-II sensor IDs) and compare
the quality of identifying multiple drivers with the quality of
identifying multiple drivers based on a dataset including also
non-public parameters. To do this, we review the results of past
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research (sec. II), consider the available dataset (sec. III), and
possible ways of obtaining data from the car's CAN bus (sec.
IV). We then summarize main machine learning techniques
used for driver identification (sec. V), describe the selected
features, data preprocessing pipeline (sec. VI), and the results
of identifying drivers with the developed features (VII).
Finally, in Section VIII, we discuss the results obtained and
answer the question whether it is possible to identify the driver
using only open CAN bus features.

II. RELATED WORK

In this section, we discuss previous works that have
addressed the problem of identifying the drivers for telematics
data. The review highlights the methods that were used for the
identification task, as well as the data used for analysis.

There are various ways to get telematics data about a trip.
The authors of [5], [6] used data obtained in a car driving
simulator. The researchers in [5] investigated driver behavior
signals that are observed when a driver follows another car.
The following signals were used for the study: use of the
accelerator pedal, brake pedal, car speed and distance to the
car in front. In the work [5] using the Gaussian Mixture Model
(GMM) achieved 81% prediction accuracy with 12 drivers and
73% for 30 drivers. The authors of [6] investigated the features
of the overtaking style for each driver. Using the accelerator
and steering data, it was possible to achieve 85% accuracy of
the prediction for 20 drivers. The Hidden Markov model
(HMM) was used for the analysis.

Other researchers received telematics data using a
smartphone. Sensors that are used in a smartphone: GPS,
accelerometers, magnetometers, gyroscopes. Thanks to these
sensors, researchers can get information about acceleration,
speed, rotation speed, etc. In the works [7], [8], [9] this data is
used for profiling drivers and other tasks. A study of the
problem of driver identification using an inertial sensor
describes in the work [10]. Using SVM and k-means methods,
the authors managed to achieve 60% accuracy between 2
drivers.

One of the most reliable sources of information about the
movement of a car is the car itself. As mentioned earlier, the
car has a huge number of sensors that exchange telematics
data with each other. To get real-time data, there is need to
connect to the vehicle's internal network. In the works [2], [3],
[11], [12], data obtained from the car's CAN bus using an
OBD-II dongle is used. The authors of [12] using information
from 5 car sensors using SVM, Random Forest, Naive Bayes,
KNN methods were able to achieve 99% accuracy among 15
drivers. Kwak, Woo and Kim with a dataset from data from 51
sensors, got an accuracy of about 95% among 10 drivers [2].

Neural network and deep learning technologies have made
a big step forward over the past few years. In recent published
papers, some of the neural network methods were used to
solve the problem of driver identification. The authors of [13]
used convolutional neural network in their work and achieved
99% accuracy for 10 drivers using data from the car's CAN
bus. In the article [4], LSTM-Recurrent Neural Network uses
for driver identification. This solution not only showed high
accuracy of driver identification, but also showed a significant
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advantage of his method before other methods when using
data with noise.

From the review of works, we can highlight the point that
this problem has been solved for a long time and it is relevant.
Different algorithms and different data sources are used to
solve the problem. The sources are mainly smartphone sensors
and data from the car's CAN bus. The main algorithms that
showed the greatest efficiency: random forest, SVM, KNN,
neural networks.

III. AVAILABLE DATASET

In order to identify the driver, there is a need to get
telematics data of the trip. As part of the work, the data received
from the CAN bus of the car via the OBD-II dongle will be
considered. Looking at past work, the authors of [2], [3], [4] use
the OCSLab security dataset for research [14]. The data was
collected in South Korea, using a KIA Motors Corporation
vehicle. The experiment involved 10 drivers who passed the
route length of 23 km. There were 3 types of roads on the route:
city road, freeway, and parking. Each type of road had its own
characteristics. There were traffic lights and pedestrian
crosswalks on the city road, but none on the motorway. In the
parking lot, the driver had to drive slowly and carefully. For
reliability, each driver drove the route back and forth. Data was
collected via OBD-II and CarbigsP (OBD-II scanner).

It is difficult to get a dataset similar to the OCSLab security
dataset or sensors used in the work [12]. There is a limited set of
open ODB-II identifiers [15] and the most informative sensors,
such as the angle of rotation of the wheel, pressing the brake
pedal, etc. are unavailable. Sensors that are not included in the
list of open sensors may have different IDs for each
manufacturer and manufacturers do not put them in the public
domain. Moreover, different models from the same
manufacturer may also have different IDs. One of the options to
get the necessary IDs is reverse engineering CAN bus, when the
OBD-II dongle listens and records all the data that passes
through the CAN bus and then this traffic is analyzed in special
software.

It is not always possible to get information from the desired
sensors. Therefore, in this work, we will consider the problem
of identifying drivers using data only from sensors whose IDs in
OBD-II are publicly available and anyone with an OBD-II
dongle can get data from them.

IV. CAN BUS AND OBD-II

As mentioned earlier, a modern car consists of a large
number of microcomputers that control various car systems.
These microcomputers are called Electronic Control Units
(ECUs). The safety and comfort of trip depends on real-time
data exchange between different ECUs. The ECU is responsible
for the detection of accidents, the implementation of anti-lock
braking, airbag control, etc. Typically, ECUs are networked on
one or more buses based on the Controller Area Network
(CAN) standard. ECUs communicate with each other using
packets. The packet that is sent over the bus is visible to all
blocks, and each network component decides whether the
packet is intended for it.
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Getting data directly is a rather difficult task, since the entire
CAN bus is located inside the car. To access it, one needs to get
into the wiring of the car, which may cause damage and the
inability to continue using the car. A simpler method is OBD-II.
OBD-II is an on-Board vehicle diagnostic standard that has been
mandatory for cars sold in the United States since 1996 In
Europe, the equivalent of OBD-II is EOBD. The OBD-II
standard specifies a standardized hardware connector, its pinout,
available protocols and message format. This connector is
connected directly to the CAN bus, therefore, it can be used it to
get the necessary data. To do this, one should send a message in
a format understandable by OBD-II, which is converted to the
format of the CAN packet, and passed to the bus. Data is
received in reverse order. There are various OBD-II adapters
that can be connected via wire/Bluetooth/Wi-Fi and used to
obtain real-time telematics data.

Obtaining telematics data from OBD-II is regulated by SAE
J1979 [16]. The ISO 15031 standard is based on this document.
The SAE J1979 standard defines several diagnostic modes, such
as: show current data, show freeze frame data, show saved
diagnostic trouble codes, and others. To get data by sending the
mode number and parameter ID (PID). Each parameter has its
own PID. The ECU must respond to the message and send the
requested data value. All data values returned for sensor
readings will be actual readings, not default values or substitutes
used by the system due to a malfunction of this sensor. The
table of open PIDs and available operating modes is also
specified in [16]. An illustration of the telematics data extraction
from the vehicle is shown in Fig. 1.The main problem is that
manufacturers are not required to implement all the PIDS listed
in [16], and they are allowed to include their own PIDS that are
not listed. For this reason, it is very difficult to collect datasets
similar to those in section III from any vehicle. A short list of
OBD-II parameters is shown in Table I.

TABLE I. SHORT LIST OF OBD-II PARAMETERS

PID Data bytes Description Min Max Units
(hex) returned value value
0C 2 Engine speed 0 16,383.75 | RPM
0D 1 Vehicle speed 0 255 km/h
OF 1 Intake air -40 215 °C
temperature
49 1 Accelerator 0 100 %
pedal position D
11 1 Throttle 0 100 %
position
63 2 Engine 0 65,535 Nm
reference torque

V. DRIVER IDENTIFICATION METHODS

Based on the works [9], [10], [11], [12] we highlight
several machine learning algorithms that have shown good
results in identifying drivers.

A. KNN

The nearest neighbor method is one of the simplest
machine learning algorithms. Although it is quite simple, it is
a fairly powerful algorithm that provides fairly high accuracy
for most tasks [17]. The KNN method uses the well-known
principle of «Cicero pares cum paribus facillime
congregantury» («Birds of a feather flock together») and tries
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to classify an unknown sample based on the known
classification of its neighbors. An important parameter of this
method is k& — the number of nearest neighbors, based on which
the driver class will be determined. We analyze the accuracy
of the method with different values of k. The Euclidean
distance will be used as the distance measure.

B. Decision tree

A decision tree is a hierarchical tree structure that displays
decision points that are formed from rules of the form " If ...,
then ...". Rules are automatically generated during training on
the training set. Analytical models in the form of decision trees
are more verbalizable, interpretable, and understandable to
humans. Another advantage of this type of algorithm is the
relatively low cost of data preparation. As hyperparameters,
we will consider the maximum depth of the tree. The deeper
the tree, the more divisions it has and the more information it
has about the data.

C. Random forest

The forest consists of a large number of individual decision
trees that act as an ensemble. The forecast is obtained by
aggregating responses from multiple trees. The fundamental
idea of this algorithm is obvious and effective — the wisdom of
the crowd. A large number of relatively uncorrelated trees will
surpass any single tree. An important hyperparameters that we
consider are the number of trees and the maximum depth of
each tree.

D. Gradient boosting

Gradient boosting is a machine learning technique for
classification and regression problems that builds a prediction
model in the form of an ensemble of weak predictive models,
usually decision trees. The main idea of boosting is to combine
weak functions that are built during an iterative process, where
at each step a new model is trained using error data from
previous ones. A hyperparameters that we consider are the
number of trees, learning rate and tree depth.

E. Support Vector Machine

SVM is used for solving the binary classification problem.
The main idea of this algorithm is to find the best line or
boundary to divide an n-dimensional space into classes. This
separation makes it easy to put a new data point in the correct
category when solving a classification problem. The boundary
of the best solution is called a hyperplane. There are several
drivers in the dataset that is used for identification research.
The other algorithms solve multiclass classification problems.
SVM solves the binary classification problem and will treat
the problem as one against all. If we consider the problem as a
method of driver authentication, when it is necessary to decide
whether the driver is correct or not, then this algorithm should
cope with this task.

VI. METHODOLOGY

A. Data description

We use the modified OCS Lab security dataset as the data
for the study [14]. All data from sensors whose IDs are not
specified in SAE J1979 have been removed from it. We also
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Fig. 1. Telematics data extraction from the vehicle

have removed strongly correlated features such as
Absolute_throttle_position and Throttle position_Signal, and
the data from the Short Term Fuel Bank (STFB) sensor.
Instead, the Long term fuel bank is taken into account, which
is based on the STFB values. The list of features that will be
used for the study is presented in Table II.

B. Feature engineering

In several previous works [18], [19], additional features
such as Acceleration Vehicle Speed (1) and Jerk Vehicle
Speed (2) were calculated based on the data obtained. We will
also add these features to the main dataset. These features can
show us sudden changes in speed, which may be the driver's
personal characteristic. Acceleration was computed using the
following equation:

Uy (£2)—vx (£1)
ty— 1ty

(M

where t, is the current time stamp, and t, is the previous time
stamp.

ax(tz) =

Successively the jerk vehicle speed was computed as:

ax(tz)—ax(t1)
-1y

Jx(t2) = 2

C. Sliding window

After adding additional features all trips were divided into
moving windows. The length of the window and its pitch are
selected during the experiment. The following statistical
features were calculated for each window: mean, median,
variance, standard deviation, maximum, skewness and
kurtosis. Thus, the number statistical features were obtained
is 84.
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D. Normalization

Data from sensors have different measurement units and
scales, so we normalized data using Min-Max normalization.
This transformation is mandatory for the KNN and SVM
algorithms. The data were normalized according to the
following formula:

(xj—min(x;))

)

where min is the minimum value of feature data, and max is
the maximum value of the feature respectively.

t max(x;)—min(x;)’

E. Evaluation Metrics

The task of identification is to correctly identify the driver.
Assuming that each driver can be viewed as a separate class,
the identification problem can reduced either to binary
classification (when we need to determine the correct driver or
the wrong one), or to the multi-class identification problem
(when we need to determine the particular driver). Therefore,
typical classification metrics used for classification were
selected as metrics for evaluating the results of driver
identification.

Accuracy is the most frequently used quality metric for
identifying drivers in previous works. This metric will also be
calculated in this paper. This calculation will be performed to
compare changes in this metric for different features, such as
features that are publicly available via OBD and all features
that are available in this data set. Additionally, 2 more metrics
will be calculated: precision and f-score.

No doubt, that in practical applications other criteria for
evaluation of driver identification methods can also be
important (for example, computational or memory complexity,
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achieving certain ML model learning characteristics in limited
conditions). However, the main goal of this work is not to
propose a new method of driver identification, instead, the
goal is to assess the impact of non-public features on the
accuracy. Therefore, we use well-known methods, including
those that have performed well in similar works.

VII. RESULTS AND DISCUSSIONS

Cross-validation for 5 folds is used to evaluate model
generalization. The model is trained using data of 4 blocks,
and is evaluated on the data of the 5. Before cross-validation,
data is not shuffled, so that it does not happen that the train set
contains data in the i™ and (i + 2)" time window, and the

validation set contains the (i+1)" time window.

TABLE II. THE SELECTED FEATURES FOR THE STUDY

Feature Description Range Units
'Accelerator Pe | The accelerator pedal sensor [0;100] %
dal_value transmits the position of the
accelerator pedal to the
engine control unit.
'Intake_air_pres The measured value of the [0;255] kPa
sure' intake manifold pressure
sensor are required to
calculate the intake air mass.
'Absolute_thrott Actual position of the [0;100] %
le_position' throttle
'Long_Term_Fu Fuel adjustment as a [-100;99.2] %
el Trim Bankl' percentage in the long term
'Engine_speed' Number of revolutions per [0;16383.7 RPM
minute performed by the 5]
engine
'"Torque_of frict | Friction torque is the torque [-125;130] %
ion' caused by the frictional force
that occurs when two objects
in contact move.
'Engine_coolant Temperature of the [-40;215] C
_temperature coolant/antifreeze mix in the
cooling system, giving an
indication of how much heat
the engine is giving off
'Engine_torque' It is a rotating force [-125;130] %
produced by an engine’s
crankshaft.
'Calculated LO This value indicates a [0;100] %
AD_value' percentage of peak available
torque.
'Vehicle speed' 2 It is current speed of the [0;255] km/h
vehicle
0.78
0.76 4
> 0.74 4
E
3
g 0.72 4
0.70 4
0.68 4
2'0 4:0 E:O 8‘0 l(‘)O 1&0

Size of sliding window

Fig. 2. Accuracy depends on the size of the sliding window
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We have analyzed the effect of the size of a moving window
on the accuracy of driver prediction. The sliding window should
capture the driver's fingerprint. If the window size is small, then
the features of each driver will be impossible to catch. If the
window size is large, the driver's fingerprint may be blurred due
to the possible large number of events that occurred on the road
during this time period. The Fig. 2 shows the dependence of
accuracy on the window size. A similar dependence of
accuracy on the window size was found in [4].

The window size was selected as a result of studying the
dependence of accuracy on the size of the time window, which
is shown in Fig. 2. The size of the sliding window is 30
seconds in increments of 1 second.

For each classification algorithm, section V discussed
hyperparameters that will be further selected for the best
accuracy of the algorithm. For the random forest algorithm,
the following features are configured: the number of trees and
the depth of each tree. By selecting the value of
hyperparameters, accuracy was improved to 0.74 compared to
0.79 for the default features. The value of the selected
features: number of trees — 900, maximum depth — 30. For the
decision tree algorithm, selecting the maximum depth
parameter did not significantly change accuracy: 0.68 for the
standard value and 0.72 for the selected value of 63. For the
KNN algorithm, selecting the «number of neighbors»
parameter did not change accuracy and the value remained at
0.5. It was able to improve the accuracy from 0.65 to 0.78 for
the gradient boosting algorithm. Hyperparameter values are:
number of trees — 1000, learning rate — 0.03, a tree depth — 9.

To solve the classification problem, we used 5 algorithms.
For each algorithm, we calculated quality metrics for full
OCSlab security dataset, each fold and on average. The results
for the random forest algorithm are shown in Table III, for the
Decision tree algorithm in Table IV, for the KNN algorithm in
Table V, for Gradient boosting algorithm in Table VI and for
SVM algorithm in Table VII.

For comparison, quality metrics were first calculated on
the full dataset. Accuracy on the random forest algorithm was
91%, which generally coincides with the accuracy in other
works that study the full OCSLab security dataset. Similarly,
we calculated accuracy on a dataset with open parameters and
got a value of 79%. The decrease in accuracy can be explained
by the fact that we removed some informative parameters that
the researchers used from the full dataset. The most important
features in the random forest algorithm are shown in the Fig. 3.

The accuracy of guessing drivers depends on their total
number. The maximum accuracy will be when you need to
guess from 2 drivers, when the identification problem is a
binary classification problem. As the number of drivers
increases, the accuracy of guesses will decrease. In order to
study how the accuracy changes when increasing the number of
drivers we formed combinations of only 2, 3, etc. drivers and
calculated the accuracy of detecting a driver in these
combinations. Fig. 4 shows the results.

If we randomly guess the driver, the theoretical accuracy
will be 10%. In our results, we obtained an accuracy almost
80%, which can be considered a good result. If we use driver
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identification as a means of protecting the car from theft, then
the problem becomes a binary classification, when we need to
decide whether the driver is right or wrong. With this problem,
the result of our research showed that we can identify the driver
with 99% accuracy.

TABLE III. THE RESULTS FOR RANDOM FOREST ALGORITHM

Full Dataset with open PIDs
dataset |7 2 [ 3 | 4 5 | Mean
Fold | Fold | Fold | Fold | Fold
Accuracy 0.91 0.7 | 0.84 | 0.81 | 0.84 | 0.74 0.79
Precision 0.88 0.65 | 0.82 | 0.79 | 0.81 0.8 0.77
F-Score 0.81 0.62 | 0.79 | 0.77 | 0.82 | 0.71 0.74
TABLE IV. THE RESULTS FOR DECISION TREE ALGORITHM
Full Dataset with open PIDs
dataset T3 [ 4 5 | Mean
Fold | Fold | Fold | Fold | Fold
Accuracy 0.74 0.56 | 0.8 | 0.78 | 0.77 | 0.68 0.72
Precision 0.73 0.57 | 0.79 | 0.72 | 0.7 0.72 0.7
F-Score 0.69 0.53 | 0.78 | 0.7 | 0.71 | 0.63 0.67
TABLE V. THE RESULTS FOR KNN ALGORITHM
Full Dataset with open PIDs
dataset |77 2 [ 3 | 4 5 | Mean
Fold | Fold | Fold | Fold | Fold
Accuracy 0.64 0.47 | 052 | 0.53 | 0.51 | 046 0.5
Precision 0.62 0.46 | 0.51 0.5 | 049 | 045 0.48
F-Score 0.59 0.43 | 048 | 049 | 048 | 042 0.46

TABLE VI. THE RESULTS FOR GRADIENT BOOSTING ALGORITHM

Full Dataset with open PIDs
dataset |7 2 [ 3 [ 4 5 | Mean
Fold | Fold | Fold | Fold | Fold
Accuracy 0.91 0.67 | 0.83 | 0.81 | 0.84 | 0.75 0.78
Precision 0.91 0.67 | 0.82 | 0.78 | 0.84 0.8 0.78
F-Score 0.85 0.62 | 0.79 | 0.78 | 0.84 0.7 0.75
TABLE VII. THE RESULTS FOR SVM ALGORITHM
Full Dataset with open PIDs
dataset ™ 2 3 4 5 Mean
Fold | Fold | Fold | Fold | Fold
Accuracy 0.78 0.58 | 0.66 | 0.63 | 0.72 | 0.64 0.65
Precision 0.78 0.54 | 0.65 | 0.65 | 0.68 | 0.64 0.63
F-Score 0.7 049 | 0.62 | 0.61 | 0.67 0.6 0.6

VIII. CONCLUSION AND FUTURE WORK

The main goal of this study is to solve the problem of
driver identification using telematics data. This work has an
important difference from other studies. Telematics data that
was obtained using the car's OBD-II was also used in previous
works. But most of the parameters that the authors captured
are difficult to get, because the IDs of these parameters are
non-public. In this work, we used only public OBD-II
identifiers. Several machine learning algorithms were used to
solve the identification problem. Quality metrics were
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obtained for each algorithm, both for a dataset with the entire
set of parameters, and for a dataset with only public
parameters. The highest value was achieved using the random
forest algorithm, which turned out to have the accuracy value
0f 0.79 for 10 drivers (for the full dataset the accuracy is 0.91).
In general, for each algorithm, the accuracy decreased
approximately by 15%.

Long_Term_Fuel_Trim_Bankl_mean
Accelerator_Pedal_value_kurt
Long_Term_Fuel_Trim_Bankl_max
Accelerator_Pedal_value_skew
Long_Term_Fuel_Trim_Bank1_median
Long_Term_Fuel_Trim_Bankl_var
Long_Term_Fuel_Trimn_Bank1_std
Torque_of_friction_mean
Torque_of_friction_max

Torque_of_friction_median

000 002 004 006 0.08

Fig. 3. Random forest feature importance
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0.800 -

T T T T T T

5 6 7
Number of drivers

Fig. 4. Random forest accuracy depending on the number of drivers

This decrease is explained by the absence of some
informative parameters in the dataset with open parameters. If
identification is used as an anti-theft method, the accuracy of
guessing the real owner is 99%. As the number of drivers
increases, the difficulty of the task increases and the accuracy
of identification decreases. To further increase the
identification accuracy it is possible to leverage other sources
of information (beside OBD-II), for example, place
accelerometer in the vehicle (as a separate device or use
smartphone). It is also possible to capture additional open
OBD-II parameters and add various statistical features and
their interactions.

In this work, we used the open parameters of OBD-II,
present in the OCSLab security dataset. However, this dataset
has a limited set of open OBD-II parameters; the whole list of
public OBD-II parameters is longer. In the future, we will
explore other public parameters of OBD-II and evaluate their
usefulness for the driver identification problem. It will allow
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to make a list of the most informative for driver identification
parameters available for application developers not affiliated
with car vendors. Further, the identified parameters will be
used in the driver support system being developed, where
driver identification is one of the core features.
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