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Abstract—Ring artifacts are typical defects of computed to-
mography (CT) that degrade the quality of a 3D reconstructed
image. Existing techniques for a ring reduction have various
shortcomings and limitations, in particular, a lot of them are
unable to process arbitrary fragments of the image and blur
artifact-free regions. We propose an algorithm for ring artifacts
segmentation and reduction by deep convolutional neural net-
works that correct 3D fragments of the CT image by inpainting.
We compare 2D and 3D architectures of networks. For the
creation of a dataset with a big number of ring artifacts, we
propose a procedure that is able to transfer an artifact from one
image to an arbitrary place of another image. The appearance of
the transferred artifact changes. For ring artifact segmentation
and correction in images of sandstones and sand, the proposed
networks demonstrate good visual results and outperform ex-
isting methods. The proposed technique concentrates on the
Digital Rock workflow, but the networks can be adjusted for
the processing of other CT images as well.

I. INTRODUCTION

Computed tomography (CT) is a widely used method in

biomedical investigations and material science. CT belongs

to nondestructive techniques for obtaining information about

the internal 3D structure of a substance. The spatial resolu-

tion of modern laboratory X-ray computed microtomography

(microCT) systems can be about 1 μm. We process microCT

images for the creation of a digital twin for various solid and

granular materials for a Digital Rock (DR) physics [1]–[3],

which is used in the oil and gas industry for mathematical

simulation of fluids flow, as well as physical and chemical

characteristics of rocks [4]. Often, we deal with a cropped

fragment of a reconstructed microCT image acquired in a

third-party laboratory. In this case, we have no sinograms

or shadow projections of the microCT image; there is no

exact information about acquisition parameters, for example,

coordinates center of rotation. So, in our research, we focus

on processing arbitrary fragments in the reconstructed image

domain. A fragment-wise approach allows parallel processing

in a cloud.

The quality of 3D reconstructed images suffers from various

CT artifacts. Moreover, CT images are inherently more prone

to artifacts than conventional radiographs because the image

is reconstructed from a huge number of independent detector

measurements [5]. Ring or circular artifacts are produced by

miscalibrated or defective detector elements and look like

segments of a ring centered approximately on the center of

slices of a 3D image. The term slice denotes a 2D image

that represents a cross-section parallel to the XY-plane of

the 3D image in the cartesian coordinate system. Currently,

methods developed by manufacturers of microCT systems are

able to suppress the majority of ring artifacts, for example, by

random movement between acquisitions of adjacent shadow

projections [6], by filtering of shadow projections or sino-

grams before reconstructions, by adding the regularization to

reconstruction procedure [7]. However, from several pieces to

several dozen rings remain. Fig. 1a shows a fragment of slice

acquired with turned off ring suppression feature in our mi-

croCT system: the entire slice area is affected by low-contrast

rings. Fig. 1b demonstrates a fragment of slice acquired with

the feature turned on: there is a single ring, which completely

deteriorates part of the pixels. In this paper, we focus on

namely such artifacts, that are rings remaining after processing

by hardware and software of microCT systems. Actually, for

images under consideration, such artifacts are mainly arcs; not

full circles. Despite this, we call such defects rings.

(a) (b)

Fig. 1. Examples of fragments with ring artifacts: (a) a slice acquired with
turned-off ring suppression feature; (b) a slice acquired with turned-on ring
suppression feature

Usually, the Digital Rock model created from an image

having a high visual quality is evaluated by the customer as a
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more credible compared to model from data containing distor-

tions. However, ring artifacts do not only degrade the visual

quality of the image but also affect on the following image

segmentation and mathematical simulation. Rings change the

topology of pore space that, for example, acts on permeability

estimation. Of course, the severity of the influence of the

artifacts on the estimation of permeability depends on the

nature of a specimen. Rocks with high connected porosity are

almost not sensitive to rings, whereas estimation of permeabil-

ity for samples with low porosity deteriorated by artifacts can

have a significant bias. Let us see an example in Fig. 2. The

figure shows a fragment of sandstone image affected by ring

artifact and the same fragment segmented by Indicator Kriging

[8], which is one of the superior segmentation techniques

for microCT images [2]. One can see additional channels

connecting pores. Those channels are formed by the ring

artifact.

(a) (b)

Fig. 2. Example of segmentation for DR workflow: (a) a fragment of
sandstone image affected by ring artifact; (b) the segmentation result by
Indicator Kriging

Existing algorithms for the rings reduction on the recon-

structed images based on filtering methods affect an entire

image not only deteriorated regions and require fine-tuning

of parameters. It is preferable to make local corrections in

automatic mode. Moreover, most ring suppression methods

require exact information about the position of the center of

rotation for the reconstructed image. It does not allow us to

apply these algorithms in the case we have only a fragment

of the reconstructed image.

The segmentation of regions deteriorated by artifacts is

required for image quality estimation with aims to optimize

an acquisition procedure and to select appropriate subvolume

for further modeling [9].

In contrast to our previous paper [3], we propose convolu-

tional neural networks for segmentation and local reduction of

ring artifacts by nonblind inpainting. We compare 2D and 3D

architectures of networks and address to problem creation of

big and representative datasets containing ring artifacts. One of

the main contributions of our work is a method for transferring

artifacts from one image to another. Our technique allows to

generate realistic artifacts having various appearance due to the

fusion of 3D ring and image in a random position of cylindrical

coordinate system.

II. PREVIOUS WORKS

In this section, we review existing methods for the suppres-

sion of ring artifacts. Primarily, we focus on algorithms that are

able to process reconstructed CT images. Next, convolutional

neural networks (CNN) for the reduction of ring artifacts

are discussed. After that, we mention several modern deep

neural networks for inpainting. Finally, we describe a rings

segmentation technique.
Wavelet – Fourier filtering (WFF) [10] is a popular method

for suppression of ring artifacts in CT images. WFF is im-

plemented in several software packages for the processing of

CT images, for example, in TomoPy Python library [11]. This

algorithm allows to suppress oriented stripes in an image.

Originally WFF was applied for ring artifacts filtering in

sinograms. Also, this method is used in reconstructed-image-

domain for slices translated to the polar coordinates P (·),
where ring artifacts are vertical stripes. Besides an application

of WFF for pre-processing of microCT images, it is employed

in DR workflow for the eliminating of a curtaining effect

in slices acquired by Focused Ion Beam Scanning Electron

Microscope (FIB-SEM) [12].
Firstly, the wavelet transform of the original image I(x, y)

is carried out to separate structural information into low

frequency, horizontal, vertical, and diagonal bands W =
{ cll,m,n, chl,m,n, cvl,m,n, cdl,m,n } at different scales l ∈
{ 1, ..., L }. Then the band containing stripes (for example,

vertical band cvl,m,n for vertical stripes) is transformed to the

frequency domain with FFT. The stripes are eliminated by

multiplication of the band to the Gaussian damping function

in the frequency domain:

g(x, y) = 1− e−
x2

2σ2 ,

where (x, y) are coordinates; σ determines the standard devi-

ation of the Gaussian filter, it is set according to the expected

deviation of the stripes in the spatial domain. The final

steps are inverse Fourier and inverse wavelet transformations.

The main parameters of WFF filtering F (I, L, ψ, σ) are the

number of the scales L, a wavelet ψ type for the wavelet

decomposition, and the standard deviation σ of the Gaussian

filter.
Since WFF removes the ring artifacts from the slices in

polar coordinates, it is necessary to convert them back Pinv(·)
to cartesian coordinates. The conversion to polar coordinates

and back can lead to a deterioration in image quality. It is

preferable to use the following approach to avoid distortion.

The difference between the original and filtered slice in polar

coordinates is computed and translated to cartesian coordi-

nates. The filtered slice is calculated by subtraction of this

difference from the original slice according to the following

expression:

If = I − Pinv(P (I)− F (P (I), L, ψ, σ)),
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where If is the filtered slice; and I is the original slice

containing ring artifacts.

WFF quite well suppress rings for the case turned off a rings

correction feature in microCT system. As for remaining rings

(as in Fig. 1b), WFF is capable to suppress such artifacts but

also blurs regions of an image without ring artifacts, especially

areas with circular structures suffer.

Besides WFF, there are numerous techniques for ring ar-

tifacts reduction based on filtration. For the correction of

ring artifacts, the paper [13] compares two algorithms: one

processes a slice in the cartesian coordinates and the other

in the polar coordinates. Both methods contain the same

steps: application of the median filter in the radial direction;

computation of a difference image; applying a threshold for

the detection of the artifacts; use of the low-pass filter in the

azimuthal direction to suppress noise structures; and finally,

a subtraction of the resulting image from the initial one for

the artifacts reduction. The paper [14] describes an artifact

reduction algorithm, which translates an image slice to the

polar coordinates, detects a set of homogeneous rows within a

sliding window, generates artifacts templates within a sliding

window, subtracts the templates from an image in polar coor-

dinates, and translates a slice back to the cartesian coordinates.

In the paper [15], for rings reduction the following operations

are declared: estimation of the local orientation in an image

slice, using a representation of orientation by a structure

tensor in each pixel, finding of orientations in the tensor

field that correspond to circular patterns around the known

rotation axis, creation of a certainty map with the probability

of each pixel to contain a ring artifact; and calculation of

correction image from the certainty map and the convolved

original image. The paper [16] claims a method comprising

of a finding of the large structures on a slice, subtracting from

each structure its average intensity, a slice transformation to

the polar coordinates, an application of median filter along

the angular direction for small details removing, the Gaussian

blurring of the slice to suppress the ring artifacts, transforming

the slice back to the cartesian coordinates, and subtracting the

filtered slice from the original one to reduce the ring artifacts.

All filtering-based methods blur unaffected by artifacts

areas of an image. The performance of enumerated meth-

ods significantly depends on the selection of parameters. To

achieve acceptable results, fine-tuning of the parameters from

one image to another is required [17]. Sometimes algorithms

operating in polar coordinates falsely treat circular edges

as an artifact. Ideally, the edges of pores should not be

located on circles centered on the axis of rotation to prevent

false detection of these edges, and therefore image quality

degradation. This condition is difficult to fulfill, especially for

some granular materials, since the boundary between solid and

void can be directly on such circles. None of the enumerated

filtering methods can be applied for the processing of arbitrary

fragments of a reconstructed microCT image because all of

them are used information about the center of rotation.

Recently, several techniques for ring artifacts reduction

based on deep learning were established. Ring artifacts cor-

rection on medical CT images is based on a fusion of two 2D

images: reconstructed from sinograms processed by WFF and

the image from the output of a CNN [18]. On the input, the

CNN takes the WFF filtered image and an image with ring

artifacts. The 2D CNN has 5 sequential convolution layers

and is trained with a 64 × 64 patches size from slices of 3D

CT images. The paper [19] depicts a comprehensive model

that uses two CNNs: one network that processes the image in

the reconstructed image domain and the other in the projection

domain. Both CNN architectures are based on 2D U-nets [20].

The method subtracts from an image with ring artifacts the

output of the one from networks [21]–[23]. In both papers,

authors trained models with the mean square error loss.

These methods are parameter-free at the inference stage.

However, the problem of removing rings from pieces of a

reconstructed image remains, since both methods use the result

of sinogram processing as one of the inputs. Considered neural

networks are end-to-end and do not allow to segment artifacts,

whereas segmentation data is valuable. The disadvantage of

these CNNs is that they work with 2D slices of 3D CT

images. Since adjacent slices have valuable information for

ring artifacts reduction, we suppose using a 3D CNN is

preferable.

As for inpainting methods, the research in that area has been

very active over the recent two decades. Image inpainting algo-

rithms can be divided into two categories: nonblind techniques

and blind ones. In the first category, the regions that need to be

restored are provided to an algorithm, whereas in the second,

no information about the locations of the corrupted areas is

given and an algorithm automatically identifies the regions for

inpainting [24]. Nowadays, deep-learning-based approaches

achieve state-of-the-art results in inpainting. In our previous

work [3], we proposed a blind inpainting algorithm for the ring

artifacts reduction. In this work, we are interested in non-blind

inpainting since we have the intention to use a mask of arti-

facts. There are plenty of image inpainting methods by means

of CNNs [25]–[30]. The majority of analyzed publications

describes generative adversarial networks (GAN) [25]–[27]

and various modifications of 2D U-net [20]. Neural networks

in papers [26]–[30] are intended for nonblind inpainting of

relatively large rectangular regions in natural photos.

The method for segmentation of ring artifacts focusing on

quality estimation of microCT images is described in [9]. The

technique processes slices of 3D images one by one. The first

stage is the normalization of slice intensity. Then the method

computes a region of interest (ROI) of the slice by an ap-

plication of a variance filter, thresholding, and morphological

closing. Inside the detected ROI, the algorithm performs ring

artifacts segmentation. The method translates slice to the polar

coordinates and applies the matched filter to find vertical lines.

Then the algorithm applies thresholding for absolute values of

pixels of the filtered image and gets the result as a mask of

artifacts. Next, the method uses morphological dilation with

a vertically oriented structure element to merge neighboring

regions in the mask. The final stages are the labeling of

connected regions and elimination of regions, which have
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bounding box sizes greater than the predefined parameter, and

translation of the mask back to the cartesian coordinates.

There is no method, which for a fragment of reconstructed

CT image allows doing segmentation and local correction

of 3D regions of ring artifact remaining after conventional

correction of rings in microCT system.

III. DATASETS

A. Initial images

We acquired the samples of sandstones and sand by using

Bruker SkyScan 1172 microCT system with parameters de-

scribed in [2]. Ring artifacts suppression feature was turned

on, so, acquired images contained a relatively small number

of rings, but the majority of those rings was quite noticeable.

We got specimens of 8 reconstructed 3D images of the

following rocks: one Unifrac sand (UFS), three Bentheimer

sandstones (BHI1, BHI2, BHI3); one Gravelite sandstone

(GRV ); one Buff Berea sandstone (BB); two Fontainebleau

sandstones (FB1, FB2). Each reconstructed 3D image has

size 3968 × 3968 × 1840 voxels with a bit depth of 8 bits

per voxel with a resolution of about 2.3 μm per voxel. Fig. 3

shows fragments of these images.

To train models for the rings segmentation we need an-

notated patches of the images. It is necessary to have cor-

responding patches of the masks, where voxels related to

artifacts are indicated. Initially, we segmented ring artifacts

on slices of 8 available 3D images by the method from

[9]. After labeling the connected components, we have 3578

3D regions in cylindrical coordinates. Some of these regions

are not rings. We manually excluded erroneously segmented

regions. After that, we have 2073 3D regions containing

natural ring artifacts and corresponding binary masks, in which

1 denotes the voxel of a ring, and 0 denotes the voxel of a

background. Regions with rings and their masks are 3D arrays

in cylindrical coordinates. We made masks of artifacts convex

because the segmentation algorithm left some holes and cav-

erns. We denote sets of the regions containing ring artifacts

as REGUFS , REGBHI1 , REGBHI2 , REGBHI3 , REGGRV ,

REGBB , REGFB1 , REGFB2 ; the sets of the masks

as MASKUFS , MASKBHI1 , MASKBHI2 , MASKBHI3 ,

MASKGRV , MASKBB , MASKFB1
, MASKFB2

. In addi-

tion, we obtain 3D binary images containing segmentation

outcomes for whole initial images in cartesian coordinates and

denote it as MUFS , MBHI1 , MBHI2 , MBHI3 , MGRV , MBB ,

MFB1 , MFB2 .

Based on Mi, we computed thickness over the Z-axis and

arc length of artifacts. That information is important for the

selection of the appropriate architecture of the neural network

and our approach for transferring artifacts between images.

Almost all rings have a thickness from 1 to 8 voxels. The

distribution of arc lengths has the mean value equals 334

voxels and the standard deviation equals 282 voxels. The ring

artifacts have a relatively short arc length in comparison with

the maximal arc length for the entire ROI, which is equal to

about 2π · 1740 voxels.

So, the number of regions with artifacts is small for the

training of the network intended for the segmentation. Also,

we are faced with class imbalance: the total number of

undistorted voxels is 17705 times greater than the number of

voxels of artifacts. Despite there are various solutions for the

training of segmentation models on unbalanced datasets [31],

[32], it is preferable to have more balanced and more diverse

data.

However, for training a deep neural network for inpainting,

we have a more complex problem: we need to have corre-

sponding to each other patches of images damaged by ring

artifacts and artifact-free. Where can we get such pairs of

patches? According to approaches discussed in the previous

section, one solution is to apply one of the methods for

rings reduction before reconstruction and to reconstruct the

images again. A similar approach is WFF filtering in the

reconstructed-image domain and using the filtration outcome

as an undistorted image. Another solution is the fusion of

synthetic rings with pristine images. In the first solution,

already filtered nonoriginal voxels are used as ground truth

(GT). The quality of the second one depends on the adequacy

of an algorithm for the formation of synthetic artifacts.

Instead of generating synthetic artifacts, we propose an

algorithm for the translation of the natural rings to arbitrary

places of other images. In our ring transferring procedure,

the appearance of rings is altered. It allows to produce a

rich and diverse dataset. Additionally, we expect that such an

augmented dataset improves the performance of the segmen-

tation since it makes the CNN more independent from the

background of rings and reduces the class imbalance.

B. Translation of artifacts between images

Fig. 4 shows a scheme of artifacts translation procedure

from FB1 image to BHI1.The top part of the figure illustrates

the creation of a dataset of natural rings as described in

the previous subsection. We select a region from the dataset

containing natural rings by random and estimate its back-

ground: voxels of image adjacent with voxels damaged by

the ring. To obtain a matrix with a “pure” artifact, we subtract

the background from the region. The matrix contains signed

values. Colormap in Fig. 4 shows example of range of values

in the matrix after background subtraction. An artifact-free

microCT image is converted to cylindrical coordinates and

fused with the matrix containing artifacts with the subtracted

background. The position for fusion is chosen randomly in

some limitations to avoid overlapping of different artifacts.

Finally, an image with the transferred ring is converted to

cartesian coordinates. The width and arc length transferred ring

in cartesian coordinates differ from sizes for the natural one

due to the natural ring is fused with an artifact-free image in a

random place of cylindrical coordinates. As a result of fusion

with diverse content of microCT images translated artifacts

look rather different from their source ring. Moreover, the

matrix containing natural artifact with subtracted background

sometimes is inverted according to the random parameter. So,

our translation procedure is not just replication. One can see a

______________________________________________________PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 184 ----------------------------------------------------------------------------



(a) (b) (c)

                                                                                                      (d) (e)

Fig. 3. Examples of 1 mm3 cubes from images: (a) UFS ; (b) BHI1; (c) GRV ; (d) BB; (e) FB 1

significant difference between the source ring and transferred

artifact in Fig. 4. On the other hand, in our opinion, transferred

rings look very realistic. Our rings transferring approach can

be considered as special data augmentation.

The input of translation algorithm are region REG and

mask MASK of artifact in the cylindrical coordinates, for

example REG ∈ REGFB1
and MASK ∈ MASKFB1

; the

image and mask in the cylindrical coordinates, on which

we want to transfer the artifact, for example P (BHI1) and

P (MBHI1). The placing artifact on the image P (I) with mask

P (MI) in position (xp, yp, zp) is defined with the statements

(1), (2), (3), (4), (5), (6), and (7). Where xp ∈ [0,M −Ma],
yp ∈ [0, N −Na], zp ∈ [0, D−Da]; N , M , D are the number

of rows, columns, depth of P (I) and Na, Ma, Da are the

number of rows, columns, depth of REG ; x = 0, ...,M − 1,

y = 0, ..., N − 1, z = 0, ..., D − 1; yavg is the number

of averaged rows, in our work yavg equals 20; xlr is the

number of columns of background from the left and right

of the artifact, in our case xlr equals 10, μ[·] is mean value

operator; i ∈ { 0, 1 } is a random parameter for ring intensities

inverting; DT is the distance transform; masks elements are

equal to 0 and 1.

After transferring artifacts, the ratio of the number of

background voxels to the number of voxels of rings became

approximately 59. The number of regions with artifacts in total

is increased to about 2 · 105.

C. Forming of training, validation, and testing datasets

The common practice for the creation of models by machine

learning methods is to split a dataset into training, validation,

and test sets. On the training dataset, we train our model.

On the validation dataset, we evaluate the performance of the

model during training to prevent model overfitting. On the test

dataset, we evaluate the final performance.

For segmentation, GT are masks of natural and transferred

artifacts. For artifacts suppression by inpainting, GT are

artifact-free patches of original microCT images.

To demonstrate the stability of our approach we created

four datasets: two for segmentation (see Table I) and two for

reduction of ring artifacts (see Table II). Each dataset contains

seven 3D images for training, one for validation and testing.

UFS and UFSr are used for testing in the Dataset 1 and

Dataset 3. We apply BHI1 and BHI1,r for testing in the

Dataset 2 and Dataset 4.

To prevent overfitting, we translate rings originated from

images from the training set only to images from this training

set. Identically, we translate rings originated from images from

the test set only to images from this set. For example, on

BHI1,r, BHI2,r, BHI3,r, GRVr, BBr, FB1,r, and FB2,r

we translate {REG | REG ∈ REGBHI1 ∪ REGBHI2 ∪
REGBHI3 ∪REGGRV ∪REGBB ∪REGFB1

∪REGFB2
},

and on UFSr we translate {REG | REG ∈ REGUFS }.

With r index we denote images containing transferred artifacts.

IV. DEEP NEURAL NETWORKS FOR SEGMENTATION AND

INPAINTING

A. CNN architectures

We need a neural network for segmentation and nonblind

inpainting. It is reasonable to build a network from two parts,

where the first part makes segmentation, and the second one
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Fig. 4. Scheme of the translation procedure

employs the output of the first part for a local correction

of rings. In the first part, we apply U-net [20] since this

network provides pretty good results in different segmentation

problems in whole and for processing of microCT images of

rock samples in particular [2]. The second part is inspired

by residual learning used for the reduction of metal artifacts

[22] and streak artifacts [21] from medical CT images. In

the concept of residual learning, a rather deep network from

sequential convolutional layers predicts the so-called artifact-

residual image. For making the correction, the artifact-residual

image is subtracted from the image containing artifacts.

We train these two parts one by one. At first, we train part

for segmentation. Then the part is frozen, and we train the

second part of the network intended for correction.

The input of the first part is a patch of a reconstructed

microCT image in cartesian coordinates. The output of the

first part is a probability map, which elements indicated

probability to be belonged in damaged by artifact area. The

thresholding of the map produces a binary mask with outcomes

of segmentation. For training and testing of the first part, we

use patches of images with natural and translated rings as well

as corresponding patches of masks containing segmentation
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Mr
I =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
MI , x /∈ [xp, xp +Ma − 1]∧

y /∈ [yp, yp +Na − 1]∧
z /∈ [zp, zp +Da − 1],

Pinv(MASK (x− xp, y − yp, z − zp)), otherwise,

(1)

Ir =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I, x /∈ [xp, xp +Ma − 1]∧
y /∈ [yp, yp +Na − 1]∧
z /∈ [zp, zp +Da − 1],

I + (−1)i · Pinv

(
Diff (REG(x−xp,y−yp,z−zp))

Dist(x−xp,y−yp,z−zp)

)
, otherwise,

(2)

Diff (REG(x, y, z)) = μ(REG(x, y, z))−
(
μl(x, y, z) +

x

Ma − 1
· (μr(x, y, z)− μl(x, y, z))

)
, (3)

μ(REG(x, y, z)) = μ[REG(x, y, z),REG(x, y + 1, z), ...,REG(x, y + yavg − 1, z)], (4)

μl(x, y, z) = μ[μ(REG(0, y, z)), μ(REG(1, y, z)), ..., μ(REG(xlr − 1, y,Da − 1))], (5)

μr(x, y, z) = μ[μ(REG(Ma − xlr, y, z)), μ(REG(Ma − xlr + 1, y, z)), ..., μ(REG(Ma − 1, y,Da − 1))], (6)

Dist(x, y, z) =

{
1, MASK (x, y, z) = 1,

DT (1−MASK )(x, y, z), otherwise,
(7)

TABLE I. THE DATASETS FOR ARTIFACTS 
SEGMENTATION

Dataset Training set Validation set Test set
1 BHI1,r , BHI2,r ,

BHI3,r , GRVr ,
BBr , FB1,r ,
FB2,r

UFSr UFS, UFSr

2 UFSr , BHI2,r ,
BHI3,r , GRVr ,
BBr , FB1,r ,
FB2,r

BHI1,r BHI1, BHI1,r

TABLE II. THE DATASETS FOR ARTIFACTS 
REDUCTION

Dataset Training set Validation set Test set
3 BHI1,r , BHI2,r ,

BHI3,r , GRVr ,
BBr , FB1,r ,
FB2,r

UFSr UFSr

4 UFSr , BHI2,r ,
BHI3,r , GRVr ,
BBr , FB1,r ,
FB2,r

BHI1,r BHI1,r

GT.

The input of the second part is a patch of microCT image

and corresponding probability map as the segmentation result.

The output of the second part is the corrected patch. For

training and testing of the second part, we use patches of

images with translated rings as well as corresponding patches

of original artifact-free images.

Despite both parts of the network are known, for the best

of our knowledge, there is no exact the same solution in the

literature. We propose two deep neural networks: 2D and 3D.

Based on the distributions of the artifacts thickness over the Z-

axis and the arc lengths, we set the following size of patches:

512× 512 for the 2D network and 512× 512× 8 for the 3D

one.

The first part of the 2D network is the ordinary U-net with 5

levels, 64 feature maps at the top level after each convolutional

layer, and doubling the number of the feature maps at each

lower level. The second part has 15 sequential convolution

layers that end with a hyperbolic tangent as the activation

function. We choose the feature maps number that the model

during training can occupy the entire GPU GeForce GTX 1080

Ti made by Nvidia.

Fig. 5 shows the scheme of our 3D network. The 3D model

is almost identical to the 2D one except for the following

differences. The first part of the network is based on 3D U-net

[33]. For dealing with patch having different sizes along Z and

other axes, we utilize an approach from [34]: the network not

up/downsample feature maps over the Z-axis, on the highest

resolution of the U-net consists of only 2D convolutions,

and on the other scales, the first convolution is 2D and the

second is 3D. In the second part, the 3D network has 13

sequential convolution layers. We had to split the network for

two identical GPUs during training.

B. Training process

A common metrics for assessment of segmentation is Dice

[35]. We use Dice in probabilistic form [31]:

Dice =

∑N
i=1 p1,ig1,i + ε∑N

i=1(p1,i + g1,i) + ε
, (8)

where N is the number of the predicted voxel classes; p1,i is

the probability that voxel i is of the ring artifact class; g1,i is

a corresponding binary value, 0 if a voxel does not belong to
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Fig. 5. Scheme of the 3D model

the class, and 1 if it belongs; ε is a small value for preventing

division by zero.

We apply focal Tversky loss [31] for the training segmen-

tation part of the CNN. Tversky loss is based on Dice metrics

and introduces weighting coefficients α and β for weight false

positives and false negatives for dealing with the segmentation

of imbalanced datasets. The exponential parameter γ is used to

control loss function values between background and regions

of artifacts. It is used to address the issue that the loss function

struggles from segmenting the relatively small regions of the

artifacts.

This loss function is represented by the following formulas:

Tv =

∑N
i=1 p1,ig1,i + ε∑N

i=1 p1,ig1,i + α
∑N

i=1 p0,ig1,i + β
∑N

i=1 p1,ig0,i + ε
,

LFTv = (1− Tv)
1
γ ,

where Tv is Tversky similarity index, p0,i, p1,i are proba-

bilities that voxel i is of the background class and the ring

artifact class, respectively. The g0,i, g1,i are corresponding

binary values, 0 if a voxel does not belong to the class, and 1

if it belongs. In this work, we use values α = 0.7, β = 0.3 to

focus the loss to minimize false negative predictions and the

suggested value γ = 4
3 [31].

The valuable loss functions for image restoration with neural

networks [36] are the weighted sum of mean absolute error

(MAE) and multiscale structural similarity index measure

(MS-SSIM) [37].

The loss function is:

LMAE ,MS-SSIM (P,GT ) =

w ·MAE
(
GσM

G
∗ P,GσM

G
∗ GT

)
+

(1− w)(1−MS -SSIM (P,GT )),

where P is a predicted image; GT is a ground truth image;

w is the weighting coefficient; MAE is MAE, which in our

work equals 0.2; GσM
G

is Gaussian filter with the standard

deviation σM
G = 8; and ∗ is convolution operation, MS -SSIM

is MS-SSIM.

Adam optimization algorithm [38] with the initial learning

rate 10−4 is employed in training. For training the 2D network,

we apply nonoverlapping patches and for training the 3D

network with overlapping by 50% by Z-axis [39]. The batch

sizes are equal to 4 and 1, respectively. The training is stopped

when during training the evaluation metrics are almost not

changed: for the segmentation case within 0.1 during the

20 iterations, for the rings reduction within 10−4 during the

5 iterations. After every 1000 training patches, we evaluate

performance on 100 random patches from the validation

dataset. As for performance evaluation metrics during training,

we use the Dice for the segmentation part and MS-SSIM for

the correction.

All experiments were performed on the system with two

GPUs GeForce GTX 1080 Ti made by Nvidia. GPU provides

3584 stream cores, 11 GB of memory, and 11.3 Tflops

of peak single-precision performance. Both neural networks

were implemented via Pytorch 1.3.0. The training time 2D

segmentation model is about 1 day; the 2D rings reduction
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model is about 3 days; the 3D segmentation model is about 3

days; the 3D inpainting is about one week.

V. RESULTS AND DISCUSSION

A. Segmentation

For the performance evaluation of the segmentation, we use

Dice metrics defined in statement (8) and the area under the

precision-recall curve (PR-AUC) [40]. Table III contains the

metrics for the segmentation part of our neural networks and

for the method [9] based on the transformation of slices to

the polar coordinates. To the best of our knowledge, there

are no other techniques for the segmentation of ring artifacts

remaining after conventional suppression of the artifacts in

microCT system.

The metrics for the method from [9] are higher for images

UFS and BHI1 without transferred artifacts. It is explained

by two reasons. Firstly, GT masks for the images were ob-

tained namely by this method, parameters of [9] are overfitted

for initial microCT images with natural artifacts. Secondly, in

this case, the proposed 2D and 3D CNNs were trained only

on about 2000 regions of natural artifacts. In our opinion, it is

not enough training data to achieve a good generalization. For

the more diverse and big datasets that included both natural

and transferred artifacts, where the number of regions is about

200000, the proposed neural networks significantly outperform

the existing segmentation approach. The 3D network performs

better in comparison with the 2D one. The segmentation results

for BHI image type are slightly better than for UFS type.

We suppose that cause is presence in the training set the other

image of BHI type.

Fig. 8 shows the segmentation results for a fragment from

the BHI1 image. We point to the ring artifact by a white

arrow.

B. Correction

As for performance metrics for the rings reduction, we use

MAEin and MAEout computed for voxels that belong to ring

artifacts and that do not belong, respectively. Each voxel is

in the range [0, 255]. MAEin is the key measure, because

it indicates the quality of restoration of the damaged region.

MAEout allows to see how big changes in unaffected by

rings regions. In the ideal case, undamaged voxels should be

unchanged. Also, we use MS-SSIM computed for the entire

image since the paper [41] demonstrates that MS-SSIM has

the highest correlation with assessments by a human. We do

not expect to see a big difference in MS-SSIM for various

methods, because an area of local rings is very small in

comparison with another image area. Nevertheless, the visual

quality of the image used for the building of the model for

simulation in Digital Rock workflow is important, and we want

to estimate quality both visually and numerically.

We compare our ring artifacts reduction approach with

nonblind Telea’s inpainting technique [42], the popular WFF

method [10], and inpainting via U-net with partial convolutions

[29]. Mainly, the cause to select these methods for com-

parison was a practical successful application of enumerated

approaches for correction of various artifacts in our laboratory

before.

We apply the inpainting algorithm by Telea twice: for

2D slices of the images based on the ground truth, it is

designated as Telea 1; and based on masks from the output of

segmentation part of our 3D CNN, it is designated as Telea 2.

Python package rmstripes (https://github.com/DHI-

GRAS/rmstripes) implements the WFF algorithm. For the

filtering, we use the following filtering parameters: L = 4, ψ
– Daubechies wavelet with 4 coefficients, σ = 20. We choose

the parameters L and σ as minimal as possible to keep

the artifact almost completely suppressed and to preserve

other structures unchanged. Python package polarTransform
(https://github.com/addisonElliott/polarTransform) allows to

reduce quality loss in transformations between polar and

cartesian coordinates. The angle axis in the polar coordinates

is set to be two times larger than the largest dimension of the

image slice in the cartesian coordinates.

The U-net model with the partial convolutions was down-

loaded from https://github.com/MathiasGruber/PConv-Keras.

This model was pre-trained on the Imagenet dataset [43].

Since it works with three-channel images, we just copied the

grayscale channel in all color channels.

Fig. 7 shows examples of the considered ring reduction

methods for the fragment from Fig. 6a.

Table IV contains results for the ring reduction methods.

MAEout is not equal to zero for images without correction

of artifacts because the proposed transferring method uses

the masks of artifacts for a smooth transition of intensity

using the distance transform in Equation (2); thus we get a

small difference of intensities around the artifact masks. The

performance of Telea 1 and Telea 2 are almost identical. WFF

better corrects artifacts than the inpainting by Telea, but it

significantly degrades the quality of other parts of images. The

method based on U-net with the partial convolutions degrades

the quality of the images. One can see, that in example from

Fig. 7d, intensities at the ends of the artifact arc turned to

black and some structures near the artifact have deteriorated

shape. However, it is worth remembering that this model was

trained on the Imagenet dataset. We assume, if it had been

trained on our dataset, the result may improve. The proposed

CNNs demonstrate the best performance. The 3D CNN has the

highest values for all metrics except the MAEout for Dataset
3.

Fig. 8 shows an example of the outputs of the methods

under consideration for a patch with a strong ring artifact.

The proposed 2D and 3D neural networks provide a very good

visual quality of the corrected image. The result of the WFF

method showed the good visual quality in the artifact area,

but we can see strong blur the edges of objects outside the

artifact area. Also, for processing by the WFF, a whole slice

is required, while the proposed algorithms can process only

the shown fragment.

The processing time for the fragment with a size of 512×
512 voxels is about 0.025 seconds by the 2D network, and the

fragment with 512 × 512 × 8 voxels is about 0.377 seconds
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(a) (b) (c)

(d) (e)

Fig. 6. Example of the ring artifact segmentation: (a) a fragment with ring artifact from the BHI1 image; (b) GT; (c) mask obtained from the 2D CNN
trained on the Dataset 2; (d) mask obtained from the 3D CNN trained on the Dataset 2; (e) mask obtained by [9]

TABLE III. THE RESULTS OF THE 
SEGMENTATION

Dataset Dataset 1 Dataset 2
Test set UFS UFSr BHI1 BHI1,r
Metrics Dice PR-AUC Dice PR-AUC Dice PR-AUC Dice PR-AUC
Segmentation by [9] 0.70 0.73 0.35 0.53 0.77 0.80 0.43 0.59
Proposed 2D CNN 0.46 0.61 0.71 0.81 0.47 0.62 0.84 0.89
Proposed 3D CNN 0.56 0.72 0.78 0.83 0.55 0.76 0.86 0.91

TABLE IV. THE RESULTS OF THE RING ARTIFACTS 
CORRECTION

Dataset Dataset 3 Dataset 4
Metrics MS -SSIM MAEout MAEin MS -SSIM MAEout MAEin

No correction 0.9914 0.14 19.89 0.9858 0.10 12.75
Telea 1 [42] (masks from GT) 0.9944 0.14 14.28 0.9900 0.10 8.42
Telea 2 [42] (masks from 3D CNN) 0.9942 0.12 12.75 0.9886 0.12 8.42
WFF [10] 0.9823 2.11 10.97 0.9820 1.22 7.65
Partial convolution U-net [29] 0.9620 1.86 19.38 0.9542 1.01 10.97
Proposed 2D CNN 0.9974 0.31 7.65 0.9973 0.30 5.87
Proposed 3D CNN 0.9987 0.13 4.76 0.9992 0.09 2.44

by the 3D network on our GPUs using Pytorch with compute

unified device architecture (CUDA).

VI. CONCLUSION

We proposed the 2D and 3D deep neural networks for

the segmentation and correction of ring artifacts in microCT

images of rock samples. We focus on artifacts remaining after

conventional ring artifacts reduction methods in microCT sys-

tem. Unlike existing approaches, the proposed method can be

applied for fragments of a reconstructed CT image in the case

absence of shadow projection and the impossibility to make

the conversion to polar coordinates. Also, our method does not

require parameters tuning at the inference stage. The proposed

3D neural network outperforms methods under consideration

for both segmentation and correction. The proposed 2D model

provides quite high outcomes as well and operates faster in

comparison with the 3D one. An application of the 2D network

is a good trade-off between the quality, speed, and resources

required for training.

One of the main contributions of our work is the method
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Example of the ring artifact reduction from image in Fig. 6a: (a) with Telea’s technique based on the mask from Fig. 6c; (b) with Telea’s technique
based on the mask from Fig. 6e; (c) with the WFF method; (d) with the U-net based on partial convolutions based on the mask from Fig. 6b; (e) with the
2D CNN trained on the Dataset 4; (f) with the 3D CNN trained on the Dataset 4

for the creation of training and testing datasets by transferring

natural artifacts from one image to another. Our technique

allows to generate realistic artifacts having various appearance

due to the fusion of 3D ring and image in a random position

of the cylindrical coordinate system. This method can be

considered as specific data augmentation. Theoretically, there

is a risk that the trained model will poorly detect and suppress

artifacts of microCT systems from other manufacturers since

they can differ significantly. However, the proposed algorithm

for the translation of ring artifacts allows to rapidly create a

dataset with many target artifacts and re-train the model. In

addition, if an image contains a high level of noise, there is a

high risk that the proposed approach will not work well.

In the future, we have the intention to investigate CycleGan

for unpaired image-to-image translation [44] for the generation

and suppression of ring artifacts. To reduce the time and

memory costs during training for unpaired image-to-image

translation, we are going to apply the Contrastive Unpaired

Translation (CUT) approach, which is based on patch-wise

contrastive learning and adversarial learning [45]. Also, we

plan to extend the proposed approach for the inpainting of

artifacts originated by high-density inclusions [5] and filling

of cracks in the images of rock samples. Despite the proposed

networks are intended for Digital Rock applications, our

approach can be adjusted for the processing of CT images

in other areas.
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