
Automatic Proving of Stability of the
Cyber-Physical Systems in the Sense of Lyapunov

with KeYmaera

Sergey Staroletov
Cyber-physical lab

Institute of Automation and Electrometry

Novosibirsk, Russia

serg soft@mail.ru

Abstract—The use of control systems in human life requires
new methods to ensure the quality of embedded software at all
levels of its production. In this work, we refer to the level of a
cyber-physical system.

These systems here can be specified using the hybrid automata
abstraction to represent both discrete-time and continuous-time
transitions, such models are known as hybrid models and they
are expressed using the Differential dynamic logic. For the
verification of continuous-state systems, a lot of simple models
have been built around the KeYmaera tool as its tutorials in
train, car and robotic domains. The advantage of the formal
verification method over the simulation is the possibility to play
with parameter values and check the requirements automatically
without looking to resulting plots of system behavior over time.

In this paper, we study how the hybrid theorem prover KeY-
maera works while verifying control systems, in particular, using
the Lyapunov method to prove stability of models encoded in a
special notation of hybrid programs. We proceed to understand
an example of a simple PD-controller and then move to a
complex PID-controller model of a quadrotor stabilisation. We
show that the process of such a verification can be carried out for
rather complex systems initially taken in the form of engineering
notation.

I. INTRODUCTION

We understand cyber-physical systems (CPS) as real-world

systems that use a cyber part (computer/software) to control

or operate a physical part (hardware/physical process) [1].

The idea of the article is based on engineering needs,

coming from real-world CPSs, and comprises the analysis of

hybrid programs to satisfy the needs. In this paper, we refer to

stability proving, which means that for some given physical

model of the system, the engineers want to know whether

their model is stable (can predictably respond to parameter

changes and return to an equilibrium point) or unstable which

can prevent some violation of safety properties of a CPS.

In the study, we refer to well known methods and for-

malisms (PID control, Lyapunov stability, Lyapunov function,

hybrod programs, dynamic logic, theorem proving) and apply

them to solve the problem of automated proving of stability

of a CPS, initially described in an engineering notation.

The main contributions of the paper are: (1) show the

possibility of hybrid programs in KeYmaera notation to reflect

real CPSs and their stability requirements; (2) discuss ways

how to move from system states in a matrix notation to a

formal notation of an automatic proof system in order to test

the hypotheses of Lyapuniv stability.

The rest of the paper is organized as follows: in the

Background section (Section II), we make a short description

of the Differential dynamic logic abstraction as well as the

declaration of hybrid programs to encode a CPS behavior,

and the KeYmaera tool, then refer to the PID control scheme;

in the next section (Section III) we study a PD-controller

example and corresponding abstractions are used to check a

tiny system; in the main section (Section IV), we discuss how

to do machine-driven verification of stability of a complex

model of quadrotor control using a given Lyapunov function.

We present the model code using the KeYmaera input notation.

II. BACKGROUND

A. Differential dynamic logic and hybrid programs

Differential dynamic logic (DDL, dL) [2] extends Pratt’s

dynamic logic by adding the following axioms [3]:

• Hoare’s assignment rule;

• solution of the symbolic initial value problem;

• iteration axiom;

• modal modus ponens from modal logic;

• induction schema for loops;

• variation of Harel’s convergence rule, suitably adapted to

hybrid systems over R;

• Barcan formula;

• vacuous modalities;

• Gödel’s necessitation rule for modal logic;

• and an axiom for reducing differential equations with

evolution domain constraints to equations without it.

According to A. Platzer [2], a dL formula that combines

Boolean formulas and special operations on hybrid programs

is defined as:

¬P | P∧P | ∀xP | ∃xP | [α] | 〈α〉 (1)

where P is a meta-variable for the dL formulas, x is a meta-

variable for first-order real-valued terms, [] is the box modality

(“for all terminated runs”), 〈〉 is the diamond modality (“in a

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

terminated run”), α is a meta-variable for the hybrid programs

(we do not describe standard Boolean things here). The syntax

of hybrid programs α then is defined as follows:

α ::= x := e | ?Q | x′ = f (x)&Q | α ∪α | α;α | α∗

where x is a meta-variable for program variables, e is a meta-

variable for the first-order real-valued terms, f is a meta-

variable for the continuous real functions, x′ is a time based

derivative, and Q is a meta-variable for the first-order formulas

over real numbers. The construct ‘;’ means here the sequential

composition, ‘∪’ is the non-deterministic choice, ‘?’ is the

condition operator, and ‘∗’ is the non-deterministic iteration

(like Kleene-star) [4].

B. KeYmaera Tool

KeYmaera is an open-source

interactive theorem proving tool

for CPSs encoded in the notation of hybrid programs. It

combines deductive, real algebraic, and computer algebraic

prover technologies [2].

The tool is based on the KeY project [5] and implemented

in Java using software patterns [6]. Also some parts were

developed in Scala. The proving process follows the analytic

tableaux [7] scheme.

KeYmaera includes own code and the Orbital library for

working with differential equations and real arithmetic, but

it also has software interfaces to other tools handling real

arithmetic and/or computer algebra for improved performance,

for example, Mathematica by Wolfram Research.

A novel tool from the same research team, KeYmaera X [8]

is a cloud-based successor of KeYmaera, offers a somewhat

different syntax for the hybrid programs, but the idea of the

proof process is the same.

C. Stability and Aleksandr Lyapunov’s second method for
stability

Fig. 1. Geometric interpretation of Lyapunov theorem [9]

Suppose f ′ = x(t) and f has an equilibrium at xe so that

f (xe) = 0. This equilibrium is said to be Lyapunov stable, if

∀ε > 0, ∃δ > 0 such that, if ‖x(0)−xe‖< δ , then for every t ≥
0 we have ‖x(t)−xe‖< ε . The equilibrium of the above system

is said to be asymptotically stable if it is Lyapunov stable and

∃δ > 0 such that if ‖x(0)−xe‖< δ , then limt→∞‖x(t)−xe‖= 0.

The second method for stability makes use of a Lyapunov
function V(x), which represents an analogy to the potential

energy function of classical dynamics. It is introduced as

follows for a system ẋ = f (x) having a point of equilibrium

at x = 0. Consider a function V : Rn → R such that:

• V (x) = 0 iff x = 0;

• V (x)> 0 iff x = 0;

• V ′(x) = d
dt V (x) = ∑n

i=1
∂V
∂xi

fi(x) = ∇V · f (x)≤ 0 ∀x = 0.

• Note: for asymptotic stability, V ′(x) < 0 for x = 0 is

required.

Then V (x) is called a Lyapunov function and the system is

said to be stable in the sense of Lyapunov [10].

D. PID Control
The PID (Proportional, Integral, Differential) controller is

a feedback system for correcting the state of a controlled

object. When controlling the object, we calculate an error

or difference between current and desired state (for example,

between current and set altitude), then based on current error,

we calculate the impact based on three parts with given

coefficients.

Fig. 2. An example of PID stabilization with a disturbance

• The proportional part (P) is responsible for the propor-

tional reduction of the error (the representation of the

present).

• The integral part (I) is a statistical change of the error

(the representation of the past).

• The differential part (D) is the change of the error, its

tendency to 0 (the representation of the future) [11].

PID-control is some kind of abstraction when the control

process is based firstly on the difference (error) but not on

attempts to describe the exact physical model of the system,

for example, during a quadrotor flight, some changeable wind

can blow, the rotation of the propellers may be unstable, the

center of mass can be shifted and so on, but in such situations

PID-controller will detect the deviation and try to make an

impact to change it (see Fig. 2).
The analytic equation for the PID-control scheme:

u(t) = P+ I +D = Kp e(t)+Ki

t∫
0

e(τ)dτ +Kd
de
dt

(2)

where Kp, Ki and Kd are the PID coefficients. If some coeffi-

cient is zero, the system while controlling can lose stability or

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 432 --

smoothness of behaviour. The corresponding controllers with

some zero parts are then called as P-controller, PD-controller

or PI-controller.

III. STUDYING A PD-CONTROLLER EXAMPLE

Next, we proceed to the machine-driven verification of

a simple PD-controller (the simplification of PID-controller

given from example [12]). The model of the system is repre-

sented in a way close to a Hoare’s triple:

init => [controller](req) (3)

Then, we decompose the system into the following parts:

precondition, continuous PD-controller with given Kp, Kd and

requirements [11]. The precondition:

init :== v ≥ 0∧c > 0∧Kp = 2∧Kd = 3∧V (p, pr,v)< c (4)

where v is the velocity; c is a number that greater than zero;

K p is the proportional coefficient; Kd is the differential coef-

ficient; V (p, pr,v) is a Lyapunov function (will be established

later).
The continuous state:

controller :== p′ = v,v′ =−Kp · (p− pr)−Kd · v (5)

where p is the current position; pr is the resulting position; and

p− pr it the error (position difference). As for the requirement,

it is proposed to try checking stability using the Lyapunov

method:

req :==V (p, pr,v)< c (6)

where c is a positive constant and V is the following Lyapunov

function candidate:

V (p, pr,v) = 5/4 · (p− pr)
2 +(p− pr) · v/2+ v2/4 (7)

The key property of Lyapunov functions which we use in

this article is that ∀c > 0, V (x) ≤ c is the invariant of the

system [12]. Intuitively, this follows from the fact that along

the system dynamics, the Lyapunov function is decreasing (see

Fig. 1).
Using the KeYmaera tool, it is possible to fully automati-

cally verify stability of the CPS that models the PD-controller

described in the hybrid program notation, as it is shown later:

Listing 1. A fragment of hybrid program to check stability of a PD-controller
using the evolution statement

\problem {
\[
R p, v, a, S, Kp, Kd, c, r
\] (((v >= 0) & (Kp = 2))
& (Kd = 3) & (c > 0) & ((5 / 4)

* (p - r) ˆ 2 + ((p - r) * v) / 2
+ (v ˆ 2) / 4 < c)
-> (\[
{p’ = v, v’ = (-Kp) * (p - r) -
Kd * v, v >= 0}
\] ((5 / 4) * (p - r) ˆ 2) +
((p - r) * v) / 2
+ (v ˆ 2) / 4 < c))
}

The program is devoid of any cycles and contains one

continuous state representing the physical model of the CPS,

defined by the system of two equations. The program in the

evolution statement is placed inside the modal operator always
([] – the box modality), while the rule for the Lyapunov

function is set in the post- and precondition. Executing the

evolution statement means for the modelled system to stay in

the continuous state as long as it wishes (the time to stay is

chosen non-deterministically) [13].

Fig. 3. Successful verification of the PD-controller model in KeYmaera

Next, we modify the previous program to solve the stabi-

lization problem of the PD-controller using methods of com-

putational mathematics, without encoding continuous states in

the hybrid program, by using an explicit time cycle t <= 30

as well as setting an arbitrarily small time conversion value

dt:

Listing 2. A fragment of Hybrid program using computational mathematics

\programVariables {
R t;
}
\problem {
\[
R p, v, a, S, Kp, Kd, c, r, dt, v0, p0,
dp, dv
\] (((v >= 0) & (Kp = 2))
& (Kd = 3) & (c > 0) & ((5 / 4)

* (p - r) ˆ 2 + ((p - r) * v) / 2
+ (v ˆ 2) / 4 < c) & (t >= 0) &
(t <= 30) &
(dt > 0) & (dt < 0.01)
-> (\[
t := 0;
(while(t < 30 & v >= 0)
/* save old values */
v0 := v;
p0 := p;
/* calculate derivatives */
/* p’ = v */

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 433 --

dp := v0;
/* v’ = (-Kp) * (p - r) - Kd * v,
v >= 0; */
dv := (-Kp) * (p0 - r) - Kd * v0;
/* get current values */
v := dv * dt + v0;
p := dp * dt + p0;
/* increase t */
t := t + dt
end)
\]
(
(5 / 4) * (p - r) ˆ 2) + ((p - r) * v) / 2
+ (v ˆ 2) / 4 < c))
}

The system can also be proven automatically. Stability is

proving here at the end of the computation cycle, i.e. after 30

seconds of the evolution of the system.

IV. REAL-WORLD EXAMPLE: MODELING AND

VERIFICATION OF A QUADROTOR PID-CONTROLLER

A. The model

In Fig. 4 we show a quadrotor with its position according

to the axes OX, OY, OZ and its orientation (or so-called Euler

angles) – roll, pitch and yaw.

Fig. 4. Initial and desired stable state of the quadrotor

We borrowed a PID-controller model from the work by

Camarillo-Gómez et al. [14], then we added some consistency,

defined some constants and make the model suitable for the

verification. Constants are defined in Table I. The system state

includes a current position as well as current Euler angles:

q = [x,y,z,θ ,φ ,ψ]T (8)

Desired system state is the vector of position and orienta-

tion:

qr = [xr,yr,zr,θr,φr,ψr]
T (9)

Mt represents the mass and inertia tensor:

Mt =

⎡
⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 Ixx Ixy Ixz

0 0 0 Iyx Iyy Iyz

0 0 0 Izx Izy Izz

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

PID coefficients (proportional, integral differential gain for

OX, OY, OZ axes as well as for roll, pitch, yaw stabilization

are given in the diagonal matrices:

K p =

⎡
⎢⎢⎢⎢⎢⎢⎣

K px 0 0 0 0 0

0 K py 0 0 0 0

0 0 K pz 0 0 0

0 0 0 K pθ 0 0

0 0 0 0 K pφ 0

0 0 0 0 0 K pψ

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

Ki =

⎡
⎢⎢⎢⎢⎢⎢⎣

Kix 0 0 0 0 0

0 Kiy 0 0 0 0

0 0 Kiz 0 0 0

0 0 0 Kiθ 0 0

0 0 0 0 Kiφ 0

0 0 0 0 0 Kiψ

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

Kd =

⎡
⎢⎢⎢⎢⎢⎢⎣

Kdx 0 0 0 0 0

0 Kdy 0 0 0 0

0 0 Kdz 0 0 0

0 0 0 Kdθ 0 0

0 0 0 0 Kdφ 0

0 0 0 0 0 Kdψ

⎤
⎥⎥⎥⎥⎥⎥⎦

(13)

Vector of the difference (error) between the current and

desired system states:

qd = q−qr = [x−xr,y−yr,z−zr,θ −θr,φ −φr,ψ−θr]
T (14)

Vector of the derivatives:

qv = [x′,y′,z′,θ ′,φ ′,ψ ′]T (15)

System state for PID-controlled plant is defined as the R
18

vector:

Ξ = [ζ ,qd ,qv]
T (16)

where ζ ′ = qd is the integral part rule.

The closed–loop equation of the system is obtained [14]:

q′′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

(K px · xd −Kdx · x′+Kix ·ζx)/m
(K py · yd −Kdy · y′+Kiy ·ζy)/m

(K pz · zd −Kdz · z′+Kiz ·ζz −m ·g)/m
(K pφ ·φd −Kdφ ·φ ′+Kiφ ·ζφ)/Ixx
(K pθ ·θd −Kdθ ·θ ′+Kiθ ·ζθ)/Iyy
(K pψ ·ψd −Kdψ ·ψ ′+Kiψ ·ζψ)/Izz

⎤
⎥⎥⎥⎥⎥⎥⎦

(17)

The Lyapunov function proposed in the work [14] for the

stability analysis is:

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 434 --

Symbol Description Value Unit
m Mass of the quadrotor 2.03 kg

g Earth gravity 9.8 m/s2

K{p, i,d}{x,y,z} PID gain coefficients for position 1 -

K{p, i,d}{θ ,φ ,ψ} PID gain coefficients for orientation 1 -

Ixx Moment of inertia around X axis 0.002547 kg ·m2

Iyy Moment of inertia around Y axis 0.003613 kg ·m2

Izz Moment of inertia around Z axis 0.001074 kg ·m2

Ixy Moment of inertia around XY axises 0.00308 kg ·m2

Ixz Moment of inertia around XZ axises 0.0018105 kg ·m2

Iyx Moment of inertia around YX axises 0.00308 kg ·m2

Izy Moment of inertia around ZY axises 0.0023435 kg ·m2

Izx Moment of inertia around ZX axises 0.0018105 kg ·m2

Iyz Moment of inertia around YZ axises 0.0023435 kg ·m2

ε A constant to adjust stability − -

λmin{Kd} Minimum eigenvalue of Kd matrix 1 -

λmin{K p} Minimum eigenvalue of Kp matrix 1 -

λmax{Ki} Maximum eigenvalue of Ki matrix 1 -

λmin{Mt} Minimum eigenvalue of Mt matrix 9.90422 ·10−20 -

λmax{K p} Maximum eigenvalue of Mt matrix 2.03 -

TABLE I. PARAMETERS OF THE QUADROTOR SYSTEM

V (qd ,qv,γ) =
1

2
·
⎡
⎣ γ

qd
qv

⎤
⎦

T

·

⎡
⎢⎣

1

ε
· Ki 0 0

0 ε · Kd −ε · Mt
0 −ε · Mt Mt

⎤
⎥⎦

·
⎡
⎣ γ

qd
qv

⎤
⎦+

1

2
· qT

d ·
[

K p − 1

ε
· Ki

]
· qT

d

+U(qr − qd)−U(qr) + qT
d ·

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

m · g
0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(18)

Where

• U represents the potential energy of the quadrotor;

• γ = ε ·μ +qd and μ ′ = qr;

• ε is chosen according to the following law:

λmin{Kd} ·λmin{Mt}
λ 2

max{Mt} > ε >
λmax{Ki}
λmin{K p} (19)

(see Table 1 for the description).

B. Verification of the model

Here we construct a hybrid program for the quadrotor

system.

At first, after multiplying the matrices in (18) we get:

V =
1

2

(
θ ′ · (−ε · Ixx · (θ − θr)− ε · Iyx · (φ − φr)− ε · Izx

· (ψ − ψr) + Ixx · θ ′ + Iyx · φ ′ + Izx · ψ ′)+ (θ − θr)

·(−ε · Ixx ·θ ′ −ε · Iyx ·φ ′ −ε · Izx ·ψ ′+ε ·Kdθ ·(θ −θr)
)

+ φ ′ · (−ε · Ixy · (θ − θr)− ε · Iyy · (φ − φr)− ε · Izy

· (ψ − ψr) + Ixy · θ ′ + Iyy · φ ′ + Izy · ψ ′)+ (φ − φr)

·(−ε · Ixy ·θ ′ −ε · Iyy ·φ ′ −ε · Izy ·ψ ′+ε ·Kdφ ·(φ −φr)
)

+ ψ ′ · (−ε · Ixz · (θ − θr)− ε · Iyz · (φ − φr)− ε · Izz

· (ψ − ψr) + Ixz · θ ′ + Iyz · φ ′ + Izz · ψ ′)+ (ψ − ψr)

·(−ε · Ixz ·θ ′ −ε · Iyz ·φ ′ −ε · Izz ·ψ ′+ε ·Kdθ ·(ψ −ψr)
)

+ (x − xr) ·
(
ε · Kdx · (x − xr)− m · ε · x′

)
+ (y − yr)

· (ε · Kdy · (y − yr)− m · ε · y′
)
+ (z − zr)

· (ε · Kdz · (z − zr)− m · ε · z′
)
+

γ2
θ · Kiθ

ε
+

γ2
ψ · Kiψ

ε

+
γx

2 · Kix
ε

+
γy

2 · Kiy
ε

+
γz

2 · Kiz
ε

+
γ2

φ · Kiφ
ε

+ x′

· (m · x′ − m · ε(x − xr)
)
+ y′ · (m · y′ − m · ε(y − yr)

)
+ z′ · (m · z′ − m · ε(z − zr)

))

+
1

2

(
(θ−θ r)2

(
K pθ −Kiθ

ε

)
+(ψ−ψr)2

(
K pθ −Kiθ

ε

)

+ (x − xr)2

(
K px − Kix

ε

)
+ (y − yr)

2

(
K py − Kiy

ε

)

+ (z − zr)
2

(
K pz − Kiz

ε

)
+ (φ − φ r)2

(
K pφ − Kiφ

ε

))
+ mg · (z − zr) +U

(20)

Then, the hybrid program, as it was discussed, should be

considered in the form

init => [PID− controlled − law](req)

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 435 --

Fig. 5. Successful verification of the PID-controller model in KeYmaera

• For the precondition, we setup initial values mostly ac-

cording to Table 1 and then test stability at the initial point

[x0,y0,z0,θ0,φ0,ψ0]. For this, we use rule V0 < c,∀c > 0,

where V0 is the state of V (20) at the initial point with

all derivatives set to 0.

• For the plant, we follow (17), and add rules for integral

parts according to (16). Second derivatives are eliminated

by introducing speed variables as derivatives of q and

variable substitution.

• For the invariant, we use rule V < c,∀c > 0 where V

is introduced in (20). According to the nature of the

evolution state in a hybrid program, it leaves the state

with an ODE system solution at a random time and here

we are supposed to check stability of the system. So, the

given postcondition becomes an invariant of the system

to check the fact that “along the system dynamics, the

Lyapunov function is decreasing” which leads to system

stability.

The complete model is available on GitHub [15].

According to our experiment, the model of quadrotor system

is provable with KeYmaera (Fig. 5). Verification was com-

pleted automatically in about 7 seconds and 348 rules of dL
were applied.

In Fig. 6 we show a generated detailed description of the

hybrid system using our intermediate tool.

V. RELATED WORK

The main historical stages of automatic control are given

by Bennett [16]. For some pre-defined types of systems,

automated methods to check stability have been proposed by

Oehlerking et al. [17], however, such methods have not been

widely used in the CPS development. With the increasing

complexity of systems, a fuzzy control method has been

proposed recently by Tanaka et al. [18]. Some ideas of the

transition of PD-controllers models described in the Simulink

notation, to hybrid programs are given by Baar and Schulte

[19]. For multicopters, in book [20] Quan described most

of the issues of their design as well as modeling of the

dynamics. Some verification techniques for hybrid systems are

given by Tomlin et al. [21] and the most complete logical

foundations of CPS are discussed by Platzer in [22]. In the

very recent preprint [23] they have also proposed some lemmas

for stability proving.

VI. CONCLUSIONS

In this paper, we discuss the theorem proving process to

verify the system stability in the sense of Lyapunov using

KeYmaera input syntax. We show that it is possible to prove

complex models, designed using the Control theory (close to

real engineers). The automatic theorem proving, in contrast to

manual proving, could help the engineers to verify systems

with different parameters and automatically try various Lya-

punov functions without having to calculate their derivatives.

The latter tells us that it is possible to create a static stand for

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 436 --

Fig. 6. Precondition and invariant for the hybrid flying state

the selection and testing of Lyapunov functions. We can also

note that although dL is a powerful mathematical basis for

describing and checking such systems, an intermediate DSL

for the possibility of an easier description of input models

would be useful for the users of KeYmaera tool. In particular,

this problem is considered in [13], however, as it can be seen

from the present article, the matrix operations must also be

included into such a language.

VII. ACKNOWLEDGMENT

The author gratefully acknowledges Prof. Dr. Thomas Baar

from HTW Berlin for involvement in this area and valuable

remarks on this paper. The author also thanks the four anony-

mous reviewers for their comments.

REFERENCES

[1] S. Staroletov, N. Shilov, V. Zyubin, T. Liakh, A. Rozov, I. Konyukhov,
I. Shilov, T. Baar, and H. Schulte, “Model-driven methods to design of
reliable multiagent cyber-physical systems,” in Proc. of the Conference
on Modeling and Analysis of Complex Systems and Processes (MACSPro
2019), 2019.

[2] A. Platzer, Logical analysis of hybrid systems: proving theorems for
complex dynamics. Springer Science & Business Media, 2010.

[3] ——, “The complete proof theory of hybrid systems,” in 2012 27th
Annual IEEE Symposium on Logic in Computer Science. IEEE, 2012,
pp. 541–550.

[4] S. Staroletov and N. Shilov, “Applying model checking approach with
floating point arithmetic for verification of air collision avoidance ma-
neuver hybrid model,” in International Symposium on Model Checking
Software. Springer, 2019, pp. 193–207.

[5] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle,
W. Menzel, W. Mostowski, A. Roth, S. Schlager et al., “The KeY tool,”
Software & Systems Modeling, vol. 4, no. 1, pp. 32–54, 2005.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns.
isbn: 0-201-63361-2,” 1996.

[7] R. Goré, “Tableau methods for modal and temporal logics,” in Handbook
of tableau methods. Springer, 1999, pp. 297–396.

[8] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer, “KeY-
maera X: An axiomatic tactical theorem prover for hybrid systems,” in
International Conference on Automated Deduction. Springer, 2015, pp.
527–538.

[9] A. A. Ahmadi, “Non-monotonic Lyapunov functions for stability of
nonlinear and switched systems: theory and computation,” Ph.D. dis-
sertation, Massachusetts Institute of Technology, 2008.

[10] A. M. Lyapunov, “The general problem of motion stability,” Annals of
Mathematics Studies, vol. 17, 1892.

[11] S. M. Staroletov, M. S. Amosov, and K. M. Shulga, “Designing robust
quadcopter software based on a real-time partitioned operating system
and formal verification techniques,” Proceedings of the Institute for
System Programming of the RAS, vol. 31, no. 4, pp. 39–60, 2019.

[12] J.-D. Quesel, S. Mitsch, S. Loos, N. Aréchiga, and A. Platzer, “How to
model and prove hybrid systems with KeYmaera: a tutorial on safety,”
International Journal on Software Tools for Technology Transfer, vol. 18,
no. 1, pp. 67–91, 2016.

[13] T. Baar, “A metamodel-based approach for adding modularization to
KeYmaera’s input syntax,” in International Andrei Ershov Memorial

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 437 --

Conference on Perspectives of System Informatics. Springer, 2019, pp.
125–139.

[14] K. A. Camarillo-Gómez, G. I. Pérez-Soto, J. Rodrı́guez-Reséndiz et al.,
“Comparison of PD, PID and sliding-mode position controllers for V–
tail quadcopter stability,” IEEE Access, vol. 6, pp. 38 086–38 096, 2018.

[15] S. Staroletov, Hybrid programs in .key (KeYmaera syntax) to prove the
stability of PD and PID. DOI:10.5281/zenodo.3737545, 2020.

[16] S. Bennett, “A brief history of automatic control,” IEEE Control Systems
Magazine, vol. 16, no. 3, pp. 17–25, 1996.

[17] J. Oehlerking, H. Burchardt, and O. Theel, “Fully automated stability
verification for piecewise affine systems,” in International Workshop on
Hybrid Systems: Computation and Control. Springer, 2007, pp. 741–
745.

[18] K. Tanaka, T. Hori, and H. O. Wang, “A multiple lyapunov function

approach to stabilization of fuzzy control systems,” IEEE Transactions
on Fuzzy Systems, vol. 11, no. 4, pp. 582–589, 2003.

[19] T. Baar and H. Schulte, “Safety analysis of longitudinal motion con-
trollers during climb flight,” Modeling and Analysis of Information
Systems, vol. 26, no. 4, pp. 488–501, 2019.

[20] Q. Quan, Introduction to multicopter design and control. Springer,
2017.

[21] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi, “Computational
techniques for the verification of hybrid systems,” Proceedings of the
IEEE, vol. 91, no. 7, pp. 986–1001, 2003.

[22] A. Platzer, Logical foundations of cyber-physical systems. Springer,
2018, vol. 662.

[23] Y. K. Tan and A. Platzer, “Deductive stability proofs for ordinary
differential equations,” arXiv preprint arXiv:2010.13096, 2020.

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 438 --

