PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

Combining an Autoencoder and a Variational
Autoencoder for Explaining the Machine Learning
Model Predictions

Lev Utkin, Pavel Drobintsev, Maxim Kovalev, Andrei Konstantinov
Peter the Great St.Petersburg Polytechnic University
St.Petersburg, Russia
lev.utkin@gmail.com, drob@ics2.ecd.spbstu.ru, maxkovalev03@gmail.com, andrue konst@gmail.com

Abstract—A method for explaining a deep learning model
prediction is proposed. It uses a combination of the standard
autoencoder and the variational autoencoder. The standard
autoencoder is exploited to reconstruct original images and to
produce hidden representation vectors. The variational autoen-
coder is trained to transform the deep learning model outputs
(embedding vectors) into the hidden representation vectors of
the standard autoencoder. In explaining or testing phase, the
variational autoencoder produces a set of vectors based on the
explained image embedding. Then the trained decoder part of the
standard autoencoder reconstructs a set of images which form
a heatmap explaining the original explained image. In fact, the
variational autoencoder plays a role of the perturbation technique
of images. Numerical experiments with the well-known datasets
MNIST and CIFARI10 illustrate the propose method.

I. INTRODUCTION

In spite of successful and widespread application of the
deep learning techniques, the deep learning models are re-
garded as black-boxes, and they suffer from a lack of ex-
plainability, that is, they do not explain their predictions in
a way that humans could understand. It turns out that a model
cannot be used in many applications when its predictions do
not have the corresponding explanation or interpretation, when
the predictions cannot be understood, when it is impossible to
answer the question why the deep learning model provides
some prediction. For example, a doctor has to have an expla-
nation of a diagnosis stated by the machine learning model
in order to choose a corresponding treatment [1]. Therefore,
explainers or special meta-models explaining and interpreting
the classification and regression model predictions have been
developed to provide more confidence and acceptability for
the deep learning models used in practice [2], [3], [4], [5]-

In fact, the explanation model allows us to determine what
features of an example or a set of examples impact on the
black-box model prediction. It should be pointed out that we
consider the black-box model which means that we do not
know or do not use any its details. Moreover, we consider post-
hoc explanations which involve auxiliary models to explain the
black-box models after it has been trained.

Among variety of explanation models, we select local
models which try to explain what features lead to the indi-
vidual prediction [5]. Explanations are derived by fitting an
interpretable model locally around the considered example. In
contrast to local explanation models, the global ones try to
explain the black-box model on the whole dataset or its part.

One of the important techniques applied to explanation
is the perturbation technique [6], [7], [8]. It assumes that
contribution of a feature can be determined by measuring how
prediction score changes when the feature is altered [9]. This
technique can be applied to a black-box model without any
need to access the internal structure of the model. It assumes
that a feature is important and strongly impacts on the outcome
if its change sufficiently changes the outcome. However, the
perturbation technique may meet computational difficulties
when the perturbed input examples have a lot of features.
Moreover, perturbations may lead to change of the input data
sense, for example, they may lead to transition of data from one
class to another class. A closest target class sample can be just
unrealistic. Some perturbation-based methods [10] measure the
amount of change in prediction when each pixel is removed
individually. However, many typical classifiers, for example,
neural networks, cannot make a prediction for a partially
removed input. It should be noted that there are deep learning
models, for example, the Siamese neural networks [11], [12]
for which direct distances between input feature vectors often
do not have a sense because there is only similarity and
dissimilarity relationships between input vectors. As a result,
the perturbation technique cannot be used directly for inputs
of deep learning models.

In order to overcome these difficulties, we propose an
explanation method which uses a specific autoencoder (AE) as
a part of the explainer to reconstruct the input examples. It also
uses a variational autoencoder (VAE) [13] for generating new
embeddings. In fact, the VAE plays a role of the perturbation
technique of images. It helps confine the sample in the realistic
sample space. However, the VAE in our method does not
generate new images, it generates new embeddings for the
AE which uses them for reconstructing an important feature
heatmap. This is a very important and distinctive feature of
the approach.

An interesting example of applying the proposed approach
is the Siamese neural network (SNN) explanation. The SNN
consists of two identical neural subnets sharing the same set
of weights. The basic idea behind the SNN is to train the
subnets to compare a pair of feature vectors in terms of their
semantic similarity or dissimilarity. The SNN realizes a non-
linear embedding of data with the objective to bring together
similar instances and to move apart dissimilar instances.

The proposed method is very efficient, and it is illus-

ISSN 2305-7254

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

trated by numerical examples with the datasets MNIST and
CIFAR10.

The paper is organized as follows. Related work is in
Section II. Basic concepts of the AE and VAE can be found
in Section III. Basic ideas behind the proposed explanation
algorithm are considered in Section IV. The corresponding
application of the algorithm to explaining SNNs is illustrated
in Section V. Numerical experiments with real data are given
in Section VI. Concluding remarks can be found in Section
VII.

II. RELATED WORK

Local explanation methods. The explanation methods can
be regarded as an important supplement of deep learning
models in many applications. Hence, a lot of methods have
been proposed to explain black-box models locally. One of
the most popular local explanation methods is the Local
Interpretable Model-agnostic Explanations (LIME) [14], which
is based on using linear models to approximate the predictions
of black-box models locally. The linear approximation of
some unknown function of the input features produced by
the black-box model in the local area around the example of
interest explains by considering coefficients of the features as
quantitative impacts on the prediction. Following the original
LIME [14], a lot of its modifications have been developed
due to a simple idea behind the method to construct a linear
approximating model, for example, ALIME [15], NormLIME
[16], Anchor LIME [17], GraphLIME [18], LIME for text data
[19], SurvLIME [20]. Another explanation method, which is
also based on the linear approximation, is the SHAP [21], [22],
which is based on a game-theoretic approach and on using
Shapley values. A large part of methods uses the so-called
counterfactual explanations [23] which answer the question
why outcome Y is provided by the black-box model instead
of Z.

An important group of explanation methods is based on
perturbation techniques [6], [7], [24], [8], which are also used
in LIME. A large part of explanation methods uses a prototype
technique which selects representative instances from training
data, for instance, from instances belonging to the same class.
These instances are called prototypes [25], [26]. The main idea
behind the explanation methods based on this technique is to
find out how an explained example is similar to a prototype.

A lot of explanation methods, their analysis, their critical
review can be found in survey papers [27], [28], [29], [30],
[3], [31], [32]. A comprehensive analysis of the explanation
method pitfalls and incorrect assumptions accepted in the
explanation models is provided by Rudin [31].

Visual explanation methods. Among the available expla-
nation methods, we select the methods of visual explanation
[33], [34], [35], [36], [37], [38], [39], [40]. They mainly
highlight “important” regions or subsets of features in the input
image, which lead the model to make its prediction. These
methods are very important for explaining CT images.

Petsiuk et al. [24] proposed to generate a set of random
masks and to use the predicted class probabilities as weights,
computing a weighted sum of the masks as the saliency map.
An extension of this method for generating visual explanations

489

was proposed in [41]. An approach for saliency map generation
for black-box models using a Bayesian optimization sampling
method is provided by [42]. Goyal et al. [37] considered
counterfactual visual explanations and studied how such coun-
terfactual visual explanations can be generated to explain the
decisions of deep vision systems by identifying what and how
regions of an input image would need to change in order for the
system to produce a specified output. Directed perturbations
in the examples to observe which attribute values change
when classifying the examples into the counter classes was
introduced by Gulshad and Smeulders [43].

Autoencoders and variational autoencoders for expla-
nation. It should distinguish explanations of the AE results and
explanations by means of AEs. The first direction was studied
by Anwarg et al. [44] where the authors proposed a method
for explaining anomalies detected by the AE. A lot of works
are devoted to the second direction. In particular, Bellini et al.
[45] exploited a semantics-aware AE to compute explainable
recommendations. Guidotti et al. [46] presented an explanation
method which exploits the latent feature space learned through
an adversarial autoencoder [47]. Shankaranarayana and Runje
[15] proposed modifications of LIME by employing an AE,
which serves as a better weighting function for the local model.
Qi and Li [48] proposed Sparse Reconstruction Autoencoder
(SRAE) for learning the embedding to the explanation space.
SRAE aims to reconstruct part of the original feature space
while retaining faithfulness. Haghighi et al. [49] considered
an explainable recommendation system using an autoencoder
model whose predictions can be explained using the neigh-
borhood based explanation style. Gee et al. [50] adopted
an autoencoder-prototype architecture for explaining the deep
classification of time-series data.

VAEs have been also applied to solving the explanation
problem. Schockaert et al. [51] proposed the method VAE-
LIME for local interpretability of data-driven models fore-
casting the temperature of the hot metal produced by a blast
furnace. The VAE in [51] aims to generate optimal synthetic
examples to train a local interpretable model. Uzunova et al.
[52] applied the VAE to generating equivalent deletions of
pathologies to enhance the reliability of diagnosis explanations
in the brain lesion MRI investigation. Alvarez-Melis and
Jaakkola [53] provided explanations of the text classification
results in the form of partitioned graphs by using the VAE.

III. AUTOENCODER AND VARIATIONAL AUTOENCODER

An AE is a a feed-forward neural network that is trained
to learn reconstructions that are close to its original input.
The AE allows us to get a low-dimensional and non-linear
feature representation of the input data. In other words, the
conventional AE learns a mapping from high-dimensional
inputs to the low-dimensional encoded representation which
can be used to reconstruct the original input. It should be noted
that the VAE is also used to learn a lower-dimensional feature
representation from the unlabeled training data. However, in
contrast to the conventional AE, the VAE is a generative
model. It does not replicate the same input as the AE does, but
randomly samples from the latent space or generates variations
on the input from a continuous latent space. Therefore, one of
the main aims of the VAE is to generate new data related to
the original source data.

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

Let S = {x;,% = 1,...,n} be a dataset consisting of feature
vectors x; € R™. AEs consist of two parts. The first one,
encoder, provides a mapping from an input domain, X, to a
code or embedding domain, C, i.e., the hidden representation.
The second part, decoder, maps from C back to X . Let us
denote the encoding function as fr(x, Wg) and the decoding
function as fp(h,Wp). Here x € R™ is the input vector of
size m, h € RP is the embedding vector of size D such that
h = fp(x,Wg); Wg and W are matrices of weights of the
encoder and the decoder, respectively. Then the reconstruction
loss function for learning the AE is defined as

LrecfAE(WEa WD) = Z Hxl - Xf”; + AR(W)
=1

Here x; is the reconstructed vector such that x; =
fo(h;,Wp); R(Wg,Wp) is a regularization term added to
improve generalization of the AE;

W = Wg UWp; X is a hyper-parameter which controls the
strength of the regularization.

AE
A o
B S| x*
X 5 code T | X
S| - h o
& vector Q
o S
Fig. 1. A scheme of the AE

The main difference between a VAE and an autoencoder
is that the VAE is a stochastic generative model that can give
calibrated probabilities, while an autoencoder is a deterministic
discriminative model that does not have a probabilistic foun-
dation [54]. The VAE also consists of two parts: a generative
part (the coder) and an inference part (the decoder). In the
generative part, a probabilistic decoder reproduces x* close
to an observation x from a latent variable z ~ p(z), i.e.,
x ~ pp(x]z) = pe(x|¢), where ¢ is obtained from a latent
variable z by the neural network which realizes a function
¢ = fp(z). In the inference part, a probabilistic encoder
outputs a latent variable z ~ p,(z|x) = p,(z|v), where v
is computed from the observation x by the corresponding
neural network which realizes a function v = fg(x). The
latent variable z is generated from p,(z|x), and the output
vector x* is generated from pg(x|z). The model parameters
and ¢ are jointly learned with the stochastic gradient method
through the backpropagation. In the original VAE [13], the
prior distribution of p(z) is assumed to be normally distributed.
A general scheme of the VAE is shown in Fig. 2. The encoder
output is a set of pairs (m;,s;), where m; and s; are the
expectation and standard deviation of the normal distribution
such that the vectors z are generated in accordance with this
distribution. In sum, the VAE generates a set of output vectors
x* which are close to the input vector x.

490

VAE
mj [
E e
)]

xi |8 4 latent o | X
= 5] 1 variable il
= @

@ o

b Sj
Py (2|x) Po(x|z)
Fig. 2. A general scheme of the VAE

IV. THE PROPOSED ALGORITHM FOR THE BLACK-BOX MODEL
EXPLANATION

Black-box
model

aj XI'
AE

Fig. 3. A scheme of the algorithm for explaining the black-box model

The proposed algorithm for explaining the SNN consists of
several steps. In order to avoid misunderstanding in description
of different objects of interest, we will call original and
reconstructed examples by images. Embeddings and other
feature representations will be called by vectors.

The first step is to train an AE by using examples (images)
X1, ..., X, from the training set S, x; € R™, ¢ = 1,...,n. This
step has a double aim. First, we aim to get the code (the hidden
representation) of the AE denoted as a; € RP for every x;.
Its length D coincides with the length of the embedding h;
which is the outcome of the explained black-box model. This
code will be used to train the VAE for generating new hidden
representation vectors. Second, the decoder of the trained AE
will allow us to get the reconstructed images x; from the codes
a;, which are close to the original images x;.

The main difference of the proposed AE from the standard
one is its reconstruction loss function. The reconstruction loss
function Ly ag for training of the AE is of the form:

LrecfAE(W) = 'YZ ||XZ - x:”%
=1
+ i Ihi = a3 + AR(W).
i=1

Here the first term is the standard reconstruction loss; the
second term contributes into closeness of the hidden represen-
tation a; and the black-box model output vector h;; R(W) is a

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

regularization term; A is a hyper-parameter which controls the
strength of the regularization; v and p are weights that control
the interaction of the loss function terms; W = Wg U Wp is
the set of the neural network weights. It should be noted that
the second term of the loss function is very important because
the trained decoder of the AE will be used for reconstruction
of the explained image, and the trained encoder will play a role
of a simplified representation of the black-box neural network.
In other words, we would like to make the black-box model
output h; and the AE hidden representation a; as close as
possible to each other. The trade-off between closeness of x;
and x; (the first term) and closeness of h; and a; is determined
by the tuning parameters v and pu.

The second step of the proposed algorithm is to train a
generative neural network which is similar to the VAE. In fact,
we have again the VAE, but in contrast to the original VAE,
its output and input vectors are different. The input vector
is h;, and the output vector is a; which simultaneously is
the hidden representation vector of the AE trained at the first
step. The proposed VAE also has a double aim. First, we try
to implement a function g : RP — RP between the black-
box model output h; and the AE output a;,. The VAE plays
a role of correction of vectors h; to the hidden representation
vectors of the AE. Second, according to the VAE function, we
generate a set of vectors a; which are close to some vector a.
This procedure can be implemented by means of the trained
VAE. In fact, the generation is equivalent to perturbation of
the vector a, which is used in order to determine how changes
of features of the embeddings impact on changes of features
of reconstructed images. In other words, we implement the
perturbation technique with this approach, which allows us to
find the important features.

Before training the VAE and implementing the second step,
we have two corresponding sets: a set of the AE hidden
representations a; € RP for all original images x;, and a
set of the black-box model outputs h; € R” (the embedding
vectors) such that h; = f(x;), ¢ = 1,...,n. Then a new dataset
consisting of pairs (h;, a;) can be constructed. This dataset is a
basis for implementing the function g that maps every vector
h; obtained from the black-box model to the corresponding
vector a; or its close reconstruction. The obtained dataset is
used to train the VAE of a special form, whose input and output
are h; and a,, respectively.

As a result of the above two steps, we have the trained
AE, implementing functions a; = f(x;) and x} = f*(a;), the
trained VAE, implementing functions a; = g(h;).

The third step of the proposed algorithm aims to perturb
the reconstructed images in a special way in order to find their
important features which explain the black-box model output.
The main idea behind this step is to generate new embeddings
corresponding to analyzed examples and reconstruct new im-
ages with respect to these embeddings. These reconstructed
images indicate which features are changed. In fact, we do not
perturb images or embeddings. The perturbation is implicitly
realized by means of generating new embeddings a; by the
VAE.

In sum, the perturbed vectors a;, are fed to the AE decoder
in order to get the reconstructed images xj, of the analyzed
input example, which can be regarded as perturbed images. If

491

we get IV vectors a, k = 1, ..., N, corresponding to the image
x, then the important features can be found by computing the
following “residual” image:

N
§=N"1 Z
k=1

. . 1N
where x* is the mean image computed as x* = N1 Y, x;.

x,’;—x#|,

The image § can be viewed as a heatmap explaining what
features impact on the black-box model prediction or the model
output. We can also take a threshold /5 of elements of § in order
to restrict the number of important features in the heatmap.

V. EXPLANATION OF SIAMESE NEURAL NETWORKS

Let S = {(x;,X;,2;), (i,7) € K} be a dataset consisting
of N pairs of feature vectors x; € R™ and x; € R™ such that
a binary label z;; € {0,1} is assigned to every pair (x;,X;).
If both feature vectors x; and x; are semantically similar, then
z;; takes value 0. If the vectors are semantically dissimilar,
i.e., they correspond to different classes, then z;; takes value
1. This implies that the training set S can be divided into
two subsets: the similar subset labeled with z;; = 0 and the
dissimilar subset labeled with z;; = 1. Knowledge of classes
is not necessary if we have only weak information about
similarity of pairs of examples. One of the models dealing
with the weak information is the SNN [12]. Its architecture is
shown in Fig. 4. If there are two semantically similar/dissimilar
feature vectors x; and X;, then the contrastive loss function
is used to train the SNN, which tries to make the Euclidean
distance d(h;, h;) between the corresponding embeddings (the
SNN outputs) h; € RP and h; € R” to be as small/large as
possible. In order to define the loss function, we introduce the
following notation:

L. — Ih; = hy]l3, zij =0,
1 — 2
maX(O,T — th — hJH2)7 Zij = 1,

where 7 is a predefined threshold.

Then the contrastive loss function is of the form:

LSiam(W) = Z lij + ,MR(W)
(i,j)EK

Here R(W) is a regularization term; W is the matrix of
the neural subnet parameters; p is a hyper-parameter which
controls the strength of the regularization.

Let x € R™ and z € R™ be a pair of examples for ex-
plaining. They have the corresponding hidden representations
hy and h,, respectively, obtained from the SNN. By applying
the trained VAE, we can get two sets of output vectors g(h)
corresponding to inputs hy and h,. The first set A contains
vectors ay, generated in vicinity of a = g(hy). The second set
B consists of vectors by, generated in vicinity of b = g(hy).
These sets can be viewed as sets of vectors in hyperspheres
with centers a and b, respectively. Generating the vectors from
sets A and B, we realize the implicit perturbation procedure
of the hidden representations.

Let us consider two cases when examples x and z are
semantically similar (Case 1), and when they are semantically
dissimilar (Case 2).

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

SNN
SN
X
i shared contrastive
! weights i

Fig. 4. The SNN architecture

Case 1. Semantic similarity assumes that the hidden rep-
resentations hy and h, as well as a and b should be close
to each other. This implies that we try to find their features
which make them to be close. In other words, we are looking
for features that contribute into a small distance between
generated vectors and the vectors a or b. Hence, we have to
select some number of generated vectors around a, which have
smallest distances from vector b. These vectors characterize
closeness of a to b and explain why a is semantically similar
to b. Then images reconstructed from the set of generated
vectors by means of the AE decoder indicate their features
which change with changes of a. These changes produce the
corresponding feature heatmap, explaining the similarity of x
and z. Similarly, we select some number of generated vectors
around b, which have smallest distances from vector a. These
vectors characterize closeness of b to a and explain why b
is semantically similar to a. Their reconstructed images for
vectors around b produce the feature heatmap in the same
way, explaining which parts of z are responsible for similarity
with x.

Let us select IV vectors a; from the set A such that these
vectors are nearest to vector b (the center of the set B). For
every vector a;, we get the reconstructed image x;. In order
to get the heatmap for image x explaining the similarity of
images x and z, we compute the mean reconstructed image

defined as
N
—1 *
X =N Zxk.
k=1

Then the heatmap is computed as difference between the mean
reconstructed image x* and the initial image x.

However, this is only a partial explanation of the similarity.
In the same way, the heatmap for example z can be computed.
We select NV vectors by, from the set B, which are nearest to
vector a (the center of the set A). The reconstructed images
z;, are obtained from vectors by, and their mean vector is

computed as
N
7 =N"! E zj.
k=1

The heatmap, explaining why the image z is semantically
similar to x, is obtained as difference between z* and z.

Case 2: Semantic dissimilarity assumes that the hidden
representations hy and h, as well as a and b should be as

492

far as possible from each other. This implies that we try to
find their features which make them far from each other. In
contrast to Case 1, we select some number of generated vectors
around a, which have largest distances from vector b. The next
part of the algorithm is similar to Case 1.

VI. NUMERICAL EXPERIMENTS

The proposed method is studied with the MNIST dataset
(28 x 28 pixel handwritten digit images) and the CIFAR-10
dataset consisting of 32 x 32 color images drawn from 10
classes. The MNIST has a training set of 60,000 examples, and
a test set of 10,000 examples. The CIFAR-10 dataset consists
0f 50,000 training and 10,000 test images each. It was collected
by Krizhevsky et al. [55].

The length of the hidden representation layer is 20, i.e., the
vector h consists of 20 features. We take D = 20, M = 15,
N. = 5000. The encoder of the AE is implemented in Keras by
using 3 convolution and 3 max-pooling layers, one flatten layer
and 2 dense layers with ReLU and Tanh (only the second dense
layer) activation functions. The decoder is implemented by
using 2 dense layers with ReLU functions, one reshape layer, 3
upsampling and 3 convolution layers with ReLU functions, but
the last convolution layer uses sigmoid as activation function.

The encoder part of the VAE consists of 5 dense layers
with dimension 50, one latent layer with dimension 35. The
decoder part also has 5 dense layers with dimension 50 and
one dense layer with dimension 15. All layers are implemented
with the tanh activation functions. We also use a threshold
of the relative changes of features of x* after perturbations of
a, which is 0.5.

Triplets of pictures illustrating the proposed explanation
method are shown in Fig.5 where the first picture in every row
is an original image of a digit, the second picture is a heatmap
of important features, and the third picture is the original image
overlapped by the heatmap. The heatmaps show the important
features which impact on the corresponding predictions of the
black-box network. Fig.6 illustrates how digit 1 is explained
when it incorrectly classified by the SNN as 3.

Similar triplets of pictures illustrating the proposed expla-
nation method with using the CIFAR-10 dataset are shown in
Fig. 7. They show examples of cats classified by the black-box
model. It can be seen from the corresponding maps that they
indicate on parts of pictures which actually explain cats. It is
clearly seen in the third row of pictures where a typical furry
tail is selected to explain the cat prediction.

VII. CoONCLUSION

The main ideas behind the proposed method are to use
the AE for reconstruction purposes and the VAE for linking
the black-box output or outputs (for the SNN) with the AE
code and implicit perturbing this code. The method is general
and can be applied to various problems of the deep neural
network explanation because the main ideas of the method do
not depend on peculiarities of the black-box model.

One of the difficulties of the method is the possible lack of
sufficient data for training the AE and the VAE. If we deal with
the SNN, then this problem can be partially solved by using
the corresponding training set consisting of concatenated pairs

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

Fig. 5.

Examples of explanation with digits 2, 3, 7, 5

Fig. 6. An example of explanation with digit 1 incorrectly classified as 3

of original examples and concatenated pairs of embeddings. In
this case, we can use the advantage of the SNN to significantly
increase the dataset due to considering pairs of examples.
Another way for improving the method in this case is to
enlarge the AE code. This leads to the code consisting of
two parts. The first part coincides with the black-box model
output. The second part is auxiliary and used to get a better
reconstruction of the original images. The corresponding nu-
merical experiments and a detailed justification of the above
improvements are directions for further research.

ACKNOWLEDGEMENT

The reported study was funded by RFBR, project number
19-29-01004.

REFERENCES

[1] A. Holzinger, G. Langs, H. Denk, K. Zatloukal, and H. Muller,
“Causability and explainability of artificial intelligence in medicine,”
WIREs Data Mining and Knowledge Discovery, vol. 9, no. 4, p. e1312,
2019.

493

Fig. 7.

[2]

[3]

[4]

[3]

[6]

[7]

(8]
[9]

[10]

(1]

[12]

[13]

[14]

Examples from the CIFAR-10 dataset

V. Arya, R. Bellamy, P.-Y. Chen, A. Dhurandhar, M. Hind, S. Hoffman,
S. Houde, Q. Liao, R. Luss, A. Mojsilovic, S. Mourad, P. Pedemonte,
R. Raghavendra, J. Richards, P. Sattigeri, K. Shanmugam, M. Singh,
K. Varshney, D. Wei, and Y. Zhang, “One explanation does not fit all:
A toolkit and taxonomy of Al explainability techniques,” Sep 2019,
arXiv:1909.03012.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box models,”
ACM computing surveys, vol. 51, no. 5, p. 93, 2019.

C. Molnar, Interpretable Machine Learning: A Guide for Making Black
Box Models Explainable. https://christophm.github.io/interpretable-ml-
book/: Published online, 2019.

W. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yua, “Inter-
pretable machine learning: definitions, methods, and applications,” Jan
2019, arXiv:1901.04592.

R. Fong and A. Vedaldi, “Explanations for attributing deep neural
network predictions,” in Explainable Al, ser. LNCS. Cham: Springer,
2019, vol. 11700, pp. 149-167.

, “Interpretable explanations of black boxes by meaningful per-
turbation,” in Proceedings of the IEEE International Conference on
Computer Vision. 1EEE, 2017, pp. 3429-3437.

M. Vu, T. Nguyen, N. Phan, and M. T. R. Gera, “Evaluating explainers
via perturbation,” Jun 2019, arXiv:1906.02032v1.

M. Du, N. Liu, and X. Hu, “Techniques for interpretable machine
learning,” May 2019, arXiv:1808.00033.

M. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in ECCV 2014, ser. LNCS, vol. 8689. Cham: Springer,
2014, pp. 818-833.

J. Bromley, J. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore,
E. Sackinger, and R. Shah, “Signature verification using a siamese time
delay neural network,” International Journal of Pattern Recognition
and Artificial Intelligence, vol. 7, no. 4, pp. 737-744, 1993.

S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in 2005 [EEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’05), vol. 1. IEEE, 2005, pp. 539-546.

D. Kingma and M. Welling, “Auto-encoding variational Bayes,” May
2014, arXiv:1312.6114v10.

M. Ribeiro, S. Singh, and C. Guestrin, ““Why should I trust
You?” Explaining the predictions of any classifier,” Aug 2016,
arXiv:1602.04938v3.

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

S. Shankaranarayana and D. Runje, “ALIME: Autoencoder based
approach for local interpretability,” Sep 2019, arXiv:1909.02437.

I. Ahern, A. Noack, L. Guzman-Nateras, D. Dou, B. Li, and J. Huan,
“NormLime: A new feature importance metric for explaining deep
neural networks,” Sep 2019, arXiv:1909.04200.

M. Ribeiro, S. Singh, and C. Guestrin, “Anchors: High-precision model-
agnostic explanations,” in 4441 Conference on Artificial Intelligence,
2018, pp. 1527-1535.

Q. Huang, M. Yamada, Y. Tian, D. Singh, D. Yin, and Y. Chang,
“GraphLIME: Local interpretable model explanations for graph neural
networks,” Jan. 2020, arXiv:2001.06216.

D. Mardaoui and D. Garreau, “An analysis of lime for text data,” Oct.
2020, arXiv:2010.12487.

M. Kovalev, L. Utkin, and E. Kasimov, “SurvLIME: A method for ex-
plaining machine learning survival models,” Knowledge-Based Systems,
vol. 203, p. 106164, 2020.

S. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Advances in Neural Information Processing Systems,
2017, pp. 4765-4774.

E. Strumbel and I. Kononenko, “An efficient explanation of individ-
ual classifications using game theory,” Journal of Machine Learning
Research, vol. 11, pp. 1-18, 2010.

S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations
without opening the black box: Automated decisions and the GPDR,”
Harvard Journal of Law & Technology, vol. 31, pp. 841-887, 2017.

V. Petsiuk, A. Das, and K. Saenko, “Rise: Randomized input sampling
for explanation of black-box models,” Jun. 2018, arXiv:1806.07421.

J. Bien and R. Tibshirani, “Prototype selection for interpretable classifi-
cation,” The Annals of Applied Statistics, vol. 5, no. 4, pp. 2403-2424,
2011.

B. Kim, C. Rudin, and J. Shah, “The Bayesian case model: A generative
approach for case-based reasoning and prototype classification,” in
Advances in Neural Information Processing Systems, 2014, pp. 1952—
1960.

A. Adadi and M. Berrada, “Pecking inside the black-box: A survey
on explainable artificial intelligence (XAI),” IEEE Access, vol. 6, pp.
52138-52160, 2018.

A. Arrieta, N. Diaz-Rodriguez, J. D. Ser, A. Bennetot, S. Tabik, A. Bar-
bado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila,
and F. Herrera, “Explainable artificial intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible Al,” Oct.
2019, arXiv:1910.10045.

D. Carvalho, E. Pereira, and J. Cardoso, “Machine learning inter-
pretability: A survey on methods and metrics,” Electronics, vol. 8, no.
832, pp. 1-34, 2019.

A. Das and P. Rad, “Opportunities and challenges in explainableartifi-
cial intelligence (XAI): A survey,” Jun. 2020, arXiv:2006.11371v2.

C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nature Machine
Intelligence, vol. 1, pp. 206-215, 2019.

N. Xie, G. Ras, M. van Gerven, and D. Doran, “Explainable deep learn-
ing: A field guide for the uninitiated,” Apr. 2020, arXiv:2004.14545.
Z. Qi, S. Khorram, and F. Li, “Embedding deep networks into visual
explanations,” Apr. 2018, arXiv:1709.05360.

L. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, and
T. Darrell, “Generating visual explanations,” in European Conference
on Computer Vision. Cham: Springer, 2016, pp. 3—19.

L. Hendricks, R. Hu, T. Darrell, and Z. Akata, “Grounding visual

explanations,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 264-279.

494

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]
(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

J. Rabold, H. Deininger, M. Siebers, and U. Schmid, “Enriching visual
with verbal explanations for relational concepts: Combining LIME with
Aleph,” Oct. 2019, arXiv:1910.01837vI1.

Y. Goyal, Z. Wu, J. Ernst, D. Batra, D. Parikh, and S. Lee, “Counter-
factual visual explanations,” Apr 2019, arXiv:1904.07451.

A. Vellido, “The importance of interpretability and visualization in
machine learning for applications in medicine and health care,” Neural
Computing and Applications, pp. 1-15, 2019.

J. Wang, L. Gou, W. Zhang, H. Yang, and H. Shen, “DeepVID: Deep
visual interpretation and diagnosis for image classifiers via knowledge
distillation,” JEEE Transactions on Visualization and Computer Graph-
ics, vol. 25, no. 6, pp. 2168-2180, 2019.

Q. Zhang and S.-C. Zhu, “Visual interpretability for deep learning: a
survey,” Feb. 2018, arXiv:1802.00614v2.

V. Petsiuk, R. Jain, V. Manjunatha, V. Morariu, A. Mehra, V. Ordonez,
and K. Saenko, “Black-box explanation of object detectors via saliency
maps,” Jun. 2020, arXiv:2006.03204.

M. Mokuwe, M. Burke, and A. Bosman, “Black-box saliency map
generation using bayesian optimisation,” Jan. 2020, arXiv:2001.11366.

S. Gulshad and A. Smeulders, “Explaining with counter visual attributes
and examples,” Jan. 2020, arXiv:2001.09671.

L. Antwarg, R. Miller, B. Shapira, and L. Rokach, “Explain-
ing anomalies detected by autoencoders using SHAP,” Jun. 2020,
arXiv:1903.02407v2.

V. Bellini, A. S. andT. Di Noia, A. Ragone, and E. D. Sciascio,
“Knowledge-aware autoencoders for explainable recommender sys-
tems,” in DLRS 2018: Proceedings of the 3rd Workshop on Deep
Learning for Recommender Systems, 2018, pp. 24-31.

R. Guidotti, A. Monreale, S. Matwin, and D. Pedreschi, “Black box
explanation by learning image exemplars in the latent feature space,”
in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Cham: Springer, 2019, pp. 189-205.

A. Makhzani, J. Shlens, N. Jaitly, and 1. Goodfellow, “Adversarial
autoencoders,” 18 Nov 2015, arXiv:1511.05644v]1.

Z. Qi and F. Li, “Learning explainable embeddings for deep networks,”
in NIPS Workshop on Interpretable Machine Learning, vol. 31, 2017.

P. Haghighi, O. Seton, and O. Nasraoui, “An explainable au-
toencoder for collaborative filtering recommendation,” Dec. 2019,
arXiv:2001.04344.

A. Gee, D. G.-O. amd J. Ghosh, and D. Paydarfar, “Explaining deep
classification of time-series data with learned prototypes,” Apr. 2019,
arXiv:1904.08935.

C. Schockaert, V. Macher, and A. Schmitz, “VAE-LIME: Deep gener-
ative model based approach for local data-driven model interpretability
applied to the ironmak ingindustry,” Jul. 2020, arXiv:2007.10256.

H. Uzunova, J. Ehrhardt, T. Kepp, and H. Handels, “Interpretable
explanations of black box classifiers appliedon medical images by
meaningful perturbations using variational autoencoders,” in Medical
Imaging 2019: Image Processing, vol. 10949. International Society
for Optics and Photonics, 2019, p. 1094911.

D. Alvarez-Melis and T. Jaakkola, “A causal framework for explaining
the predictions of black-box sequence-to-sequence models,” in Proceed-
ings of the 2017 Conference on Empirical Methods in Natural Language
Processing. Copenhagen, Denmark: Association for Computational
Linguistics, 2017, pp. 412-421.

J. An and S. Cho, “Variational autoencoder based anomaly detection
using reconstruction probability,” Special Lecture on IE, vol. 2, no. 1,
pp. 1-18, 2015.

A. Krizhevsky and G. Hinton, “Learning multiple layers of fea-

tures from tiny images,” Computer Science Department, University of
Toronto, Tech. Rep. 1, 2009.

