PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

Relational Pre-indexing Layer Supervised by the
DB index consolidator Background Process

Michal Kvet, Marek Kvet
University of Zilina
Zilina, Slovakia
Michal Kvet@fri.uniza.sk

Abstract—The performance of the database system significantly
influences the whole ecosystem reflected by the applications,
information systems, and analytical tools. Data retrieval and
access form crucial operations. Data indexing can provide
additional power for the tuple location, identification, and proper
management. By using such a technique, Select statement can
benefit. Data integrity and consistency can be ensured, as well.
On the other hand, adding new indexes brings additional
demands on the system and change operations, whereas activity
performed on the data must be mirrored into the indexes to
ensure correctness and recency. This paper deals with the index
definition from the data manipulation operation perspective. New
modules monitoring changes are added. As a result, the amount
of the indexes can be significantly increased, but with minimal
impact on the Insert, Update, and Delete statements.

1. INTRODUCTION

Data amount to be processed and managed has changed
significantly over the decades. Users, developers, and database
administrators can feel the significant demands and must react
properly to ensure the system usability, either by the hardware,
as well as software perspectives. Relational databases evolve
rapidly over time. In the first phases, whereas the disk storage
capacity was extremely expensive, just a small amount of data
was able to be managed. The produced data amount from the
other systems was really low, as well. With the advent of
cheapness and availability of the disks delimited by the huge
capacity, there is no problem to maintain data evolving over
time, to store large objects, and monitoring data directly in the
database. Hardware brings currently minimal limitations
supervised by the technological overhead. On the other
perspective, we can feel the strong demand for performance. If
the amount of data is rising, it is inevitable to change the
access rules, principles, and plans to improve the performance
of the data retrieval, to locate data effectively. Such activity is
mostly done by the index database objects, which cover the
pointers to the relevant data based on the main data attributes
or functions respectively.

The aim of this paper is to provide overview of the
relational system indexing principles with emphasis on the
proposed solution based on the pre-indexing layer limiting the
necessity to balance the index in the main transaction.
Background process dealing with index consolidation is
proposed to ensure performance. This paper is structured as
follows: section 2 deals with the Database architecture with

regards to the block granularity, which is important during the
data loading from the database into the memory instance for
the evalution. Section 3 deals with the index definition,
extended in section 4 managing performance. Section 5
proposes own solution. Performance evaluation is in section 6.

II. RELATIONAL DATABASE AND PROCESSES

Looking at the physical architecture of the database system,
two independent, but interconnected parts can be identified. A
database instance is a logical unit represented by the memory
structures and processes managing either instance, as well as
data themselves. Background processes are responsible for
memory management, allocation, and space reallocation, but
they provide the whole management regarding user connection
and database supervision. During the database instance startup,
System Monitor, and Memory Manager background processes
are started in the first phases, even during the no-mount
process to prepare memory structures. In the mounting step of
the startup process, background processes locate the pointers
to the physical storage files and map them to be accessible
from the instance. These pointers are stored in the physical
storage, outside the database, in the controlfile. The last step is
represented by the instance and database (as the second part of
the database system architecture) availability. Thus, these parts
are independent, after the server shutting down, only database
data are available, however, they cannot be parsed and
processed at all, without the interoperability of the database
instance.

Data are physically stored in the files, in which data are
formed in the block manner. The size of the block for the
default management is fixed (8kB), defined during the
database definition, and cannot be changed later. Available
block size definitions are 2kB up to 32kB in some
architectures [3]. The impact of the block definition on the
performance characteristics can be found in [5], [17]. The
block structure is significant in the whole architecture and
management, whereas a similar block structure must be
present in the memory to serve the block loading process. The
memory Buffer cache is a structure operated by the Database
Writer, Process Monitor, Memory Manager background
processes [4]. It aims to provide space for the block loading
from the physical database for the consecutive processing (e.g.
parsing), as well as new or updated data are stored there,

ISSN 2305-7254

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

before the physical transformation into the database.
Therefore, the loading process is one of the most demanding
aspects of influencing global performance. The aim is
therefore straightforward, to limit the amount of the blocks to
be transferred. In [15], a complex analysis of the data block
structure with emphasis on the data migration can be
identified. In that case, data are not in the block, where
expected. It is mostly caused by the increase of the data row
size after the update operation. The newly updated data tuple
does not fit the original data block and must be shifted into a
new one. Another problem is caused by data fragmentation [7]
[8]. In that case, individual blocks have free space and the total
number of blocks is too high in comparison with real usage.
Fragmentation management can be supported either by the
robustness of the index [9] or by the online defragmentation
methods [7] influencing the data blocks themselves, as well as
the indexes [18] supervised by statistics [10]. Data block
compression is discussed in [19]. Partitioning is another
technique to limit the data amount in one place. By using this
technique, data access can be parallelized across the partitions,
which can be managed either locally [11] or in the global
perspective [11] [20]. The disadvantage and limitation of such
a technique is just the bottleneck expressed by the loading
process into the memory if partitions are placed physically in
one common disk operated by just one interface. Data
distribution can be relevant to limit such negatives by splitting
the processing into multiple nodes operated by the separate
memory structures [1]. In this context, there can be a different
problem identified, just as aresult of the node connectivity
loss. In such a case, individual data tuples should be stored in
a replicate style to avoid data loss and processing availability
[1], [2], [6] secured by the global reliability of the retrieved
data [21].

From the above perspective, data are operated in a split
manner, either by partitioning in the local system or
distributed environment. On each node, however, an index
must be present to ensure the efficiency of the processing
supported by the index access techniques. In principle, if the
suitable index is not present for the evaluation, the database
optimizer is forced to use sequential scanning of the data
blocks (Table Access Full (TAF) method). When using an
index access path, several techniques can be used reflecting
the environment, properties, and structure of the query. The
main factor influencing the performance is expressed by the
Where condition of the Select statement. If the query results in
getting no more than one row by the specification of the
unique condition (e.g. condition based on the primary key), the
Index Unique scan technique can be used. By traversing the
index, if the particular node is searched successfully,
evaluation can end immediately, followed by the optional
Rowid Scan method, by which the required attribute values,
which are not present in the index, can be obtained. In that
case, the whole block containing the row is loaded into the
memory Buffer cache. Vice versa, if the requirement of the
unique definition cannot be ensured, Index Range method is
used. In that case, the first suitable passing Where conditions
are located by the index. Afterward, a linked list on the leaf

223

layer is used to locate the next data row based on the index.
The processor checks, whether the conditions are passed, as
well. If so, a particular Rowid value is extracted and
processing continues with the next row definition, until the
first row, which does not reply to the Where clause is present.
As the result, a list of Rowid values is created. These values
are sequentially used as the input for the Rowid scan method
to provide additional values, which are not directly stored in the
index [4], [6].

The above methods are the best if the Select statement
conditions are in a suitable order reflecting the attributes inside
the index. In the ideal case, all required data (delimited by the
Select clause) are present, thus the result set can be directly
composed. If not, additional attribute values or function
methods output is calculated and obtained. It is not possible,
nor efficient to define all suitable indexes reflecting the
possible activities. Therefore, another category of index
methods has been created. By using such techniques, a list of
the attributes in the index does not fit the Select statement,
however, database optimizer assumes, that the estimation of
the time and performance would benefit if the whole index is
scanned by locating data. Generally, the database manager
assumes, that the index scanning is easier and faster in
comparison with sequential scanning of the whole table [4]
[14]. The principle is mostly based on the number of blocks
and the structure of the index in comparison with the whole
table. The index is almost always smaller than the table itself.
However, there is a strict requirement, that the index must
hold a reference to all data rows. Otherwise, such an index will
be refused from the definition. A typical example of such an
index, which holds not the whole data table set, is delimited by
the NULL value definition. B+tree, as the default index
structure used in relational database systems, does not manage
undefined (NULL) values, at all. In Oracle, it is always true, as
the result of the impossibility of NULL value comparison in
mathematical theory.

In other database systems, NULL management depends on
data storage architecture. In MyISAM of the MySQL, data are
not sorted, the index provides a pointer to the data. A non-
clustered version ensures, that the record on the disk is in an
unsorted manner. It can hold NULL values directly in the
index definition. In comparison with InnoDB, which uses the
clustered index. Each table in that architecture must contain
aunique non-nullable primary key, by which the physical
location is defined. Hash storage engine is another
architecture, which, in principle, cannot manage undefined
data values, whereas it uses mathematical operations to
calculate the bucket, in which the data row resides. By using a
function-based index based on the hashing as the core for the
extended Hash storage engine, before the processing, the
undefined value is replaced by the real present value, thus it
can be located in the index, as well [12]. The problem of
undefined value management is complexly specified and
solved in [11], [12], [13]. Undefined values shifted into the
conditions are handled in [16].

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

Two full scanning methods can be identified — Index full
scan and index fast full scan. An index fast full scan reads the
entire index in an unsorted manner as it exists in the database
disk storage. In principle, this method uses index instead of the
table by using multi-block 10 reading all leaf blocks. It ignores
the branch and root blocks and just processes the data on the
leaf layer. Index full scan uses the fact, that the data are sorted
in the index. It starts in the root block navigating to the left-
hand side of the index reaching the leaf block. It reads across
the entire bottom of the index — a block at a time in a sorted
principle [4].

II1.

As already defined, the B+tree index structure is the most
often used data structure used in the relational theory. It
benefits the fact, that the data are sorted in the leaf layer, as
well as it does not degrade the performance with the increase
of the data. It consists of the collection of one or more data
pages, called nodes. By searching in that structure, the DB
server starts at the root, which contains a set of n key values in
sorted order. Each key contains not only values of the key
itself, but it also has a pointer to the node, that contains the
keyless or equal to its key-value, not no greater than the key
value of the preceding key. The keys point to the data page on
which records containing the value can be found. The pages,
on which key values — index records — can be found, are called
leaf nodes. Similarly, index data pages containing these index
nodes that do not contain index records, but only pointers to
where the index records are located, are called non-leaf. The
significant advantage of the B+tree index, in comparison with
the original B-tree index, is based on the fact, that the leaf
nodes are sorted and interconnected allowing the system to
perform In, Between, leftmost Like, or comparison operations
(<, >, <=, >=, etc.) directly.

INDEX STRUCTURE DEFINITION

Other index types include bitmap index (used mostly in the
data warehouse environment), R-tree used in spatial systems,
Fulltext index, etc.

In the past, the often preferred index type was based on the
hash function mapping key into a value pair. In that case,
management is supervised by the hash function as the method,
by which asupplied search key(k) can be mapped into
a distinct set of buckets (n), where the values paired with the
hash key are stored:

h(k) = {1, n}

The Hash index is not available in the database system
Oracle and can be used in MySQL for InnoDB and Memory
architecture.

IV. PERFORMANCE REFLECTING INDEXES

Current trends in the relational theory supervised by the
cheap hardware, cloud environment, and complex systems
influence the performance, as well. Preference to locate data
directly in the instance memory can be felt. Direct and really
fast data access can be reached, unfortunately, mostly just in a
theoretical manner. Although cloud technology is currently

224

widespread, it is not possible to allocate unlimited instance
memory. Apart from the price of the solution itself, with the
increasing amount of data, the demand for memory, hardware
technologies, and the whole ecosystem would also increase
proportionally. Whereas the size of the database is now in the
gigabytes, terra bytes, and even petta bytes, it is impossible to
allocate such memory structure. Moreover, memory is the only
RAM of the instance, with no reflection on physical storage.
Thus, after any problem, data will be destroyed with no image
in the physical structure. Imaging memory into the database
would not provide sufficient power [2], [6].

Mean time to recovery is a significant parameter
influencing data management in memory and physical storage.
After the failure, it is necessary to restore all data as they
existed before the collapse. It requires for all transactions,
which are not applied physically in the database, to reexecute
the processing tasks based on the Redo logs one more time.
Vice versa, transactions, which were not approved, must be
rollbacked and any change in the database block must be
removed by applying UNDO change vectors. Mean time to
recovery limits the time to recreate the database system, as it
existed before the corruption. As a consequence, a huge
memory amount does not bring additional benefit, whereas
each change must be physically stored and represented in the
database, otherwise, it would last too much time to consolidate
the system after the failure.

When dealing with the Log files - Undo and Redo
structures, it must be emphasized, that query is always
associated with the time of its execution — begin time.
Therefore, the database, nor the instance needs to hold data
reflecting the execution time, just the currently valid data are
present. Thus, current data images are obtained, to which
individual log files to provide the required object image must
be applied. If such data cannot be provided, Snapshot too old
exception is raised. Solutions are based on extending the
processing either into the archive log mode system [1], [18] or
transforming the database into the temporal association [11],
[14].

Log files are important in dealing with the indexes, as well.
Transaction control ensures the reliability provided by the
consistency and changes durability. Any change is logged,
before the transaction approval, particular change vectors must
be stored in the file system storage to ensure the possibility to
recreate and execute the transaction after occurring any error.
For the data changes, it is inevitable to store log files, it is
impossible to turn off or limit such activity, due to the
relational theory and transaction support. However, for index
management, it is possible to use the nologging clause
meaning, that changes on the index are not transaction logged.
Whereas all data changes are stored in the database, it is
correct, no data can be lost. On the other hand, after the
failure, a particular index, which is marked by the nologging
clause, does not reflect the current situation. As the
consequence, such an index is switched into the unusable state
meaning, that it cannot be used anymore. To make it usable,
the related index must be recreated by using the rebuild clause
of the index altering:

Create index index_name ... nologging;

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

Alter index index_name rebuild,

If the index is unusable, it means, that it cannot be used at
all for the evaluation, although it is still present in the system.
Index recovery management is therefore vital functionality
ensuring performance.

Index selection is an independent operation related to the
database optimizer decision. It depends on various factors,
index usability is just one of them. The decision-making core
element is formed by the statistics for the table and index
environment, which must be current to ensure performance.
Another aspect is the size of the table and index regarding the
fragmentation.

Decision making reflecting the individual attribute depends
on the selectivity of the attribute, which represents the degree
of the uniqueness of the data values contained within an index.
Selectivity (S) of the index (I) is the number of distinct values
(d) contained in the data set, divided by the total number of
records (n):

SI)=d/n
d: select count(distinct A) from T;
n: select count(*) from T,

The attribute is defined by the symbol A, the table is
characterized by the T expression.

V. OWN CONTRIBUTION

The index requires ensuring the correctness of the data
representation. Thus, any change must be applied to the index.
Insert and Delete statements must be always implemented into
the index structure. Update statement and index reflection
depend on the index data set, whether it is changed or not.

Vice versa, Select statement does not influence the
structure, it benefits from it, whereas relevant data can be
directly located. By the transaction definition, it is ensured,
that the index is always up to date, otherwise, it is
automatically reflected by the invalid option (unusable).

When dealing with the data in the transactions, the
management is delimited by the two-phase process — each data
change must be recorded in the log file in the first phase,
afterwards, the change is applied in the data and index
themselves. If all these operations are finished successfully,
operation, respectively the whole transaction can be approved.
Fig. 1 shows the process of the two-phase commit protocol
with an emphasis on index management. As evident, if the
index is not present in the system, processing of the
transaction changing data is executed faster. Individual
operations and their processing limit the execution process and
processing itself. The select statement can benefit, if the index
is present in the system it must be suitable for the defined
query. If such an index is not present, the TAF method
performed by sequential scanning of the whole data block set
associated with the table must be searched, loaded, and
evaluated. Therefore, from the data retrieval perspective, the

225

aim is to add a new index, if it is not present. Therefore, the
perspective of the Select statement is to maximize the amount
of the index in the system. Vice versa, another operation aim is
to limit the amount, whereas they negatively influence such
operations. Our contribution aims to limit the negative factor
of the processing in destructive DML statements (Insert,
Update, Delete), by shifting the index processing outside the
transaction, however, by ensuring, that the index is always up-
to-date and all data rows are there indexed.

As already described, the most often used index type is
B+tree, which requires the tree balancing — the size of the
route from the root to the leaf is always the same. Thus, many
changes require adding a new node to the index, rebalancing,
etc., which is a time and resource-demanding process. Our
proposed solution aims to record the change in the extended
added structure and apply it to the index as soon as possible.
By wusing this technique, index rebalancing and node
consolidation do not need to be part of the transaction itself.

Fig. 1. Two-phase protocol

The solution process stages are in fig. 2. If a new data
portion is to be loaded into the system, in the first phase,
syntax and semantics are checked during the parsing stage.
Afterward, the operation is logged, followed by storing the
change in the pre-indexing structure — flat new index,
respectively linked list. Finally, the data row is operated in the
memory Buffer cache or physical database respectively
approved by reaching transaction approval — commit. Thus, it
is not necessary to balance the index during the transaction,
just a new data portion is added, or changed. To ensure the
consistency and performance reflected by the index, a new
background process — DB_index consolidator (DBIC) has to
be introduced, which is responsible for the index weighting,
optimizing, and balancing. It is, however, done outside the
transaction. In the main system, an index is registered and a
pre-indexing structure is created, to which any change is
recorded in a FIFO manner. The individual records are
gradually extracted and incorporated directly into the main
indexes to ensure their reliability and speed of access. By
default, the pre-processing layer consists only of a linked list
from which the changes are applied to the index in the tree
format. DBIC is responsible for the index tree balancing and
removing pre-processsing layer node after its processing.
Whereas FIFO approach is used, it is easy to ensure the low
size demands and space deallocation.

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

| transaction logging |

v

flat indexing
(pre-indexing layer)

I+

Ui

Fig. 2. Solution process stages

Fig. 3 shows the index management layer operated by
DBIC. By using this proposed architecture, it is ensured, that
each data portion is indexed, either in the main index or in the
pre-indexing layer, from which it is consecutively loaded into
the main index ensuring its balancing. Insert, Update, and
Delete deal with flat index, data retrieval operates both
structures.

. _}} DB index consolidator

______ . |
flat index
(pre-indexing layer)

s

index

Fig. 3. Pre-indexing layer

By using the above-proposed architecture, even undefined
values can be part of the indexing layer. In that case, for
NULL values, a separate pre-indexing layer is created, called
null index_layer, however, such module is not operated by the
DBIC (to balance data), whereas it is not possible to
incorporate such data directly into the index, whereas NULL
values cannot be mathematically compared using <, >,
operations, at all. The extended solution with
null index_layer is in Fig. 4.

the

/‘\ - ___é?"]_)-]:%iindexiconsolidator 4"“‘“‘““"';
PR f
e o flat index Y :
index (pre-indexing NULL value
layer) management ----

module

Fig. 4. NULL value management module extension

The proposed solution is based on the extended two-phase
protocol. Index consolidation is done out of the transaction
itself. As a consequence, such a transaction can be approved
sooner, but by ensuring that the changed data are accessible
using the extended index structure. We prefer adding an
index_preprocessing layer in comparison with storing such
values just into the log, mainly due to the log parsing
necessity.

Select statement performance

Based on the previously described principles, it is ensured,
that each data portion is part of the indexing layer, however,
the row pointer can be present either directly in the index or
pre-indexing layer. Thus, to evaluate the data, if the database

226

optimizer selects an index to be used to access data, the
database manager contacts the Index provider background
process, by which we extend the instance processing, as well.
This background process is responsible for obtaining data
pointers from the index layer by overcoming the original task
of the process manager. In the first phase, data are located
directly in the index. If the unique scan is used and data are
obtained, processing ends resulting in getting the Rowid value
to the environment. Vice versa, if the range scan method is
used, processing cannot be stopped immediately due to the
pre-indexing layer. Therefore, two workers are started in
parallel, one of them is responsible for the index, the second
worker scans the flat index in the pre-index sequentially. At
last, the results provided by both workers are merged and
shifted into the environment to load additional data attributes
for the particular rows, if necessary.

VL

Performance characteristics have been obtained by using
the Oracle 19c database system based on the relational
platform. For the evaluation, a table containing 10 attributes
originated from the sensors were used, delimited by the
composite primary key consisting of two attributes. The table
contained 10 million rows. No specific user-defined indexes
were developed, for the evaluation, the primary key definition
was used.

PERFORMANCE

Experiment results were provided using Oracle Database
19¢ Enterprise Edition Release 19.3.0.0.0 - 64bit Production.
Parameters of the used computer are:

Processor: Intel Xeon E5620; 2,4 GHz (8 cores),
Operation memory: 48 GB DDR 1333MHz
Disk storage capacity: 1000 GB (SSD).

The first evaluation criterion reflects the costs of the
processing expressed by the processing time for each
destructive DML statement (Insert, Update, Delete) separately.
Three system index approaches were used for the evaluation.
Model 1 does not use the index, at all, nor the primary key is
defined. The current approach of the index management, by
which each change on the index is encapsulated by the
transaction is defined in Model 2. In that case, the transaction
cannot be approved before applying the change to the index
followed by the index balancing. Model 3 uses its own
proposed solution extending the index layer by the pre-
indexing layer. The solution is based on extracting the
balancing operation outside the transaction. Fig. 6 shows the
performance results for the Insert operation. The processing
time costs of Model 1 are 178.153 seconds, Model 2 requires
189.753 seconds and our proposed solution (Model 3)
characteristics are 179.524 seconds. Thus, the index
management requires additional 11.6 seconds, which
expresses an additional demand rate of 6.51% (comparing
Model 1 and 2). However, when dealing with our proposed
solution, where the balancing is not present directly in the
main transaction, demands are just 0.77% (comparing Model 1
and 3). Model 2 and Model 3 use the index for the data
management, but Model 3 benefits and saves approximately
10 seconds of the processing in our defined environment. The
reason is just based on flattening new index data into the linear

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

linked list. Transformation is done in the second phase by the
launched background process. It is ensured, that all data are
accessible by the index layer, original data are in the index
itself, new values are in the pre-indexing module, and
consecutively applied into the main index.

Insert statement (s)

192
190
188
186
184
182
180
178
176
174
172

189,753

179,524

176,153

MODEL 1-noindex MODEL 2 - standard MODEL 3 - preindexing
primary key index layer

Fig. 6. Insert statement performance (in seconds)

In our performance evaluation environment, ten percent of
the data is updated. Similarly, defined 3 models are used.
Model 1 is not delimited by the applying changed into the
index, on the other hand, data location and access must be
done by the sequential block scanning requiring additional
demands. In total, processing lasted 56.793 seconds. If the
index is present, searching via it can be used. In our case, the
Update statement condition was based on the primary key,
thus the index definition is perfectly suitable. In Model 2, all
data are directly in the index and the change is applied there
followed by the balancing. Vice versa, when using Model 3,
indexed data can be present either in the index and in the pre-
indexing flat layer, as well. Therefore, two separate worker
operations are launched. The Update operation itself is not
balanced across the index set, just the pre-indexing layer is
notified. The required processing time of Model 2 is 23.578
seconds and 24.012 seconds for Model 3, which expresses
minimal slowdown (1.84%). Fig. 7 shows the results in the
graphical form.

Update statement (s)

56,793

24,012

23,578

MODEL1-noindex MODEL 2 -standard MODEL 3 - preindexing

primary key index layer

Fig. 7. Update statement performance (in seconds)

227

Finally, Delete statement performance was evaluated. To
ensure the performance and data consistency in the index, the
Delete statement is operated directly on the index layer. For
Model 3, the pre-indexing layer must be checked, as well,
whereas the reference to the particular object can be located
there. Similarly to the previous part of the evaluation, the same
three models are used, ten percent of the data is to be deleted.
If the index is present, it can be used for the data access and
consecutively operated by the removal operation. Note, that
the index itself is not rebalanced in the Delete operation to
remove free nodes [9], [10], [20].

Model 1 requires 26.577 seconds, Model 2 demands are
21.429 seconds, and Model 3 processing time is 22.603
seconds. Fig. 8 shows the results. The reached results are
almost uniform with no specific peaks. Referencing Model 1
(100%), Model 2 saves 19.37% and Model 3 saves 14,95%.
Although there are additional processing demands in Model 3
requiring management of the pre-indexing layer, it is operated
automatically by the worker processes of the instance done in
parallel.

Delete statement (s)

30
26,577

25

22,603

21,429

MODEL 1-no index MODEL 2 - standard MODEL 3 - preindexing

primary key index layer
Fig. 8. Delete statement performance (in seconds)

The previous evaluation analysis was based on changing the
structure of the index by adding new tuples there, either
directly, or by the flat pre-indexing layer. In such a case, the
DBIC process rebalances the index to ensure performance,
however, it is done outside the main transaction. In this section
element, the performance of the Select statement is reflected.
Model 1 is straightforward. Whereas no index is present,
sequential scanning operated by the TAF method must be
used. Model 2 provides the best solution, all data tuples are
indexed, so the Index Range Scan method can be used
directly. In our experiment, the condition is done based on the
primary key, 10 percent of data is obtained. Performance of
the Model 3 can be located between Model 1 and Model 2.
The main index is scanned in the tree principle by traversing it
from the root to the leaf, where the Rowid values are
extracted, but we are approaching in parallel the pre-indexing
layer, which is scanned sequentially. This layer is small and
does not consist of any fragmentation. Access is therefore
effective, it is modelled by the linear linked list. Fig. 9 shows

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

the results. The additional demands of Model 3 in comparison
with Model 2 are 0,707 seconds. That time just reflects the
necessity of union results from the two data workers based on
the index and pre-index layer.

Select statement (s)

44,381

6,031 6,738

MODLL 2 - standard MODLL 3 - preindexing
primary key index layer

MODLCL 1 - noindex

Fig. 9. Select statement performance (in seconds)

VIL

Relational database systems belong to the very often used
approach to model, store, and access data currently. The strong
support of the transactions extends the robustness by ensuring
data consistency anytime. The amount of the data is still rising
in conventional systems, by shifting the solution to the
temporal modeling all changes over time, the problem is even
far deeper. Effective data access is therefore inevitable part of
the whole system, whereas database management is just one
element of the complex information system architecture. To
ensure reliability and fast access, indexes on the data tables are
created and managed by all operations influencing data
automatically. Thus, for the Insert, Update and Delete
statements, adding an index to the system brings new demands
whereas it must reflect the change by consolidating and
balancing it. Vice versa, locating data in the database is far
more effective, whereas direct access to the relevant block can
be done. Thus, for the data location of the Insert, Update and
Delete statements supervised by the Select operation,
significant benefits can be identified.

CONCLUSIONS

Adding new indexes to the system has, therefore, a positive
effect for the data retrieval, but the negative aspect of the
consolation and rebalancing is present. This paper aims to
provide a pre-indexing layer to limit the necessity of the index
balancing method as the most demanding index operation
inside the main transaction. All change data are stored in a flat
index modelled using the linked-list. After passing them into
such a structure, the transaction can be approved and ended
immediately. Background process DBIC monitors the flat
index automatically and incorporates ongoing changes into the
index itself, but in a separate transaction. Thanks to that, the
performance of the destructive data manipulation operations is
ensured, as is evident from the experiments. If the database
optimizer selects the index path method for the query
evaluation, additional worker processes are allocated to host

228

the index access, as well as to scan the flat index in the pre-
indexing layer. By using such a strategy, the performance of
the Select statement is degraded only in a minimal manner
(based on our experiment environment, the additional
demands are 1.593%). Comparing to other operations, like
Insert statement, by which the saving is more than 6%.

In the future, we would like to evaluate several structures
directly in the pre-indexing layer and their impact on global
performance. Shifting the solution into the table partitioning
and data distribution is part of our emphasis, as well.

ACKNOWLEDGMENT

This publication was realized with support of the
Operational Programme Integrated Infrastructure in frame of
the project: Intelligent systems for UAV real-time operation
and data processing, code 1TMS2014+: 313011V422 and co-
financed by the Europen Regional Development Found.

REFERENCES

[1] Abdalla, H. I.: A synchronized design technique for efficient data
distribution, Computers in Human Behavior, Volume 30, 2014, pp. 427-
435

[2] Behounek, L., Novak, V.: Towards Fuzzy Patrial Logic. In 2015 IEEE
Internal Symposium on Multiple-Valued Logic, 2015.

[3] Bottoni, P., Ceriani, M.: Using blocks to get more blocks: Exploring linked
data through integration of queries and result sets in block programming,
TEEE Blocks and Beyond Workshop (Blocks and Beyond), 2015.

[4] Bryla, B.: Oracle Database 12c The Complete Reference, Oracle Press,
2013, ISBN —978-0071801751

[5] Burleson, D. K.: Oracle High-Performance SQL Tuning, Oracle Press,
2001, ISBN - 9780072190588

[6] Delplanque, J., Etien, A., Anquetil, N., Auverlot, O.: Relational database
schema evolution: An industrial case study, IEEE International
Conference on Software Maintenance and Evolution, ICSME 2018, Spain,
2018, pp. 635-644

[7] Eisa, 1., Salem, R., Abdelkader, H.: A fragmentation algorithm for storage
management in cloud database environment, Proceedings of ICCES 2017
12th International Conference on Computer Engineering and Systems,
Egypt, 2018

[8] Feng, J., Li, G., Wang, J.: Finding Top-k Answers in Keyword Search over
Relational Databases Using Tuple Units, IEEE Transactions on
Knowledge and Data Engineering (Volume: 23, Issue: 12, Dec. 2011) ,
2011.

[9] Honishi, T., Satoh, T., Inoue, U.: An index structure for parallel database
processing, Second International Workshop on Research Issues on Data
Engineering: Transaction and Query Processing, 1992.

[10] Kriegel, H., Kunath, P., Pfeifle, M., Renz, M.: Acceleration of relational
index structures based on statistics, 15th International Conference on
Scientific and Statistical Database Management, 2003

[11] Kvet, M.: Managing, locating and evaluating undefined values in
relational databases. 2020

[12] Lien, Y.: Multivalued Dependencies With Null Values In Relational Data
Bases. In Fifth International Conference on Very Large Data Base, 1979.

[13] Mirza, G.: Null Value Conflict: Formal Definition and Resolution, 13th
International Conference on Frontiers of Information Technology (FIT),
2015.

[14] Moreira, J., Duarte, J., Dias, P.: Modeling and representing real-world
spatio-temporal data in databases, Leibniz International Proceedings in
Informatics, LIPIcs, Volume 142, 2019

[15] Shen, J., Zhou, T., He, D., Zhang, Y.: Block Design-Based Key
Agreement for Group Data Sharing in Cloud Computing, IEEE
Transactions on Dependable and Secure Computing (Volume: 16, Issue:
60), 2019.

[16] Shiryaev, V., Klepach, D., Romanova, A.: Implementation of the
Algorithm for Estimating the State Vector of a Dynamic System in
Undefined Conditions. In 27" Saint Peterburg International Conference on
Integrated Navigation Systems, 2020.

[17] Smolinski, M.: Impact of storage space configuration on transaction
processing performance for relational database in PostgreSQL, 14th
International Conference on Beyond Databases, Architectures and
Structures, BDAS, 2018

[18] Steingartner, W., Eged, J., Radakovic, D., Novitzka, V.. Some
innovations of teaching the course on Data structures and algorithms. In

229

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

15th International Scientific Conference on Informatics, 2019.

[19] Tilgner, M., Ishida, M., Yamaguchi, T.: Recursive block structured data
compression, Proceedings DCC '97. Data Compression Conference, 1997.

[20] Vinayakumar, R. Soman, K., Menon, P.: DB-Learn: Studying Relational
Algebra Concepts by Snapping Blocks, International Conference on
Computing, Communication and Networking Technologies, ICCCNT
2018, India, 2018

[21] Yu, Y., Yao, Y.: Application of Keyword Dynamic Query Software in
Relational Database based on Big Data, International Wireless
Communications and Mobile Computing (IWCMC), 2020.

