
Story Creation Algorithm Using Q-Learning in a 
2D Action RPG Video Game

Diego Fernández-Samillán
Universidad Peruana de

Ciencias Aplicadas (UPC)
Lima, Perú

u201310928@upc.edu.pe

Carlos Guizado-Dı́az
Universidad Peruana de

Ciencias Aplicadas (UPC)
Lima, Perú

u201312165@upc.edu.pe

Willy Ugarte
Universidad Peruana de

Ciencias Aplicadas (UPC)
Lima, Perú

willy.ugarte@upc.pe

Abstract—In this paper, we try to solve the problem of making
video games with multiple storylines. To do this, we developed an
algorithm capable of generating variations in the game’s story
through altering the behaviors of the characters. For this task,
we use Q-Learning. Our results indicate that this algorithm may
be viable to be used in video games for commercial purposes.

I. INTRODUCTION

The video game industry has grown exponentially in the

last decade, generating more income than the film and music

industry combined (from EconoTimes - “The Gaming Industry

Is Now Bigger Than Hollywood” - https://bit.ly/36SPDXj).

This also means that the industry has become even more com-

petitive than before. With hundreds of video games published

daily (Gaming Shift - “How Many Video Games Exist?” -

https://bit.ly/3flkyPD), developers are always looking for ways

to stand out from the competition.

A rather striking way is to develop video games with mul-

tiple story-lines, where the decisions of the players affect the

game world. Thus, in addition to providing greater immersion

to the player, they increase game’s re-playability.

However, programming each variant of the story, both the

dialogues and the behavior of the characters, among other

things, considerably increases costs and production times.

Solving this, many developers have tried to create an algorithm

capable of procedural generating the narrative of a video game.

Despite the fact that there are already methods to procedural

generate different parts of a video game, such as the settings,

the characters, and even the graphics and music, generating

the narrative is a much bigger problem since, unlike the other

components that can be procedural generated individually, the

narrative of a video game includes the rest of the components,

which makes it more complex.

Furthermore, a narrative does not follow a pattern as clear

as a setting or a character, and the number of variations it can

have is exponentially greater, making its procedural generation

an interesting challenge [1]. In addition, to procedural generate

video game content, an element is usually chosen as a cell.

This element represents a basic atomic unit of the content

to be generated (as in the case of music generation, the cell

can be a musical note). Then, a series of logical rules are

written that determine how cells should be combined and

which combinations are better and worse.

Thus, through the combination of these elements, more

complex things are formed (i.e., from notes they form

melodies, from fractals they form graphics, etc.). However,

in the case of story generation, the cell element is not entirely

clear, which makes things even more difficult.

On the other hand, some more sophisticated solutions use

a dataset to find the logical rules using machine learning

methods (i.e., in the case of melody generation, methods such

as deep learning can find, from a dataset of melodies, which

combinations of music notes sound better or worse [2], [3]).

However, in the case of story generation, there is no dataset

of video game stories, so all these methods are not feasible.

Because of that, many developers have chosen to program

logic rules and heuristic functions.

However, there are machine learning methods that do not

need a formal dataset, such as reinforcement learning methods,

which mostly require only one agent, one environment, that

the agent can execute actions on the environment and that this

responds with a number that represents a reward and with a

new status of the environment.

These reinforcement learning methods adapt well to our

problem not only due to the fact that they do not require

a dataset, but also due to the fact that they adapt easily to

the architecture of a video game, since they always naturally

have a series of agents that execute actions in an environment,

changing their state continuously.

The structure that we will follow in this paper is: first, the

Background/Context, where we will describe the theoretical

framework that encompasses this problem and our solution;

second, the Main Contribution, where we will describe our

solution to the problem; third, the Related Works, where we

will make a brief state of the art of the best current solutions

and indicate how our solution differs from the others; fourth,

the Experiments, where we will carry out tests to verify the

validity of our solution; and finally the Conclusions, where we

will explain the final conclusions of our work and say some

recommendations for future works.

______________________________________________________PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



II. BACKGROUND/CONTEXT

First some context, it happens that video game stories differ

from literature and film stories not only in that they must

be interactive (because the player is part of the story and it

progresses with him), but also in many other forms. Given

the unique characteristics of video games, and for the reader’s

understanding, we will define the components that make up

the story and narrative of a video game.

According to [1], a Video game must contain:

• Narrative: A concept that encompasses the game’s his-

tory and discourse (i.e., In the Super Mario Bros video

game, the narrative represents all the experiences that

the player lives, from the beginning to the end of the

game [4]).

• History: The events that occur to the characters in

the narrative, this include plot and space (i.e., In the

Super Mario Bros video game, the story consists of the

background story, the princess being kidnapped, and the

story the player actually plays, Mario going through the

8 worlds to rescue the princess, facing enemies and going

through obstacles [4]).

• Speech: The way the story is presented to the player, and

can be through cut scenes, text boxes, or simply through

the gameplay (i.e., In the Super Mario Bros video game,

the story is shown to the player through gameplay, there

are no cut scenes or text boxes [4]).

• Space: The characters, places, objects, and all the ele-

ments found in the fictional world of the game, be they

tangible or abstract objects (i.e., In the Super Mario Bros

video game, the space is the levels and their elements,

the power-ups and the characters and enemies [4]).

• Plot: A series of events that occur to the characters, with

a structure that orders the events based on time, and the

events that occur have a cause-effect relationship between

them (i.e., In the Super Mario Bros video game, the plot is

the kidnapping of the princess, the order in which Mario

must cross the levels and their obstacles, in addition to

the end of the game, in which you save the princess [4]).

To procedural generate a video game narrative, most, if not

all of the studios, have focused on automating the game’s story,

while few have focused on the speech [1]. Usually, they use

some translator module to generate the game’s speech.

This is because, when generating the game story, meaning

or semantics are also generated, so a module that transforms

data into natural language is more than enough to generate

speech, perhaps not of the best quality, but until someone finds

an efficient method of procedural generating a story that is

credible, consistent, and emotionally meaningful to the player,

there is little point in generating speech.

There are some methods to procedural generate the story of

a video game using stories archetypes. A story archetype is a

general structure that describes the components that make up

a story.

There are various archetypes, such as the popular hero’s

journey, among others [5]. However, we believe that there is

no need to use an archetype to procedural generate a story.

This is because, since every story can be built through

the interactions of its characters, we believe that this is

enough to generate more complex structures. To carry out

our proposal, we use Q-Learning, which is a reinforcement

learning algorithm.

Reinforcement learning is a learning paradigm within the

machine learning area, which is based on programming in-

telligent agents using a system of rewards and punishments,

without the need to specify how the problems should be

solved.

Agents are executing actions in a dynamic environment,

looking for ways to maximize the reward and minimize the

punishment. For this, a reward function is usually used, which

estimates how much reward the agent will get if he performs

certain actions. Also, the agents receive a new state of the

environment each time they execute an action.

There are many variations of reinforcement learning, some

trying to optimize the time the agent searches for new solutions

and the time it seeks to exploit the solutions he has already

found, others that take into account long-term rewards, where

he may have to start with little reward to get the maximum

reward at the end [6].

After analyzing the different reinforcement learning meth-

ods [7], we decided to use Q-Learning [8], this because it does

not require an environment model, but rather is based on the

agent model and a Q function that predicts the reward that the

agent will obtain.

Basically, the agent chooses from time to time an action to

take given the reward that will be immediately granted and

the expected future reward, which depends on a Q-function

and a Q-table (a table where the function saves the expected

rewards given an action and a state).

After executing the action, it observes the reward and

modify the value in the Q-table using the Bellman’s equation,

so that it adapts and can better predict the rewards that are

obtained by taking certain actions.

The simplicity of this algorithm adapts very well to a video

game, since we do not make a model of the environment (this

is simply a scenario with obstacles), but we do make a complex

model of the characters, which would be the agents in this

case, and they are the ones who execute actions and expect a

reward.

III. MAIN CONTRIBUTION

There are multiple approaches to automate the story of a

game, most try to automate the generation of the plot [9]–

[13], others try to automate the generation of the space [14],

[15], while others try to automate both [16]–[19].

The degree of automation is extremely variable. For ex-

ample, in MEXICA [10], the authors try to stick together a

number of plot fragments, which are constrained by a set of

pre and post-conditions, while J. Harris and R. Young [19]

develop a system which predicts when the player is going to

perform an action that invalidates the plot, and modify the

______________________________________________________PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 112 ----------------------------------------------------------------------------



space in advance in order to make the action impossible to

attempt.

We have a different proposal, in which we use Q-Learning

to generate the story. With our proposal, we seek not only to

generate the story of the game, but also to reduce the work

for developers by reducing the amount of heuristic rules to be

implemented in the game.

To begin with, we think that there is no need for story

archetypes, because the story is generated naturally when

various intelligent agents interact with each other. For this

reason, we propose to equip the characters with an artificial

intelligence capable of making decisions that affect the game

world, to build the story based on the actions of the characters.

First, we describe the space of the game. To do this, we cre-

ate a character template, which will have stats that determine

his abilities, his motivations and his personality (our solution

implements the 16 personality types, based on the study by

Myers Briggs - 16Personalities - https://bit.ly/2IW92hE).

The character template will also have an inventory (so we

also have to describe all the possible objects of the game)

and a relationship tracker (which tracks the relation this char-

acter have with the other character, i.e., family relationship,

friendship, alliance, hostility).

Seen from a programming point of view, space can be

understood as a set of variables that represent the elements

of the game, while the plot can be understood as functions or

methods that alter the value of those variables.

So, the next step is to create a set of functions that will

represent the possible actions in the game. Until now, the

algorithm is a fairly common implementation, you describe

the space and then you describe the combination rules that

will form the plot.

However, below we do something that will significantly

decrease the implementation time and the workload. It turns

out that, for commercial games, the space is very large, and

the quantity of rules are even greater.

The number of rules that should be implemented is out-

rageous, and even worse, getting these rules to be of high

quality so that each behavior makes sense is an even more

complicated task.

So, the solution would be to implement a version of Q-

Learning. Each character will be an agent, and the possible

actions to be performed will be the actions that it executes in

the environment.

At the beginning of the game, and every time the character

finishes an action, the character will execute a new action

based on a Q-function that tells him which action is the one

that will give him the best reward given his current state.

To determine the expected reward, the Q function make a

prediction based on the present values of the character stats

and the expected values.

Then, when the character completes the action, it will obtain

information about the success or failure of that action, based

on whether their stats improved or get worse (i.e., the energy

stat is represented by a floating variable, the amount of energy

expected to be spent is taken into account and compared to

the amount of energy that the character actually spent, thus,

it is known if the result was satisfactory or not).

In this way, using the values of the stats, we can build a 
reward function for our Q-function that predicts rewards and 
also adjust it to adapt to reality (a diagram of this can be seen 
on Fig. 1).

So, we implement the agent model (characters with their

stats, interests, inventory and human relations), then we im-

plement the possible actions to be performed (functions that

make the characters execute actions in the environment), and

then we implemented our Q-function so that the behavior of

the characters makes sense.

In this way, we no longer have to spend time or effort im-

plementing logical rules for all possible cases of the behavior

of each character, just as we no longer have to worry about

the quality of these rules, since their quality will improve as

the agent is learning. This optimization has the potential to

dramatically reduce the amount of work and amount of hours

required to develop a video game with procedural generated

stories.

IV. EXPERIMENTS

The method used to validate that our solution reduces the

amount of work is quite simple. First, we implemented two

versions of the same game, one following the classical method

based purely on heuristics and rules, and ours, using Q-

Learning to reduce the number of them.

Then, in order to verify that the method based on Q-

Learning actually reduced the work time and workload, we

gathered a group of 15 programmers, where 5 were beginners

on the field of video game development (less than 2 years on

the field), 5 were were intermediate (2 to 5 years on the field)

and 5 were experts (more than 5 years on the field).

We asked each one of them to review all the necessary

functions to implement both the Q-Learning-based method and

the traditional method (based on heuristics), and to rate each

function with a number from 1 to 10 (1 is less and 10 is more)

indicating how long it would take to implement this function

and how much workload it has. Although the method based

on Q-Learning had fewer functions, they took a little more

time and work to implement, so doing this test was necessary.

Given that the functions were divided into 2 groups (Q-

Learning group and group based on heuristics), after perform-

ing these tests the time and workload values of each function

were added for each group, in order to obtain the result of

how much time and how much workload would it take for

each person to implement not a single function, but all the

functions of each group.

An average of these results was obtained for each group 
of 5 people (beginners, intermediate and experts). These 
results are shown in Fig. 2a and 2b.

In addition, we include a third row of results in Figures 2a

and 2b, where it is indicated how much the time reduction and

workload reduction will be if the Q-Learning method is used

instead of the heuristic-based method. The results show that

______________________________________________________PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 113 ----------------------------------------------------------------------------



Fig. 1. The general process of the algorithm

Method Beginner Intermediate Advanced

Q-Learning Method 28.4 26.4 27.4

Heuristic-Based Method 70.0 64.4 74.2

Time Reduction 59.4% 59.0% 63.1%

(a) Time

Method Beginner Intermediate Advanced

Q-Learning Method 29.4 27.2 28.6

Heuristic-Based Method 71.2 71.0 78.6

Work Reduction 58.7% 61.7% 63.6%

(b) Workload

Fig. 2. Effort Tests

the method based on Q-Learning significantly reduces devel-

opment time and workload compared to traditional methods

based on heuristics.

However, it is also necessary to compare these 2 
methods in terms of similarity, to verify if the method 
based on Q-Learning produces the same results as 
traditional methods based on heuristics. For this, in Fig. 3a, 
15 test cases were raised, where an NPC with certain stats 
was subjected to a stimulus, to which he responded using 
each of the 2 methods.

Then we compared the 2 reactions for each case (see

Figure 3b), and we checked how many cases of similarity

there were. From the 15 cases, there was a match in 11 of

them, which means a similarity of 73.33% between the two

Test subject ID Q1 Q2 Q3 Q4 Q5

1 4 4 2 1 5

2 3 4 3 2 4

3 3 3 2 2 4

4 4 3 1 1 3

5 3 4 2 1 3

6 4 4 3 2 4

7 3 4 2 1 5

8 3 3 2 2 4

9 4 3 3 2 3

10 4 2 2 1 5

Average 3.5 3.4 2.2 1.5 4.0

TABLE I. ANSWERS TO QUESTIONS 1 TO 5

methods.

The error is probably due to the fact that during training

the reward function was not the best pick. However, these

differences are minor, and what really matters is whether the

player is capable of differentiating both versions of the game.

Also, we need to validate that the generated stories make sense

and that the game really feels procedural generated.

Video games have a high subjective load, which makes it

difficult to validate the elements of the game. Because of that,

the Game User Research (GUR) area was developed, an area

created to develop methods to verify if a video game meets

the desired requirements [20].

Within this area, there are various techniques, of which we

will use a playtest to validate that the stories generated by the

video game have coherence, are entertaining and are different

______________________________________________________PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 114 ----------------------------------------------------------------------------



Variable Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14 Case 15

Health 0.8 0.4 0.4 0.4 1.0 0.8 0.5 0.1 0.9 0.3 0.9 0.4 0.5 0.4 0.9

Stamina 0.8 0.3 0.2 0.2 0.2 0.5 1.0 0.6 0.3 0.5 0.2 0.6 1.0 0.6 0.3

Hunger 0.7 0.8 0.3 0.3 0.2 0.4 0.2 0.7 0.5 0.2 0.9 0.2 0.2 0.3 0.5

Strength 0.7 0.1 0.2 0.2 0.2 0.3 0.7 0.9 0.7 0.1 0.5 0.1 0.7 0.1 0.7

Dexterity 0.7 0.3 0.7 0.7 0.7 0.4 0.1 0.2 0.1 0.4 0.9 0.3 0.1 0.3 0.1

Constitution 0.5 0.7 0.5 0.5 0.5 0.1 0.6 0.6 0.1 0.1 1.0 0.2 0.6 0.2 0.1

Intelligence 0.4 0.2 0.4 0.4 0.4 0.3 0.6 1.0 0.1 0.4 0.8 0.6 0.6 0.1 0.1

Wisdom 0.4 0.2 0.4 0.4 0.2 0.5 0.7 0.6 1.0 0.5 0.4 1.0 0.7 0.2 1.0

Charisma 0.4 0.2 0.4 0.4 0.3 0.2 0.8 0.2 0.8 0.8 0.8 0.1 0.8 0.1 0.8

Food

in

inventory

0 25 0 0 0 5 0 50 0 0 0 0 0 0 0

Rock

in

inventory

0 0 25 25 5 5 0 50 15 0 0 30 0 0 15

Stimulus None
Very

Hungry

Attack

from

NPC

Type B

Low

Health
None

Attack

from

NPC

Type A

None None None

Attack

from

NPC

Type C

Very

Hungry

Low

Health

Attack

from

NPC

Type A

Low

Health

Attack

from

NPC

Type B

Reaction

(Q-Learning)

Search

Food
Eat Escape Rest

Take

a

walk

Attack Rest

Take

a

walk

Search

Food
Attack

Search

Food
Rest Attack

Take

a

walk

Attack

Reaction

(Heuristic

Based

Method)

Search

Food
Eat Attack Rest

Take

a

walk

Attack Rest Rest
Search

Food
Escape

Search

Food
Rest Attack Rest Attack

(a) Cases Results

NPC
Type Health Stamina Hunger Strength Dexterity Constitution Intelligence Wisdom Charisma

Food
in

inventory

Rock
in

inventory

A 0.8 0.7 0.2 0.9 0.7 0.7 0.4 0.5 0.2 0 0

B 0.2 0.3 0.8 0.1 0.3 0.3 0.7 0.5 0.8 5 5

C 1.0 0.7 0.2 0.9 0.7 0.8 0.1 0.5 0.2 0 0

(b) NPC Tests

Fig. 3. Similarity Tests

from each other. A playtest will be carried out on 10 people

from our target audience (see Table I), which is made up of

people between 15 and 27 years old, who mainly like games

where the story is modified based on their actions (i.e., Stanley

Parable [21]).

For this purpose, we developed a video game (see Fig. 4) 
to experiment with a duration around 5 to 10 minutes, 
so playing them 3 times shouldn’t take even an hour. After, 
we carry out experiments with the following instructions:

1) These people must record the video game and their faces

while playing at least 3 times.

2) They will first play the version of the game that use the

classical approach two times, then, they will play the

version of the game that uses our approach, but they

won’t know that.

3) Then, they will be asked a questionnaire with the fol-

lowing questions:

Q1: Were the events in the game coherent?

Q2: Did you feel that your decisions affect the game

world?

Q3: Did you feel changes in the game world when you

played the video game again?

Q4: Did you want to make a decision and could not

because of the limitation of the actions?

Q5: Did you feel that you were playing the same game

the 3 times?

Questions 1 to 5 must be answered with a number from

1 (Totally Disagree) and 5 (Totally Agree).

Table I shows the responses of the 10 people (see https:

//tinyurl.com/y3mexxju).

______________________________________________________PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 115 ----------------------------------------------------------------------------



(a) Screenshot 1 (b) Screenshot 2

Fig. 4. Screenshots of our proposal of a Video game

V. RELATED WORKS

At this point, we will review and compare our solution with

the current state of the art. The engine Creation Of Novel

Adventure Narrative (CONAN) tries to create a story through

the procedural creation of quest.

To do this, it describes all the elements of the game (char-

acters and their preferences and objectives, places and actions)

and describes a series of predicates that indicate relationships

of belonging, possession or any other relationships between

the elements of the game.

It also describes a series of logical rules that indicate

the parameters that an action receives, the prerequisites for

executing said action and the consequences of executing it.

Afterwards, each character will search for the shortest route

to reach their objective, where the paths to reach this are the

actions, and the weights of each action are determined by the

preferences of the characters.

The complexity of the quests will be determined by the

quality of the initial mapping [22]. Unlike this algorithm, ours

uses reinforcement learning so that each character forges their

personality as the game progresses, reducing the amount of

work.

There are also jobs like Tale-Spin, which describes char-

acters in space with goals and personalities, and then uses

a series of logical rules so that the characters can try to

achieve their goals [23]. There are many similar works, which

use well-defined logical or grammatical rules to perform

combinations, and despite the fact that it works, manual work

can be quite considerable.

There have also been works that try to generate the story

using crowd-sourcing methods, where a high number of

anonymous authors offer story snippets, and an algorithm is in

charge of combining these snippets to produce the final story.

However, these methods often have consistency prob-

lems [24], or writers are asked for several restrictions, restric-

tions that make work more difficult by depending on human

writers [25].

Other methods include creating fictional gadgets that are

added to the story generator. In case the generator encounters

any problems for characters to achieve their goals, gadgets

will use analogy-based reasoning to find alternate routes for

the character [26].

Although it is an interesting solution to correct certain

problems, it can be seen as a simple extension of the logical

rules of the system, so it is still not a sufficiently automatic

process.

Finally, the last form of story automation for a game is

found in the video game “Slaves to Armok: God of Blood,

Chapter II: Dwarf Fortress”, commonly known as “Dwarf

Fortress”.

In this game, a world is first procedural generated, using

a noise algorithm and a series of logical rules. Then, places

and characters are procedural generated following a similar

method.

Then, the game simulates a process of historical evolution,

since it simulates a number of years (the user can set the

quantity of years, but normally it is several hundred years, up

to thousands of years).

During this process of historical evolution, each character

makes his own decisions, which affects the world around him

and forms the lore of the game. For this process to work, it is

necessary to describe all the elements of the game world and

write a large number of logical rules.

In addition, each element of the game world stores infor-

mation about the rest of the elements with which it interacts.

The problem with Dwarf Fortress is that, in order to get to an

impressive level of detail, they program an impressive number

of elements and their combination rules [27].

The difference between the algorithm of this game and ours

is not so much in the results, but in the development time, since

our method can produce the same results but in less time and

with a lower workload for the programmers.

Therefore, our solution does contribute to improving the

current state of the art, however, it is necessary to carry out

tests to validate our proposal.

______________________________________________________PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 116 ----------------------------------------------------------------------------



VI. CONCLUSION

After reviewing the results, it is clear that the method based

on Q-Learning reduces significantly the development time and

workload if we compare it to the traditional method based on

rules and heuristics.

In addition, it seems that the more experience you have

in the field of video game development, the reduction of

development time and workload will be greater, although we

need to do tests on a larger scale to validate the latter. On the

other hand, the similarity tests showed that the method based

on Q-Learning does not always produce the same results.

Even so, the tests made to the users through the Game

User Research show that the users found the responses of the

NPCs coherent, so that, despite the fact that the method based

on Q-Learning produces different responses to the traditional

methods, they continue being valid and coherent answers.

In any case, it is possible that by improving the reward

function the method based on Q-Learning could produce the

same results as traditional methods, although future research

would be necessary to validate this. Another thing to keep

in mind is that users didn’t feel many variations in the game

when they played it again.

The latter may be due to the fact that, due to time con-

straints, the game we implemented was small, and since the

initial state of the game space was so small, the number of

combinations was not very large. In any case, to confirm or

disprove this, it would be necessary to use the method based

on Q-Learning in a much larger-scale video game.

Either way, while the results produced by the Q-Learning

method are not exactly the same as those produced by tradi-

tional methods based on rules and heuristics, they are results

similar enough to be valid, and most importantly, it manages

to successfully reduce development time and workload, so it

is viable to be used in video games for commercial purposes.

Finally, our recommendation for future works would be to

concentrate on finding a way to create a dataset that contains

different video game stories, and for each one, it must have

a description of all the elements that make up the game and

their respective parameters.

In addition, the dataset must contain descriptions of all the

relationships that exist between the elements of the game, both

human relationships (such as friendship or family), relation-

ships of belonging (this object belongs to such person or such

tavern is found in such town), logical relationships (if you

attack someone, they will get mad at you) and all kinds of

relationships necessary to fully describe the story of the game.

This is our recommendation because, if these datasets

existed, other machine learning methods could be applied to

solve this problem, which could lead to new methods with

better results and less work time, similar to Music Sheet

Classification [28] or soft constraints [29].

REFERENCES

[1] B. A. Kybartas and R. Bidarra, “A survey on story generation techniques
for authoring computational narratives,” IEEE Trans. Comput. Intell. AI
Games, vol. 9, no. 3, pp. 239–253, 2017.

[2] J. Briot, G. Hadjeres, and F. Pachet, Deep Learning Techniques for Music
Generation. Springer, 2020.

[3] J. Briot and F. Pachet, “Deep learning for music generation: challenges
and directions,” Neural Comput. Appl., vol. 32, no. 4, 2020.

[4] S. Miyamoto, H. Yamauchi, and T. Tezuka, “Super mario bros,” Nin-
tendo Entertainment System. Nintendo, 1985.

[5] J. Campbell, The hero with a thousand faces. New World Library,
2008, vol. 17.

[6] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process.
Mag., vol. 34, no. 6, pp. 26–38, 2017.

[7] C. Sammut and G. I. Webb, Eds., Encyclopedia of Machine Learning
and Data Mining. Springer, 2017.

[8] M. A. S. Santibanez, “Building an artificial cerebellum using a system of
distributed q-learning agents,” Ph.D. dissertation, University of Arizona,
USA, 2010.

[9] S. W. Haas, “The creative process: A computer model of storytelling
and creativity, by scott r. turner,” J. Am. Soc. Inf. Sci., vol. 47, no. 3,
pp. 252–254, 1996.

[10] R. P. y Pérez and M. Sharples, “MEXICA: A computer model of
a cognitive account of creative writing,” J. Exp. Theor. Artif. Intell.,
vol. 13, no. 2, pp. 119–139, 2001.

[11] T. Ong and J. J. Leggett, “A genetic algorithm approach to interactive
narrative generation,” in Hypertext. ACM, 2004, pp. 181–182.

[12] E. Clark, A. S. Ross, C. Tan, Y. Ji, and N. A. Smith, “Creative writing
with a machine in the loop: Case studies on slogans and stories,” in IUI.
ACM, 2018, pp. 329–340.

[13] M. Roemmele and A. S. Gordon, “Automated assistance for creative
writing with an RNN language model,” in IUI Companion. ACM,
2018, pp. 21:1–21:2.

[14] D. Delgado, J. Magalhães, and N. Correia, “Assisted news reading with
automated illustration,” in ACM Multimedia. ACM, 2010, pp. 1647–
1650.

[15] K. Schwarz, P. Rojtberg, J. Caspar, I. Gurevych, M. Goesele, and H. P. A.
Lensch, “Text-to-video: Story illustration from online photo collections,”
in KES (4), ser. Lecture Notes in Computer Science, vol. 6279. Springer,
2010, pp. 402–409.

[16] I. Swartjes, E. Kruizinga, and M. Theune, “Let’s pretend I had a sword:
Late commitment in emergent narrative,” in ICIDS, ser. Lecture Notes
in Computer Science, vol. 5334. Springer, 2008, pp. 264–267.

[17] I. Swartjes and M. Theune, “A fabula model for emergent narrative,” in
TIDSE, ser. Lecture Notes in Computer Science, vol. 4326. Springer,
2006, pp. 49–60.

[18] M. O. Riedl, C. J. Saretto, and R. M. Young, “Managing interaction
between users and agents in a multi-agent storytelling environment,” in
AAMAS. ACM, 2003, pp. 741–748.

[19] J. Harris and R. M. Young, “Proactive mediation in plan-based narrative
environments,” IEEE Trans. Comput. Intell. AI Games, vol. 1, no. 3, pp.
233–244, 2009.

[20] P. Mirza-Babaei, V. Zammitto, J. Niesenhaus, M. Sangin, and L. E.
Nacke, “Games user research: practice, methods, and applications,” in
CHI Extended Abstracts. ACM, 2013, pp. 3219–3222.

[21] D. Wreden and W. Pugh, “The stanley parable,” Galactic Cafe, 2013.
[22] V. Breault, S. Ouellet, and J. Davies, “Let CONAN tell you a story:

Procedural quest generation,” CoRR, vol. abs/1808.06217, 2018.
[23] J. R. Meehan, “Tale-spin, an interactive program that writes stories,” in

IJCAI. William Kaufmann, 1977, pp. 91–98.
[24] R. Swanson and A. S. Gordon, “Say anything: A massively collaborative

open domain story writing companion,” in ICIDS, ser. Lecture Notes in
Computer Science, vol. 5334. Springer, 2008, pp. 32–40.

[25] B. Li, S. Lee-Urban, and M. Riedl, “Crowdsourcing interactive fiction
games,” in FDG. Society for the Advancement of the Science of Digital
Games, 2013, pp. 431–432.

[26] B. Li and M. O. Riedl, “A phone that cures your flu: Generating
imaginary gadgets in fictions with planning and analogies,” in Intelligent
Narrative Technologies, ser. AAAI Workshops. AAAI, 2011.

[27] T. Adams and Z. Adams, “Slaves to armok: God of blood chapter II:
Dwarf fortress,” PC Game. Bay, vol. 12, 2006.

[28] D. J. Lozano-Mejı́a, E. P. Vega-Uribe, and W. Ugarte, “Content-based
image classification for sheet music books recognition,” in 2020 IEEE
Engineering International Research Conference (EIRCON), 2020.

[29] W. Ugarte, P. Boizumault, S. Loudni, B. Crémilleux, and A. Lepailleur,
“Soft constraints for pattern mining,” J. Intell. Inf. Syst., vol. 44, no. 2,
pp. 193–221, 2015.

______________________________________________________PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 117 ----------------------------------------------------------------------------


