
Security Issues of Smart Contracts in Ethereum
Platforms

Tomas Krupa, Michal Ries, Ivan Kotuliak, Kristi´an K , Rastislav Bencel
Slovak University of Technology in Bratislava

Bratislava, Slovakia

{xkrupat, michal.ries, ivan.kotuliak, kristian.kostal, rastislav.bencel}@stuba.sk

Abstract—Smart contracts belong to the most rapidly growing
aspect of the world of cryptocurrencies. This phenomenon
attracts great attention from researchers but also the business
community, and the development brings daily a lot of novel
applications. Smart contracts allow running contract code trans-
parently for all parties, without the need for a centralized
authority. One of the smart contract applications is the issuance
of digital assets, so-called tokens, serving as fundraising fuel for
Initial Coin Offerings. ICOs bring a new easy, and bureaucracy-
less way for startups to raise considerable funds from crowds with
incredible speed. However, the technology hides a dark side in the
form of speculative scams, hardly distinguishable from genuine
fundraising activities. Evaluation audit of ICOs associated with
the underlying security of smart contracts is a complex issue
requiring many efforts.

This paper focuses on one of the most popular blockchain
frameworks, Ethereum, a prominent ICO and smart contract
platform, and its dominant programming language, Solidity.

I. INTRODUCTION

From a technical point of view, the smart contract is just

a computer code as any else. Humans make it, and it is

error-prone, either unintentionally or intentionally. The critical

difference between a blockchain-based environment and any

other software is how the code is deployed and executed.

Intervention to standard runtime-executed software, whether

it is a simple update, upgrade, or bugfix, means simply

changing existing code to a new one on the fly or accompanied

with a system reboot. Every kind of code maintenance is

feasible, whether it concerns thousands of computer devices

or a giant cloud system - the key factors allowing this are

ownership and competence. On the other hand, these two

factors are missing in the blockchain-based ecosystem. As

the environment powered by the Ethereum Virtual Machine

(EVM) is a giant decentralized unstoppable machine, where

are no downtimes or regressions possible. The deployed code

is immutable and executed permanently without interference

or censorship. Once the code is deployed on the blockchain,

it will be executed everywhere until it provides resources (i.e.,

Gas). In a case the code is malformed, contains a vulnerability,

or just mistaken steps, there is no legitimate way to terminate

or remove it unless it provides such a functionality itself.

We can only deploy a new smart contract and broadcast

the information that the old one is deprecated, and everyone

should use the new address [1]. However, the Byzantium

upgrade

included a revert opcode that allows a

contract to halt execution.

There is also a not-so-familiar option, maybe the ”non-

legit” one, i.e., a fork of the blockchain [2]. The fork means
that we change something fundamental in the blockchain,
which creates a new version, which is not continuous to
the previous blockchain implementation. Either revert the
blockchain in time to the state before the fraud smart contract
was deployed or update EVM’s source code to eliminate the
exploit. Blockchain forks are the most severe interventions [3]
to the cryptocurrency ecosystem, accompanied by the separa-

tion of participants, capital devaluations, and asset pseudo-

duplications. When a cryptocurrency blockchain is forked, the
pre-fork coin is acceptable in both forks. Thus, twice-time
exchangeable for legal tender, even base capitalization has not
changed, consequently leaving some mutual interconnection
between the two cryptocurrencies’ balances.

In the current state of the art [4], all the cryptocurrencies

are in continuous development, and none is fully deployed as

a global legal tender. The forks can be seen multiple times

in a year, but they are more crucial as the currency gets

larger. When a cryptocurrency is deployed as a widespread

legal entity in a hypothetical future, maybe there would be

no forks acceptable. Analog could be a complete exchange of

some fiat currency’s whole physical value, e.g., USD.

These characteristics and consequences are reasons to de-

velop and deploy a powerful mechanism to a security audit of

any smart contract before being deployed into the network [5].

The purpose of such a mechanism is not to restrict or filter

any smart contract before deployment. It is principally not

possible because of the blockchain environment’s character,

but it should be a powerful instrument avoiding people from

participating with an unreliable smart contract and losing their

money. On the other hand, it could enhance such a smart

contract and its developers’ credibility and trust as it would

pass the audit.

The paper is organized as follows: Section II talks about

smart contracts in Ethereum and its programming language,

Solidity. It also mentions drawbacks and some security issues

of these smart contracts. We analyze smart contract design

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

patterns in Section III and propose recommendations to avoid

the most well-known attacks or problems. Section IV discusses

smart contract code optimization with an emphasis on gas

price. Furthermore, Sections V and VI are going a little bit

deeper in the domain of smart contracts, mentioning tokens

and Initial Coin Offerings, respectively. Next, Section VII

summarizes functional validation of Initial Coin Offerings, and

in Section VIII, we are describing our favorite tools to mitigate

the Ethereum pitfalls. We summarize the paper in Section IX.

II. SMART CONTRACTS IN ETHEREUM

The underlying layer of smart contract code is a low-level,

stack-based bytecode language, executed by Turing-complete

Ethereum Virtual Machine [6]. It contains a predefined set

of instructions sequentially executed on each EVM node in

the network independently, reaching mutual consensus via

distributed computing mechanisms. To guarantee the honest

execution of the code in the global network, each instruction

(opcode) is weighted by a cost, measured in units of Gas

[7]. It is an indefinite component of a transaction’s financial

asset. The more computational power the code needs, the

more Gas resources it consumes. This financial association

with code execution provides a fair sharing of computational

power and secures the network against DoS attacks carried by

time-consuming computations [8]. Simultaneously, the Gas is

a transaction fee, motivating EVM operators to participate and

execute the contracts, so the consumed Gas is accounted to

their balances.

Smart contract code is submitted to the network the same

way as a direct coin transaction. The user passes it to a

node right away or via a web-service. The node buffers

the transactions and broadcasts to all its neighbor nodes,

so they are gradually widespread to the whole P2P (peer-

to-peer) network. When pulled from the buffer, the smart

contract is deployed to the blockchain as a transaction in

(mined) block’s transaction trie [9]. It becomes an ”account”

obtaining a wallet address as a unique identifier. Afterward,

it is being executed autonomously in the block validation

phase. Participants can interact with the contract by sending

contract-invoking transactions to that address. Execution of the

contract may result in various actions, e.g., modification of

the contract’s state, proceeding input data, triggering different

contracts, or transferring assets to another wallet. After the

network executes the contract, its result state is reflected in the

state database, program memory in storage trie, and transaction

output in the next block’s receipt data.

A. Drawbacks of smart contract technology

From a technical perspective, a blockchain ecosystem is not

a universal program environment suitable for every use-case.

Its inherited characteristics as decentralization, transparency,

immutability, or execution redundancy are not a must of most

software, as well as stack-based architecture is not practical

for the vast majority of programming constructions. After

all, computation-intensive tasks are not feasible to run on

public blockchain because of computation fees and lack of

performance. Also, the architecture of fully redundant nodes,

which are not sharded, does not favor storing a large amount

of data, which leads to the enormous size of the distributed

ledger.

These constraints predestine smart contracts for applications

that benefit from being distributed and publicly verifiable

and enforceable, e.g., money operations, elections, insurance,

cadastre records, and various digital agreements [10].

B. Ethereum smart contracts programming language: Solidity

Smart contracts are written in high-level Turing-complete

programming language before being compiled to EVM byte-

code. The most popular and widespread contract-oriented

language is Solidity. It is a statically typed language with

Javascript- and C-like imperative syntax and the support

of user-defined types, inheritance, and polymorphism [11].

Moreover, it provides a concept of libraries, i.e., contracts, as

a reusable code that can be called from different contracts. In

brief look into code syntax, Solidity contains special variables

and functions (e.g. block, msg, tx, gasleft()) that are

still present in the global namespace and are mainly used

to provide general information about the blockchain or the

invoking transaction.

Other features are function modifiers, which are intended to

amend the semantics of functions in a declarative way. These

inheritable properties of contracts can change a function’s

behavior and modify the flow of contract execution. The new

function consists of modifier’s body where keyword ”_” is

replaced by the body of the called function. This condition-

oriented programming (COP) approach removes a need for

conditional paths in function bodies.

Another Solidity features are events, seen as signals dis-

patched by smart contracts. They are based on convenient

usage of the blockchain’s logging facilities, which can be used

to trigger Javascript callbacks in the listening interface, e.g.,

Decentralized Application (dApp). Decentralized application

consists of web-hosted JS client hooked to blockchain-stored

(smart contract-based) backend [12]. The concept gives a

tangible form to a smart contract environment. Decentralized

runtime and open source are guarantees of trustworthiness.

The logs themselves are invisible for contracts but visible to

the audience.

pragma solidity ˆ0.4.0;
contract Ballot {

struct Voter {
uint weight;
bool voted;
uint8 vote;

}
struct Proposal {

uint voteCount;
}

address chairperson;
mapping(address => Voter) voters;
Proposal[] proposals;

function Ballot(uint8 _numProposals) public {
chairperson = msg.sender;
voters[chairperson].weight = 1;
proposals.length = _numProposals;

}

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 209 --

function giveRightToVote(address toVoter) public {
if (msg.sender != chairperson || voters[toVoter].voted)

return;
voters[toVoter].weight = 1;

}

function vote(uint8 toProposal) public {
Voter storage sender = voters[msg.sender];
if (sender.voted || toProposal >= proposals.length)

return;
sender.voted = true;
sender.vote = toProposal;
proposals[toProposal].voteCount += sender.weight;

}

function winningProposal() public constant returns (uint8
_winningProposal) {

uint256 winningVoteCount = 0;
for (uint8 prop = 0; prop < proposals.length; prop++)

if (proposals[prop].voteCount > winningVoteCount) {
winningVoteCount = proposals[prop].voteCount;
_winningProposal = prop;

}
}

}

Listing 1. A simple ballot contract where eligible users can vote for desired
proposal, source: sample code from Remix IDE

With the given brief description, we can analyze the smart

contract sample shown in Listing 1. First of all, the example

is a simple ballot allowing an eligible person to vote once.

The proposal with the highest votes wins. The author of the

ballot can select the eligible addresses which can vote for a

proposal.

On the first line, the compiler version is set to ensure

compatibility. We do not recommend to use ˆ notation, visible

in the sample, to avoid untested behavior on newer compilers.

It would be better to specify the exact version of the compiler.

The contract itself is then defined, followed by its state

variables, i.e., struct, address data type, and address mapping.

Then follow three contract functions. The constructor Ballot

is a special function callable only once, during the contract’s

creation. It stores the number of proposals and address of the

creator, i.e., the ballot owner, for a future adding of voting

rights. The other functions serve for interaction and can be

called by users or contracts. The function giveRightToVote

checks that only the owner can be callee and voter has not

yet voted, and gives him a vote. The next function vote

checks if the voter has not yet voted and if the proposal

number is not outside boundaries and consequently assigns

vote to the proposal. Keyword storage creates reference to

sender instead of memory copy, so the changes of sender

object are provided to the voter’s item. Finally, the function

winningProposal iterates over all the proposals and return

a winning proposal.

To sum this up, the sample code explains the fundamental

concepts of smart contracts developed in Solidity. It depicts

one of the most critical capabilities of a smart contract: the

power to manipulate a worldwide verifiable and universally

consistent contract state (i.e., balances) [13].

C. Smart contract issues

We distinguish four fundamental categories of Solidity

issues affecting the development of smart contracts (sorted

descending by severity) [14]:

• Security issues open doors to harmful actions by hackers.

• Functional issues are not exploitable by malicious users,

rather cause unintended functionality.

• Operational issues result in runtime problems, such as

poor performance and high Gas consumption.

• Development issues represent mainly bad-habits and an-

tipatterns leading to unreadable code, which is impossible

to improve.

III. SMART CONTRACT DESIGN PATTERNS

The cryptocurrency ecosystem is in hackers’ focus due to

its anonymous environment and many financial assets being

at stake. Nearly 99.9% of contracts have issues, and ˜63% of

them have a critical vulnerability [15].

There exist several smart contract design patterns in the

context of security execution. They address typical security

issues mentioned above and further vulnerabilities which can

be safely mitigated by applying such a security pattern.

Following vulnerabilities are ordered descending by severity.

A. Re-entrancy attack

Normally, when a contract calls another contract (e.g., with
a coin transfer), it hands all the control. The called contract
then can call the former contract and change its state variables,
causing, e.g., multiplying the transfer. We recommend apply-

ing the ”Checks-Effects-Interaction” pattern (https://
fravoll.github.io/solidity-patterns/checks_effects_interactions.html), which
defines the exact order of actions:

1) check all preconditions,

2) perform all changes to the own state,

3) call the other contracts.

Ensuring the secure order with contract interaction as the last

avoids such vulnerabilities.

For even more security, we recommend incorporating Mu-

tex lock over the smart contract’s invoker. Sender’s fallback

function may implement a call to the smart contract’s delicate

function (e.g., fund transfer), allowing a recursive call to it

and thus a re-entrancy attack. Incorporating a mutex variable

into functions restricts concurrent executions from external

contracts and avoids re-entrancy.

B. All-Gas-forwarding transfer

Solidity call call.value(x)() transfers x ethers and for-

wards all Gas to the addressee, leaving a potential vulnerability

for an attacker, especially for re-entrancy. There exist another

two functions to send ethers between addresses, the first, which

is older, <address>.send(amount), and the newer one,

transfer(amount). When determining the characteristics,

there are two dimensions to consider: the volume of forwarded

Gas and the propagation of exceptions. A stipend of 2300 gas

is forwarded for each send and transfer, which is only

enough to record an event at the receiving contract. If the

receiver needs a greater quantity of Gas, call.value must

be used as it forwards all remaining Gas, unless otherwise

stated with the aid of the .gas() parameter. With regards to

the exceptions, in the case of an error, send and call.value

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 210 --

are identical, either return false and do not bubble exceptions.

However, the transfer() method propagates each exception

thrown at the receiving address to the transmitting contract.

Although both methods, transfer and send are considered

secure against re-entrancy since only 2300 gas is transferred,

we recommend that the transfer should be the go-to method

for transferring ether in most cases. This is because it reverts

immediately in case of any bugs. The send function can

be seen as the transfer’s low-level counterpart. It should be

used in situations where the fault must be dealt with in the

contract without reversing all state changes. The low-level

call.value approach should be used only as a last resort,

as it violates Solidity’s type-safety.

C. Manipulation via external call

Using external calls without a return value check may

be abused by an attacker via a counterfeit function. Even a

seemingly simple send call can be foiled by a fallback function

that intentionally runs out of Gas. We recommend always wrap

external calls into if condition to check unexpected failure.

Moreover, we recommend using require and assert as

much as possible throughout the code. The engine considers

require statements as assumptions and tries to prove that

assert statements’ conditions are always true. Also, we

prefer using transfer instead of send which misses throw

semantic.

D. DoS via external call

External call returning variable used inside if condition or

loop can be used by an attacker to Denial-of-Service attack the

contract, the most often seen vulnerability [15]. The callee can

permanently fail using throw or revert to keep the caller

from accomplishing execution. That is why we always use it

outside these scopes.

E. Man-in-the-middle with tx.origin

An attacker can misuse the presence of tx.origin in

the code by chaining calls to the contract allowing to fake

identity. If our wallet had selected msg.sender for autho-

rization, instead of the owner’s address, it would get the

attack wallet’s address. However, by selecting tx.origin,

the original address that began the transaction, which is still

the owner’s address, is obtained. The assault wallet steals all

our funds immediately. tx.origin should always be replaced

with msg.sender which return true function invoker, not the

chain originator.

F. Forced branching manipulation

Using contract balance in if conditions with not covering

all possible states may let attacker manipulate contract states

by, e.g., forcibly sending ethers via selfdestruct() or by

mining. Avoid checking with strict (in)equality and rather use

<=, >= conditions.

G. Lost control over execution

Even well-working smart contracts can contain hidden bugs

revealed by a harmful attack. As they are executed on the

network autonomously, there is no option to terminate them in

case of a bug. We recommend incorporating Emergency Stop,

i.e., explicit halt functionality callable by the contract owner.

Such a triggerable stop can disable a vulnerable function (or

entire smart contract) that uses it.

H. Uncatchable execution

Massive simultaneous execution of sensitive tasks (e.g.,

withdrawals) can bring damage to the smart contract. Incorpo-

ration of a Speed Bump, i.e., time delayer (or periodic switch),

into the delicate functions can help use an emergency stop to

counteract a fraudulent activity in time or prevent drainage of

funds before it emerges.

I. Too wealthy contract

With the growing balance of the contract, the risk is rising

too. We recommend following the Balance Limit pattern to the

upper limit of the contract’s balance. It means incorporating

a simple deposit rejector when the limit quota is reached. As

it applies only to the payable function, it does not concern

forcibly sent assets, e.g., from self destruct call.

J. Functional issues

Among them, we distinguish:

• Locked money problem, when the contract does not pro-

vide any withdrawal method even if it contains payable

calls,

• Unchecked math when using raw mathematical operations

instead of safe mathematical libraries,

• Integer division rounding the result down and possibly

cutting ethers,

• Unsafe type inference when comparing different-size vari-

able, e.g., in loops, causing overflow,

• Timestamp dependency what can be guessed by miner

giving the ability to manipulate execution.

The introduced issues are checked via static analyzers [16],

inspecting uncompiled source code semantic Abstract syntax

tree (AST) tree and formal methods. See chapter Tools to

mitigate the impact of Ethereum pitfalls for recommended

tools used in our environments.

IV. SMART CONTRACT CODE OPTIMIZATION

As EVM’s instructions execution is priced with Gas units,

code effectiveness is a delicate issue in smart contract devel-

opment. Transaction sender pays upfront an estimated amount

of Gas the execution will consume and gets a residual refund

in case of accomplishment. In case of execution abort, due to

code exception or run out of Gas, the state is returned, but

Gas is not in many cases. Overloading transaction with Gas is

also not always a solution as EVM nodes may dismiss them

to avoid time-intensive execution. Due to this, Gas estimation

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 211 --

must be done precisely, ideal with a well-proven tool as, e.g.,

ETH Gas Station (https://ethgasstation.info/).
The Table IV depicts approximate gas price of Solidity

assembly calls. There are three columns in the table inspired

by and took from Ethereum’s Yellow Paper Appendix. The first

column is the name of function, the second column is value

in Gas and the last column is description of the function.

TABLE I. GAS PRICE OF EVM OPCODES1

ADD/SUB 3 Arithmetic operation
MUL/DIV 5 Arithmetic operation
ADDMOD/MULMOD 8 Arithmetic operation
AND/OR/XOR 3 Bitwise logic operation
LT/GT/SLT/SGT/EQ 3 Comparison operation
POP 2 Stack operation
PUSH/DUP/SWAP 3 Stack operation
MLOAD/MSTORE 3 Memory operation
JUMP 8 Unconditional jump
JUMPI 10 Conditional jump
SLOAD 200 Storage operation
SSTORE 5,000/20,000 Storage operation
BALANCE 400 Get balance of an account
CREATE 32,000 Create an account using CREATE
CALL 25,000 Create an account using CALL

More than 90% of deployed contracts contain dead code or

opaque predicates, and more than 70% use gas-costly loops

[17], means the issue of under-optimized code is bothering

almost all smart contracts. Therefore we recommend using

minimum external calls to a third-party library, as well as

minimizing the number of functions (and function arguments)

and data redundancy in global storage. Avoid using costly

loops like array iterations and use bytes instead of byte[].

Smart contract-oriented programming does not strictly follow

OOP patterns and perfect code readability due to critical

execution cost, similar to Real-time programming.
From a security point of view, we do not recommend using

the auto-optimization features in the compilers. The optimizer
operates on assembly (https://docs.soliditylang.org/en/latest/internals/
optimiser.html) and such optimized code cannot be more
inspected with a static analyzer, which demands text

source code. This brings in a potential security issue due to

untested execution flow or bug from the optimizer itself.
Finally, we can once again look at the original function from

the previous Listing 1 and demonstrate its optimized version

on Listing 2 with lower gas consumption.

function winningProposal() public constant returns (uint8 _winningProposal)
{

uint256 winningVoteCount;
uint8 prop = uint8(proposals.length);
uint256 voteCount;
for (; prop >= 0; --prop){

voteCount = proposals[prop].voteCount;
if (voteCount > winningVoteCount){

winningVoteCount = voteCount;
_winningProposal = prop;

}
}

}

Listing 2. Optimized function winningProposal from the Ballot
contract

The optimized function has a smaller code size, uses fewer

instructions in the loop, and uses cheaper instructions.

V. TOKENS

Solidity enabled the emerging of an asset extension called

a token. Generally, the tokens are digital assets, a pseudo-

currency running over a blockchain. In terms of Ethereum,

the main difference between coins and tokens is that the coins

are native digital assets, a challenging part of its blockchain. In

contrast, the tokens are independent extensions, implementing

their subset of rules, existing in their sub-ecosystem over such

a blockchain.

In simple terms, tokens provide a way to deploy their
independent cryptocurrency in an existing, well-run, stable,
and widespread blockchain system. It relieves developers
from developing their underlying layer and allows them to
focus directly on the application layer of the currency. To be
accepted by the EVM community, they must comply with a
defined set of rules, i.e., ERC

 standard. These rules present a
simple set of functions that the contract must implement. In
return, contracts implementing the standard can be used via a
common API.

We distinguish between fungible and non-fungible tokens.
Fungibility means an ability to be replaced by another identical
item. In terms of cryptocurrencies, a fungible token (e.g.,
ERC-20 or ERC-223) is entirely interchangeable with other
identical tokens. An analogy can be fiat money; a euro coin,
perfectly exchangeable with another euro coin. Fungibility
is the essential feature of every cryptocurrency providing
three fundamental properties: interchangeability, uniformity,
and divisibility. On the other hand, non-fungible tokens (e.g.,
ERC-721 (http://erc721.org) standard) represent very opposite,
except com-mon tradeability: non-interchangeability,
uniqueness, and non-divisibility. They are not finding
application in cryptocurren-cies, instead of in games and
dedicated applications as cadastre records or car-sharings [18].

In ICO, we mainly see ERC-20 (https://github.com/ethereum/EIPs/
issues/20), the most well-known token standard within the
community, and most used one among issued tokens in the
Ethereum blockchain. It defines oblig-atory interface with
functions totalSupply, balanceOf, allowance,
transfer, approve, transferFrom and events
Transfer and Approval.

There was also a new proposal, ERC-223 (https://github.com/
ethereum/EIPs/issues/223), or, by someone, called ERC-23,
which is backward-compatible superset of ERC-20, fixing
security issues of the predecessor, extensing the interface
with balanceOf and transfer, and event Transfer
overriding default ERC-20 interface. It was created to prevent
accident sends of tokens to contracts and make token
transactions behave like ether transactions. The problem here
was the lack of possibility to handle incoming ERC20
transactions that were performed via transfer function of
ERC20 token to smart contracts because smart contracts do

1 https://github.com/crytic/evm-opcodes

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 212 --

not recognize an incoming transaction; thus, the sent tokens

to smart contract get inevitably lost.

VI. INITIAL COIN OFFERINGS

The mentioned features made tokens finding application

in crowdfunding, causing the well known ICO phenomenon

[19]. Initial Coin Offering is a kind of public offering (similar

to Initial Public Offerings (IPO) and Venture Capitals (VC))

of a new cryptocurrency in exchange for an existing one,

intending to fund projects in the blockchain environment. It

is being considered a state-of-the-art strategy of financing

new ventures, as it minimizes transaction costs, democratizes

financing, and disintermediate banks and bureaus [20]. Despite

many efforts to ICO regulations, e.g., Swiss Finance Regulator

and Singapore’s Central Bank have already issued regulatory

guidelines for ICOs [21], and even banned in several countries,

the simplicity of sending funds via Ethereum transactions,

and the effect of the rapid growth of investments even before

the project gets to the production (because the tokens are

tradeable immediately on dedicated exchanges) - caused the

ICO phenomenon to explode [22].

By January 2020, the total funds raised by ICOs exceeded

$26,5billion (https://icobench.com/report) and had overcome
investments funneled through VC of high-tech initiatives,
although their approximate effi-ciency is 35%. It is nearly
80% of active ICOs [19] being handled through contracts
running on ERC-20.

Typical ICO crowdfunding consists of three phases:

A. Pre-ICO

Pre-ICO phase means token presale, often with discounted

price. It runs on a separate smart contract to avoid mixing

with the main phase and to ensure easy account reconciliation

and audit. It is often in the preliminary stages of project

development with no valuable parts yet delivered (usually just

a white-paper).

B. Main-ICO

The main-ICO phase (or crowd sale) is the main stage of

the token sale. The token should be tradable on dedicated

exchanges by the end of the phase. The active main stage

should guarantee the project’s solvency, underlined by de-

livered valuable parts (yellow-paper, prototypes, large-scale

marketing).

C. Post-ICO

The post-ICO phase basically defines a new set of rules

for the token contract. Technically, it disables and enables

particular functions, e.g., allows trading tokens. It defines

events as well that take place as the main-ICO phase ends,

like unsold token burn-up.

VII. ICO FUNCTIONAL VALIDATION

Enterprises manage crowdfunding directly via token sales.

The token smart contract means own Solidity implementation

with reusing of available samples and patterns. There is a

need to attract investors with a guarantee of reliability of their

finances in stake. To build trustworthiness, the code must be

well-tested from many aspects. Each phase of ICO means

different use-cases and work-flow, requiring dedicated test-

cases.

To ensure reliability, we recommend using multi-signature

wallet [23] (so-called Multi-Sig). It is a smart contract that

defines access rights to particular users (i.e., addresses), spe-

cific rules, and consensus conditions to operate. For instance,

withdrawing a balance is not possible until all members vote.

Using a Multi-Sig, ICO’s balance cannot be laundered easily.

VIII. TOOLS TO MITIGATE THE IMPACT OF ETHEREUM

PITFALLS

Input for our testing stages is test specification extracted
from design requirements and user stories, some sort of
what it is expected to do and what it is designed to do.
Our implementations are based-on OpenZeppellin (https://
github.com/OpenZeppelin/) sample contracts which regarded as
highly-secure. As we practice test-driven development (abbr.
TDD), we write tests ahead. In non-functional unit tests, we
tweak various inputs and outputs, threshold- and peak values.
Functional integration tests are performed with interface
mockings to plant managed behavior as well as simply
eliminate possible error-proneness of the (non-mocked)
interface. We use verbose logging to get the current stack
state without entering the debugger. We use a debugger
embedded in Remix IDE to step the execution line-by-line in
case of a bug. After the automated tests pass, we perform
manual testing on global testnet, primarily Ropsten network
(https://ropsten.etherscan.io). We trigger the contract via
other contracts as well as by submitting simple transactions.
In this stage, there is the final form with no mocking present
in the code. After Ropsten testing, we also perform tests on
the Ethereum mainnet. We do so due to the environments’
not fully-equivalent behavior, but only with a small number
of assets.

A. Related tools

In our development process, we use JetBrain’s IntelliJ
IDEA(https://www.jetbrains.com/idea/) IDE with Solidity plugin

(https://plugins.jetbrains.com/plugin/9475-intellij-solidity) for code
editing, which provides excellent code editing tools. We
compile code using Remix IDE, a browser-based tool
providing comprehensive functionality. We use it also for
static analysis of code as well as SmartCheck (https://
tool.smartdec.net) and Securify (https://securify.chainsecurity.com)

online analyzers. There is also an excellent tool to visualize
a topology diagram of invocation relationship and to find
potential logic risks [24].

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 213 --

We use Truffle-framework (https://truffleframework.com/) for
automated unit and acceptance tests, with test cases
described in JS. It runs Ganache, a personal blockchain
framework, which we also use to inspect transactions (via its
GUI). For deployment, we use Remix coupled with
Metamask (https://metamask.io/) browser plugin, which submits
the transactions to INFURA’s (https://infura.io/) remote nodes.

IX. CONCLUSION

We provided an essential introduction ttEthereum platform

and Solidity smart contract language with a comprehensive

insight into code issues and ways to mitigate them. We

provided a brief overview of Ethereum token standards and

ICO mechanism and presented testing tools based on our

development environment, which collaborated on some com-

mercial products.

In this paper, we were focusing on the Ethereum platform

and Solidity development environment. In future work, we

plan to generalize our focus on multiple blockchain environ-

ments, and their smart contract languages, especially ecosys-

tems with multi-chain and cross-chain [25] design and based

on modern consensus, e.g., Proof-of-Stake [26].

Security is seemingly still the main problem of smart

contract platform, preventing gaining of reputation and public

widespread. We hope our advices will help to produce reliable

smart contracts.

ACKNOWLEDGMENT

This research was supported by the Ministry of Education,

Science, Research and Sport of the Slovak Republic, Incentives

for Research and Development, Grant No.: 2018/14427:1-

26C0. This publication was created thanks to supporting

under the Operational Program Integrated infrastructure for the

projects: Research in the field of blockchain technology with

connection to online payment services, ITMS 313022U641,

and Electronic methods for detecting unusual business opera-

tions in a business environment, ITMS 313022W057, both co-

financed by the European Regional Development Fund. It was

also partially supported by the grants APVV-15-0731, KEGA

011STU-4/2017, and VEGA 1/0836/16.

REFERENCES

[1] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi, “Smart contract security:
A software lifecycle perspective,” IEEE Access, vol. 7, pp. 150 184–
150 202, 2019.

[2] N. Webb, “A fork in the blockchain: income tax and the bitcoin/bitcoin
cash hard fork,” North Carolina Journal of Law & Technology, vol. 19,
no. 4, p. 283, 2018.

[3] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on ethereum sys-
tems security: Vulnerabilities, attacks, and defenses,” ACM Computing
Surveys (CSUR), vol. 53, no. 3, pp. 1–43, 2020.

[4] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the security
of blockchain systems,” Future Generation Computer Systems, vol. 107,
pp. 841–853, 2020.

[5] P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss, “Security analysis
methods on ethereum smart contract vulnerabilities: a survey,” arXiv
preprint arXiv:1908.08605, 2019.

[6] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[7] E. Albert, J. Correas, P. Gordillo, G. Román-Dı́ez, and A. Rubio,
“Gasol: Gas analysis and optimization for ethereum smart contracts,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2020, pp. 118–125.

[8] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H. Au, and X. Zhang,
“An adaptive gas cost mechanism for ethereum to defend against under-
priced dos attacks,” in International Conference on Information Security
Practice and Experience. Springer, 2017, pp. 3–24.

[9] F. Bodon and L. Rónyai, “Trie: an alternative data structure for data
mining algorithms,” Mathematical and Computer Modelling, vol. 38,
no. 7-9, pp. 739–751, 2003.

[10] A. Alimoğlu and C. Özturan, “Design of a smart contract based
autonomous organization for sustainable software,” in 2017 IEEE 13th
International Conference on e-Science (e-Science). IEEE, 2017, pp.
471–476.

[11] C. Dannen, Introducing Ethereum and solidity: Foundations of Cryp-
tocurrency and Blockchain Programming for Beginners. Springer, 2017,
vol. 1.

[12] A. M. Antonopoulos and G. Wood, Mastering ethereum: building smart
contracts and dapps. O’reilly Media, 2018.

[13] M. Wohrer and U. Zdun, “Smart contracts: security patterns in the
ethereum ecosystem and solidity,” in 2018 International Workshop on
Blockchain Oriented Software Engineering (IWBOSE). IEEE, 2018,
pp. 2–8.

[14] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, “Smartinspect:
solidity smart contract inspector,” in 2018 International Workshop on
Blockchain Oriented Software Engineering (IWBOSE). IEEE, 2018,
pp. 9–18.

[15] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proceedings of the 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain,
2018, pp. 9–16.

[16] P. Hegedűs, “Towards analyzing the complexity landscape of solidity
based ethereum smart contracts,” Technologies, vol. 7, no. 1, p. 6, 2019.

[17] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts
devour your money,” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017,
pp. 442–446.

[18] V. Valaštı́n, K. Košťál, R. Bencel, and I. Kotuliak, “Blockchain based
car-sharing platform,” in 2019 International Symposium ELMAR. IEEE,
2019, pp. 5–8.

[19] G. Fenu, L. Marchesi, M. Marchesi, and R. Tonelli, “The ico phe-
nomenon and its relationships with ethereum smart contract environ-
ment,” in 2018 International Workshop on Blockchain Oriented Software
Engineering (IWBOSE). IEEE, 2018, pp. 26–32.

[20] F. Hartmann, X. Wang, and M. I. Lunesu, “Evaluation of initial cryptoas-
set offerings: the state of the practice,” in 2018 International Workshop
on Blockchain Oriented Software Engineering (IWBOSE). IEEE, 2018,
pp. 33–39.

[21] U. W. Chohan, “Initial coin offerings (icos): Risks, regulation, and ac-
countability,” in Cryptofinance and Mechanisms of Exchange. Springer,
2019, pp. 165–177.

[22] D. S. Demidenko, E. D. Malevskaia-Malevich, and Y. A. Dubolazova,
“Iso as a real source of funding. pricing issues,” in 2018 International
Conference on Information Networking (ICOIN). IEEE, 2018, pp. 622–
625.

[23] V. Buterin, “Bitcoin multisig wallet: the future of bitcoin,” Bitcoin
Magazine, March, vol. 13, p. 2014, 2014.

[24] E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and
H. Kurihara, “Security assurance for smart contract,” in 2018 9th IFIP
International Conference on New Technologies, Mobility and Security
(NTMS). IEEE, 2018, pp. 1–5.

[25] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A survey
on blockchain interoperability: Past, present, and future trends,” arXiv
preprint arXiv:2005.14282, 2020.

[26] K. Košťál, T. Krupa, M. Gembec, I. Vereš, M. Ries, and I. Kotuliak,
“On transition between pow and pos,” in 2018 International Symposium
ELMAR. IEEE, 2018, pp. 207–210.

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 214 --

