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Abstract—Automatic detection of dangerous situations to en-
sure the safety of residents is one of the areas of Smart
Surveillance. Often dangerous situations are caused by deviant
behavior of people (vandalism, brawl, robbery, etc.). An impor-
tant technology for analyzing the actions and interactions of
people in the context of detecting deviant behavior is 3d human
poses estimation, but the estimation of the relative position of
multiple people in 3d space, which is necessary to analyze the
interaction of people, is a separate task that remains outside the
scope of this technology. In this paper, we propose an approach
for estimating the relative position of 3d poses of people based on
the surface normals detection in plain RGB images. The approach
was tested using a computer-graphic based dataset containing
scenes of interacting people in a city. The results were compared
with the existing approach for estimating the relative position
of 3d poses of people, based on the assumption of the constant
human skeleton length.

I. INTRODUCTION

Together with the Smart City concept, the Smart Surveil-

lance concept which implies the use of intelligent technologies

for analyzing video surveillance systems data is attracting

more and more attention. One of the main areas of the Smart

Surveillance concept is the detection of dangerous situations

to ensure the safety of residents. Examples of tasks solved for

this purpose are the recognition of wanted criminals [1], the

detection of orphan objects [2], the detection of weapon [3]

and the detection of fire and smoke [4].

Often a dangerous situation is caused by actions of people

(robbery, vandalism, assault, brawl, etc.). The prompt detection

of such situations allows taking timely measures to eliminate

them and help victims, but due to the complexity of the

problem of understanding human interaction by a computer

the problem of automatic detection of dangerous situations

caused by deviant behavior of people remains unsolved.

A possible approach to solving this problem is the integra-

tion of modern computer vision and knowledge management

technologies, proposed in [5]. It’s refined diagram depicting

the proposed integration is shown in Fig. 1. Technologies such

as segmentation and classification of objects and people [6],

tracking of people [7], 3d human skeleton detection in RGB

image [8], as well as classification of short-term human actions

of people [9] allow recognition of fine grained features of

scenes that reflect the events taking place on the video and

serving as atomic knowledge about the observed scene. While

knowledge management technologies ensure the incorporation

of this atomic knowledge with expert knowledge about the

human deviant behavior scenes, allowing the computer to build

chains of reasoning and to suggest whether a particular video

segment depicts a dangerous situation or not.

To detect dangerous situations caused by deviant behavior of

people, the most important features are 3d poses of people. The

estimation of 3d poses of people in a common 3d space (for

example, in the camera coordinate system) for each frame of

the video allows the recognition of a wide range of actions and

interactions of people [10], for instance, punching, pushing,

falling, shaking hands or searching a person’s pockets. How-

ever, to obtain coordinates in camera space we need to know

the distance from the camera to each person. Determining the

distance is a trivial task using special equipment such as a

LiDAR, but usually cameras of a city’s video surveillance

systems provide only plain RGB images. At the same time,

the existing technologies for estimating 3d poses from a 2d

image (for example, [8]) measure the depth coordinate of

human pose keypoints from the central point of the human

body considering the detection of the absolute depth in camera

space as a separate task.

There are various approaches for estimating the distance

from a camera to a person from a plain RGB image, which

differs in the use of different heuristics. The validity of these

heuristics determines the error. In this work, we propose an

approach for estimating the distance from the camera to a

person, which is distinguished by the following features and

assumptions:

• Intrinsic camera parameters (focal length, matrix size and

lens distortion coefficient) are known.

• It is assumed that the camera and the interacting people

are located on the same plane (flat surface).

• The height of the camera above the ground plane is

known.

• At each moment in time, a person touches the surface

with at least one keypoint of his estimated 3d pose.

• When estimating the camera-to-person distance, the ro-

tation angles of the camera to the surface are used,

calculated using technology for detecting surfaces and

normal vectors in a plain RGB image.

The above assumptions apply to city’s surveillance cameras,

and the required parameters of cameras can be easily discov-
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Fig. 1. Diagram of the approach for detecting deviant behavior of people via city surveillance cameras

ered.

In this work we also implemented the proposed approach,

improving the system of tracking the interaction of people in

3d space, developed in [11]. Based on conducted experiments

using the dataset developed within [11], we have shown

that the proposed approach significantly reduces the error in

detecting the relative position of people, in comparison with

the previously used approach based on the assumption of the

constant length of a person skeleton.

This work is a continuation of the work [5] and [11],

aimed at developing the automatic deviant behaviour detection

approach and integrating people detection, people tracking and

pose estimation technologies. This work is focused only on

the human position estimation in 3d space as a step towards

automatic deviant behaviour detection, and the results obtained

in this work will be used for the development of the Surface

detection and distance estimation component shown in Fig. 1.

The rest of the paper is structured as follows. Section II pro-

vides an overview of technologies for estimating depth from

a plain RGB image and technologies for estimating normal

vectors of surfaces. Section III provides a detailed description

of the proposed approach for estimating the coordinates of a

human body keypoints in camera space. Section IV presents

the results of testing the proposed approach.

II. RELATED WORK

Detecting the distance from the camera to objects using

plain RGB images is an urgent task in many fields, for exam-

ple, robotics, augmented reality, or 3d scene reconstruction.

The need to estimate depth from RGB images arises when

special equipment (for example, LiDAR) cannot be used due

to the high cost or complexity of deployment and use.

Transformation of a 2d view into 3d is ambiguous, so

various heuristics are used to solve this problem. For example,

[12] offers advanced driver assistance system, which estimates

the distance from the camera to vehicles. For this, the authors

carry out the detection and classification of cars to obtain

the corresponding real world dimensions, and also estimate

the attitude angle of cars. Then, by correlating the actual

and observed size of the car, authors calculate the required

distance.
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The work [13] proposes an approach for estimating the

camera-to-car distance by detecting road lanes. Knowing a

priori the distance between lanes and assuming that lanes are

drawn straight and parallel on the road, and that the road is

a plane, the authors calculate the distance from the camera to

the points of contact of cars with the road.

In many cases, estimating the distance to objects from a

2d image is not a difficult task for a person. To do this,

the human brain applies its experience, takes into account

the textures, shadows and known patterns of the observed

scenes and objects. Many modern works follow the assumption

that neural networks can be trained to these patterns. For

example, [14] proposes a convolutional neural network to

estimate the depth of each pixel in the original RGB image.

Assuming that some computer vision tasks are related to the

depth estimation task and applying additional constraints and

training data to a neural network can improve its accuracy,

a number of works propose the creation of multitask neural

networks. For example, [15] proposes a neural network for

joint depth estimation and semantic segmentation.

Another approach to depth estimation and 3d view recon-

struction is a planar reconstruction, implying representation

of space as a set of 3d planes. For such a reconstruction,

it is necessary to segment the planes, estimate their normal

vectors in the camera space and estimate the position of the

camera relative to the detected planes. This view is more

convenient than pixelwise depth maps in some problems of

augmented reality and robotics [16]. As demonstrated in [17],

the segmentation of 3d planes and estimation of normals

generalizes well to new datasets and only requires analysis of

local areas of the image. To estimate the position of the camera

relative to each plane, [17] proposes to calculate the pixelwise

depthmap for the whole image, which requires a global image

analysis and is more sensitive to unseen datasets.

Among the most recent works devoted to plane detection

using plain RGB images ( [16], [17], [18], [19], [20], [21])

the most advanced results were obtained in [17]. The work

[17] proposes the PlaneRCNN neural network based on Mask-

RCNN [22] (Fig. 2). First, deep features are extracted from a

plain RGB image using the Feature pyramid network (FPN).

These features are then used in two separate branches to

detect planes and evaluate a pixelwise depth map. To detect

planes, by analogy with Mask-RCNN, a selection of regions

containing individual planes (Region proposal phase) is per-

formed, after which spatial features are separately extracted

for each region and reduced to a universal size (Roi pool

phase). Then the features of each region are fed to the input

of a neural network composed of fully-connected layers to

calculate normal vectors and a neural network composed of

convolution layers to estimate planar masks. The difference

from Mask-RCNN is the selection of one of a seven predefined

anchor vectors instead of object classes and the estimation of

residual vectors for each anchor vector. Sum of an anchor

vector and corresponding residual vector produces a normal

vector. The estimation of a pixelwise depth map happens in

a separate branch of the neural network. For that purpose a

decoder is applied to the deep features of the original image,

the output of which is a depth map corresponding to the size

of the image. Next, the depth map is used to calculate the

distance from the camera to each plane and the final depth

map in the camera coordinate system. Finally, based on all the

results obtained, the planar masks are refined using a neural

network based on the U-Net architecture.

III. HUMAN POSITION ESTIMATION

To estimate human poses in a common 3d space with the

aim of tracking human interaction, this paper proposes an

approach consisting of the following stages:

1) Detection of bounding boxes of people.

2) Detection of a 3d pose of a person in each bounding

box.

3) Estimation of the ground plane normal.

4) Selection of the closest to the ground plane keypoint for

each person.

5) Calculation of the distance from the camera to the

selected keypoint of each person.

6) Calculation of coordinates of 3d human poses in camera

space.

To apply this approach, the following assumptions must be

met:

• Camera parameters are known: focal length, sensor size

and lens distortion coefficient. They can be obtained from

the documentation for the camera model.

• The camera and people are placed on a single flat surface.

Since usually more or less flat ground prevails in the city,

this assumption is appropriate. The presence of different

height of the road and sidewalk can introduce an error,

but its impact on tracking of human interaction should

be small if the interacting people are simultaneously

standing on the same height surface.

• The height of the camera relative to the ground plane is

known. This value could be documented when deploying

the camera or it can be measured once for each camera.

• People must touch the surface with at least one estimated

keypoint. This assumption is incorrect if the person is

jumping or is standing on a bench, car, or other object.

In this case, it will be considered that the person is further

away, and that the human body is larger than it actually

is. To solve this problem, the distance can be corrected

by introducing a limit on the size of a person’s body, as

well as by comparing it with the size of the person’s body

observed in previous frames.

Detection of bounding boxes of people. There are numer-

ous detectors of people. In this work, the implementation from

[6] has been used.

Detection of a 3d pose of a person in each bounding
box. For this purpose, the neural network presented in [8]

was used. As an input, the neural network takes an image

patch containing a single person, and as an output it provides

the three-dimensional coordinates of eighteen key points of

the human body. In this case, the x and y coordinates are
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Fig. 2. A diagram of the PlaneRCNN neural network for detecting planes in images

measured from the upper left corner of the patch, and the z
coordinate - from the center point of the human body. This

coordinate system can be converted to the camera coordinate

system by parallel translation. All coordinates are measured

in pixels.

Estimation of the ground plane normal. To estimate the

normal to the ground plane, we propose to use the PlaneRCNN

neural network presented in [17]. The network accepts an RGB

image as an input, and provides a segmentation mask and a

normal vector in the camera space (Fig. 3) for each detected

plane as an output. The shortcoming of the PlaneRCNN is that

Fig. 3. An example of placing a surveillance camera relative to the ground
plane

it does not distinguish the ground plane from the others. In

addition, as our experiments have shown, the neural network

may not segment the entire surface and perceive a person

as a surface (Fig. 4). For automatic selection of the ground

plane, we use several assumptions: the ground plane should

occupy a large area; it must be close to a detected person;

and it should be located at the bottom of the image. Based

on these assumptions, we propose the formula 1, according to

which we calculate the score for each plane. The plane with

the highest score is selected as the ground plane. The first term

in the formula 1 reflects the inherent position of the ground

plane relative a person and does not exceed 1 for each person.

The second term reflects the inherent absolute position of the

ground plane in the image and also does not exceed 1.

Sk =
∑
i,x,y

Mk,x,y ∗ Ci,y ∗ e
− (x−Xi)

2+(y−Yi)
2

2L2
i

L2
i ∗ 2π

+

∑
x,y

Mk,x,y ∗ 2 ∗ y
(H − 1) ∗H ∗W

(1)

where Sk - a score of the kth plane; i - a number of the

detected person; x and y - coordinates of the pixel, measured

from the upper left corner of the image starting at zero; Mk,x,y

- a belongingness coefficient of the (x, y) pixels to the kth

plane, equals to 1 if the pixel belongs to the plane and 0

otherwise; Xi and Yi - coordinates of the lowest relative to

the image keypoint (with the biggest y coordinate) of the ith
person; Li - a leg’s length of the ith person in pixels, calculated

using the estimated pose; Ci,y - coefficient equals to 0.5 if

y < Yi and 1.5 if y >= Yi; H and W - the height and width

of the image in pixels.

Selection of the closest to the ground plane keypoint
for each person. To select the keypoint closest to the ground

plane, which is considered the point of contact with the

surface, we rotate the coordinate system of the person’s pose

in accordance with the system of equations 2. As a result of

rotation, the normal vector −�n (Fig.4) becomes co-directional

with the axis Oy of the resulting coordinate system. Thus, the

keypoint with the largest value of the y coordinate becomes
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Fig. 4. Examples of planes detection using PlaneRCNN

the keypoint closest to the surface.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
v1 v2 v3

)
= (−�n)× �yc

c = (−�n) ∗ �yc

V =

⎛
⎜⎝

0 −v3 v2

v3 0 −v1

−v2 v1 0

⎞
⎟⎠

R = I + V + V 2 ∗ 1
1+c⎛

⎜⎝
Xw′

Yw′

Zw′

⎞
⎟⎠ = R ∗

⎛
⎜⎝
Xc′

Yc′

Zc′

⎞
⎟⎠

(2)

where �n - unit normal vector of the surface (Fig. 3); �yc -

unit vector co-directional with axis Oyc; I - identity matrix;

Xc′ , Yc′ , Zc′ - estimated coordinates of a human keypoint;

Xw′ , Yw′ , Zw′ - coordinates of the person’s keypoint in the

coordinate system in which the vector −�n is co-directed with

the Oy axis.

Calculation of the distance from the camera to the
selected keypoint of each person. Since we assume that

the selected keypoint lies on the surface, its y coordinate

in the world coordinate system (Fig. 3) is zero. Applying

the pinhole camera model [23] we derive the formula of the

inverse projection of an image point into the world coordinate

system. So we have a system of equations 3, from which

all unknowns are uniquely found. The transformation of the

obtained coordinates of the point into the camera coordinate

system is carried out according to the formula 4.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K =

⎛
⎜⎝
f 0 0

0 f 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝
Xw

Yw

Zw

⎞
⎟⎠ =

⎛
⎜⎝

0

−H

0

⎞
⎟⎠+ λ ∗R ∗K−1 ∗

⎛
⎜⎝
(Xc′ +Xp) ∗ Sp

(Yc′ + Yp) ∗ Sp

1

⎞
⎟⎠

Yw = 0
(3)

where f - camera focal length in millimeters; Xw, Yw, Zw -

coordinates of the person’s keypoint lying on the surface in the

world coordinate system, in millimeters; Xc′ , Yc′ - estimated

coordinates of the person’s keypoint lying on the surface, in

pixels; Xp, Yp - coordinates of the upper left corner of the

image patch containing a person in the camera coordinate

system, in pixels; Sp - pixel size in millimeters; R - rotation

matrix from equation 2; λ - unknown coefficient; H - camera

height above the ground plane in millimeters (Fig. 3).⎛
⎝
Xc

Yc

Zc

⎞
⎠ = R−1 ∗

⎛
⎝

Xw

Yw +H
Zw

⎞
⎠ (4)

where Xc, Yc, Zc - coordinates of a keypoint in the camera

coordinate system; R - rotation matrix from equation 2; Xw,

Yw, Zw - coordinates of the keypoint in the world coordinate

system.

Calculation of coordinates of 3d human poses in camera
space. For this we use the formula 5.⎛

⎝
Xc

Yc

Zc

⎞
⎠ =

⎛
⎝

Xc′ +Xp

Yc′ + Yp

Zc′ − ZLc′

⎞
⎠ ∗ XLc

XLc′ +Xp
+

⎛
⎝

0
0

ZLc

⎞
⎠ (5)

where Xc, Yc, Zc - coordinates of a person’s keypoint in the

camera coordinate system; Xc′ , Yc′ , Zc′ - estimated coordi-

nates of the person’s keypoint in pixels; Xp, Yp - coordinates
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of the upper left corner of the image patch containing the

person in pixels; XLc′ , ZLc′ - estimated coordinates of the

person’s keypoint lying on the surface; XLc, ZLc - coordinates

of the person’s keypoint lying on the surface in the camera

coordinate system (formulas 3, 4).

The advantage of our proposed approach for estimating

human poses in a common three-dimensional space with the

aim of tracking human interaction is the generalization into

unseen datasets, which is inherent in the neural network [17]

we used for planes segmentation and normals estimation. In

contrast to neural networks trained to directly estimate the

depth.

IV. HUMAN POSITION ESTIMATION RESULTS

To test our proposed approach for estimating human posi-

tion, we used a computer-graphic based dataset proposed in

[11]. This set consists of 129,600 images of two interacting

people on a city street, taken from different viewpoints. The

dataset presents 4 different human models. A viewpoint is

determined by three parameters: the distance from the camera

to the interacting people (5, 10, 15, 20 meters), the tilt angle

of the camera (10, 20, 50 degrees) and the angle of rotation

of the interacting people in relation to the camera (30, 60, 90

degrees).

To estimate the error, for each image individual from

the dataset absolute deviation (AD) and absolute deviation

relative to the adjacent skeleton (ADAS) error metrics [11]

were calculated. Since for the analysis of human interaction,

only their relative position is important, before calculating

the ADAS error the coordinates of human keypoints were

multiplied by a coefficient calculated by the formula 6. This

preprocessing is necessary to compare the ADAS error of the

approach proposed in this work and the approach based on the

assumption of the constant skeleton length [11].

rcoef =
SL

max(skel len(P0), skel len(P1))
(6)

where rcoef - resizing coefficient of a human pose; SL -

constant human skeleton size, taken from [11]; P0 and P1

- estimated keypoints of interacting people in camera space;

skel len - function for calculating a human skeleton size by

keypoints, taken from [11].

The tables I and II show the average error of all images and

keypoints of people for each pair (camera distance, camera

tilt angle) for two approaches. When calculating the average

errors, 10% of the images with the largest ADAS error were

excluded from consideration. For coordinates (x, y) and the

depth coordinate z, the errors were calculated separately. Table

I also shows the average error of the ground plane normal

estimation, calculated as the angle between the estimated and

the ground truth normals. Figures 5, 6, 7, 8 show graphs

of average AD and ADAS errors versus camera distance

and camera tilt angle for the normal estimation (NE) based

approach and the skeleton length (SL) based approach [11].

Fig. 9 depicts a graph of the average error of the ground

plane normal estimation, calculated as the angle between the

estimated and the ground truth normals, versus camera tilt

angle.

Fig. 5. AD error graphs versus the camera distance

Fig. 6. ADAS error graphs versus the camera distance

Fig. 7. AD error graphs versus the camera tilt angle

As a result of the analysis of the above data, the following

observations were made:

• The error of person’s location estimation in the camera

coordinate system (AD) in both the normal estimation

based approach and the skeleton length based approach

mainly depends on the distance from the person to the

camera. But in the former approach, the coefficient of

proportionality is much higher, since it is caused by a

high error the normal vector estimation, which can exceed

75% at low tilt angles.
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TABLE I AVERAGE AD AND ADAS ERRORS IN MILLIMETERS AND NORMAL ESTIMATION ERROR IN DEGREE FOR THE NORMAL ESTIMATION BASED

APPROACH

View (x,y)/z AD error (x,y)/z ADAS error Normal error
(5,10) 554/2424 139/359 10.13
(5,30) 213/471 142/239 1.17
(5,50) 193/368 241/270 1.09

(10,10) 451/3931 100/304 6.93
(10,30) 137/742 142/248 1.35
(10,50) 205/1390 301/380 5.83
(15,10) 478/6151 102/351 7.29
(15,30) 164/1690 161/279 2.72
(15,50) 238/2879 343/430 8.96
(20,10) 454/7768 108/337 6.6
(20,30) 216/3415 180/346 4.34
(20,50) 284/5086 379/502 11.71

TABLE II AVERAGE AD AND ADAS ERRORS IN MILLIMETERS FOR THE CONSTANT SKELETON LENGTH BASED

APPROACH

View (x,y)/z AD error (x,y)/z ADAS error
(5,10) 116/246 73/162
(5,30) 153/280 106/212
(5,50) 283/462 186/593

(10,10) 115/470 76/321
(10,30) 169/578 116/702
(10,50) 362/1254 226/1914
(15,10) 122/762 78/559
(15,30) 195/1046 130/1342
(15,50) 419/2244 254/3435
(20,10) 135/1140 87/911
(20,30) 220/1625 142/2083
(20,50) 472/3533 282/5265

Fig. 8. ADAS error graphs versus the camera tilt angle

• Despite the high AD error, the ADAS error of the

normal estimation based approach is significantly lower

than the skeleton length based approach. This is due to

the fact that the ADAS error for the former approach

depends majorly not on the distance to the camera, but

on the distance between people. While for the latter

approach, it depends on the distance to the camera with

a coefficient of proportionality depending on the sum of

errors in estimating the interacting people skeleton length.

Nevertheless, the dependence of the former approach on

the distance to the camera exists and is explained by

the human pose estimation error, which increases with

decreasing resolution of the human image [11].

Fig. 9. A graph of the ground plane normal estimation error versus the camera
tilt angle

• The error in estimating the ground plane normal vector

is higher at low and high camera tilt angles. This may

be due to the predominance of examples with a camera

tilt angle close to 25 degrees in the training dataset. This

is also reflected in the error in estimating the location of

people of the normal estimation based approach.

Summing up, it can be concluded that the normal estimation

based approach showed significantly better results in estimat-

ing the relative position of people than the skeleton length

based approach. Nevertheless, the error remains high and

can reach several hundred millimeters, which can affect the

accuracy of the classification of human interactions. Additional
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training of neural networks for estimating the pose of people

and estimating the ground plane normal using datasets better

reflecting the specificity of target scenes might reduce the

error.

V. CONCLUSION

Automatic detection of deviant behavior of people via city’s

surveillance cameras is a promising direction in the field

of ensuring the safety of residents. An important problem

arising in this field is the estimation of poses of people in

a common three-dimensional space. Where the poses are used

to automatically detect a wide range of actions and interactions

of people. Since the restoration of a 3d scene from a 2d

image obtained from CCTV cameras is ambiguous, there is

no a straightforward solution to this problem. In this work,

we proposed an approach for estimating the distance from

the camera to the 3d human pose based on the detection

of the normal vector to the ground plane, which is used to

determine the camera positioning. We tested this approach

using a computer-generated dataset of interacting people and

compared the results with the approach based on the assump-

tion of a constant size of the human skeleton. The normal

estimation based approach outperformed the constant skeleton

length based approach in the problem of estimating relative

position of people.

Our further work will be focused on improving the accuracy

of the approach for estimating the relative position of people

by creating additional training datasets that better reflect the

specificity of target scenes viewed by city’s CCTV cameras.

As well as on the application of the obtained results to detect

the deviant behavior of people.
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