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Abstract— This paper proposes a novel approach to an
automatic estimation of three speaker traits from Arabic speech:
gender, emotion, and dialect. After showing promising results on
different text classification tasks, the multi-task learning (MTL)
approach is used in this paper for Arabic speech classification
tasks. The dataset was assembled from six publicly available
datasets. First, The datasets were edited and thoroughly divided
into train, development, and test sets (open to the public), and
a benchmark was set for each task and dataset throughout
the paper. Then, three different networks were explored: Long
Short Term Memory (LSTM), Convolutional Neural Network
(CNN), and Fully-Connected Neural Network (FCNN) on five
different types of features: two raw features (MFCC and MEL)
and three pre-trained vectors (i-vectors, d-vectors, and x-vectors).
LSTM and CNN networks were implemented using raw features:
MFCC and MEL, wher FCNN was explored on the pre-trained
vectors while varying the hyper-parameters of these networks
to obtain the best results for each dataset and task. MTL was
evaluated against the single task learning (STL) approach for the
three tasks and six datasets, in which the MTL and pre-trained
vectors almost constantly outperformed STL. All the data and
pre-trained models used in this paper are available and can be
acquired by the public.

I. INTRODUCTION

Speech is the basic form of human-to-human commu-

nication. Its signals hold valuable information about the

speaker’s identity, as they can convey the speaker’s age,

gender, emotional state, dialect, and other characteristics.

Therefore, automatic detection of the speaker’s features can

inevitably enhance and affect various fields and has a wide

range of applications, including, but not limited to, medical,

commercial, forensics, and other real-world applications that

involve human-machine interaction scenarios. Thus, intensive

research endeavors recently started focusing on estimating and

extracting important traits of speakers solely from speech.

The work presented in this paper concentrates on classifying

the speaker’s gender, dialect, and emotional tone. In most

human-machine interactions, it is necessary that the gender of

the speaker or user to be known. Emotion, on the other hand, is

a fundamental factor in any human-to-human communication.

The speaker’s voice pitch, intonation, and rate, they all affect

the emotions perceived by the listener and hence can change

the semantics of the utterance, which in turn makes installing

an effective emotion recognition system in human-machine in-

teraction of great benefit. Moreover, recognizing the dialect of

the speaker simplifies speech-related tasks such as Automatic

Speech Recognition (ASR), which makes the task of dialect

identification an important part of speech recognition systems.

The approach presented in this paper; Multi-task learning, has

not been used to detect these traits of speakers from Arabic

speech or any language in any previous work.
Although voice signals are mixed signals from which

multiple features can be extracted simultaneously, until now,

the majority of the voice-related recognition tasks pay more

attention to the identification of a single feature from any

voice utterance [1]. By contrast, few recognition systems can

identify multiple features such as the speaker’s gender and

emotion simultaneously [2], [3]. The availability of speech

recognition systems drastically decreases in the case of the

Arabic language in line with the deficiency of available

datasets.
In this paper, a novel multi-task learning framework is 

proposed for the detection of gender, emotion, and dialect 
simultaneously from Arabic speech, while also exploring vari-

ous feature extraction methods and speech utterance modeling 
techniques. The dataset used to train and test the models were 
assembled and collected from existing datasets that can be 
acquired by the public. The division of datasets and their 
results can be used as a benchmark for future work (https://
github.com/mawdoo3/sparta-benchmark). Finally, the method 
proposed in this paper outperforms the best result recorded in 
the literature on the tasks of one of the datasets. These tasks 
were selected as they help call centers and other industries to 
recognize their audience and the demand on these tasks are 
increasing.

The rest of the paper is structured as follows: section II

presents related work in this area. Section III describes the

collected datasets. Section IV demonstrates various feature ex-

traction methods. The proposed method for learning multi-task

classification is described in section V. Section VI presents

the results obtained from the conducted experiments. Finally,

section VII concludes the work presented in the paper.

II. RELATED WORK

The detection and estimation of the features and speaker’s

traits from speech have been a challenge for researchers and

industries since the emergence of speech recognition [4],

[5] due to multiple factors, including, but not limited to:

background noise, different accents, and speaker dependence.

However, research endeavors were able to propose alternative

solutions and techniques to tackle this challenge.

§Equal contribution
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A. Speaker Profiling

Researchers followed different approaches and explored

various techniques for different speech recognition and de-

tection tasks such as ASR, gender, emotion, and dialect

detection [6], [7]. Previous work started with the use of raw

and non-linguistic features such as Mel-Frequency Cepstral

Coefficients (MFCCs), Linear Prediction Cepstral Coefficients

(LPCCs) [1], energy and pitch, and building classifiers to

estimate the speaker’s traits from these features. Other work

in the literature focused on improving utterance modeling in

low dimensional vectors such as i-vector [8]–[10], x-vector

[11], and d-vector [12]. These utterance modeling techniques

showed significant enhancements in speaker verification and

diarization tasks, hence researchers started to use them in

speech classification tasks. The aforementioned features will

be discussed in more detail later in this paper. Other vari-

ous classifiers were also explored: Gaussian Mixture Models

(GMM), Hidden Markov Models (HMM), Support Vector Ma-

chines (SVM), Neural Networks, and other hybrid classifiers

or ensembles [13].

B. Arabic Speaker Profiling

A lack of available Arabic speech corpora for different

speech recognition tasks, and with only a few efforts reported

in the attempt of Arabic speech recognition in comparison with

other global languages, alongside the fact that Arabic is a very

phonetically rich language and significantly differs between

dialects [14], [15]. All the mentioned facts acclimatize the

challenge of speech recognition and detection tasks for the

Arabic language. There have been some attempts for speech

classification tasks either by building labeled speech corpora or

by implementing and proposing classifiers for gender, emotion,

dialect, or other detection tasks [13], [16], [17]. Examples of

open-source data for Arabic Speech are Aljazeera that can be

used for ASR, Qatar Computation, and Research Foundation

Dialect Corpus. Other speech corpora can be acquired such as

King Saud University speech corpus and emotion corpus.

The natural language processing (NLP) community has

aggregated dialectal Arabic into five regional language groups:

Egyptian (EGY), North African (NOR), Gulf or Arabian

Peninsula (GLF), Levantine (LAV), and Modern Standard

Arabic (MSA) [16]. The task of Arabic dialect detection

solely from speech has been investigated by utilizing multiple

approaches. Authors in [16] used SVM classifiers on top

of i-vector-based utterances for the task of dialect detection.

While other work in literature followed the approach of

language identification [9], [16]. However, there have not been

any reported attempts for Arabic dialect identification using

multitask learning.

There are several categorizations for emotion in NLP. The

most famous is Ekman’s categorization [18], which has the fol-

lowing categories: anger, disgust, fear, happiness, sadness, and

surprise. However, in this paper, the emotions are categorized

following [19]’s categorization: anger, surprise, happiness,

sadness, questioning, and neutral. Emotion detection from

Arabic speech has been explored in previous work as in [2],

[13], where authors used multiple well-known classification

methods and ensembles on raw features such as MFCC and

pitch. Gender detection is an easier task in comparison with

emotion and dialect detection in most languages including

Arabic. The work in the literature performed well by building

simple classifiers on raw features as in [13].

C. Multi-task Speaker Profiling

Multi-task learning is generally applied by sharing some

hidden layers between all tasks while keeping several task-

specific hidden and output layers, each with a loss function

task [20], [21]. Researchers started scratching the surface in

exploring multi-task learning for speech recognition tasks after

its successful utilization in text-based classification tasks. It

has first been applied to enhance the robustness and phoneme

recognition for ASR systems [22]. However, this paradigm

application has been extended to speech classification tasks.

In [3], authors used multi-task learning for estimating age,

height, weight, and smoking habits of speakers, using utterance

modeling techniques and other classifiers. Researchers in [2]

proposed a multi-task learning approach to simultaneously

estimate speaker identity and the other two traits of the

speaker, specifically, emotion and gender from Arabic speech.

This paper proposes the use of a multi-task learning

paradigm to simultaneously estimate the gender, dialect, and

emotion of the speaker, which slightly outperformed single

task classifiers on the three aforementioned tasks. All the

datasets and pre-trained models assembled, edited, and used in

this work are available to the public (either as open source or

can be acquired). Also, various utterance modeling techniques,

features, and network architectures are explored throughout the

experiments and are reported in this paper. Finally, the code

used to pre-process and prepare the data is available to future

researchers.

III. DATASETS

This section briefly describes the Arabic Speech datasets

collected from the literature. The datasets were collected

for emotion, dialect, and gender recognition tasks. It is

worth mentioning that for this research, only datasets that are

either open-source or can be acquired by the public were used.

Qatar Computing Research Institute (QCRI) Arabic
dialect detection data: The training corpus was collected

from the Broadcast News domain in four Arabic dialects:

Egyptian, North African, Gulf, Levant, and Modern Standard

Arabic (MSA) [16]. The recordings were segmented to avoid

speaker overlap, and any non-speech parts such as music and

background noise were removed. The speech corpus consists

of 15,000 utterances, with around 300 utterances for each

dialect, and another 1,500 utterances as a development set.

King Saud University Emotions (KSUEmotion) Corpus:
This speech corpus contains 16 different sentences spoken

with 6 distinct emotions: Neutral, happy, sad, angry, surprised,

and questioning [19]. These 16 sentences are written in MSA
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and spoken by 23 different speakers from Syria, Yemen,

and Saudi Arabia. 10 of these speakers are male while the

other 13 are female, which makes this data suitable for both

emotion detection and gender detection tasks. This dataset has

3,280 utterances divided equally between genders, while each

emotion category has 650 utterances except for questioning

and anger having 320 utterances each.

Arabic Natural Audio Dataset (ANAD): This Arabic

speech corpus was developed to recognize 3 types of emotions

from Arabic speech: Happy, angry, and surprised [23]. Eight

videos of live calls from online Arabic talk shows were

downloaded and pre-processed by dividing the calls into

turns: callers and receivers, and then silences, laughs, and

noisy segments were removed. Finally, the utterances were

labeled into happy, angry, and sad by 18 different Arabic

listeners. However, while conducting the experiments, it was

found that the duration of each segment was not long enough.

To solve this, each segment was changed to have at least 3

seconds, and any silences were trimmed. The corpus after the

new segmentation consists of 475 recordings.

Spoken Arabic Regional Archive (SARA): The

contributors of this dataset collected from episodes and films

published on YouTube played by native speakers with three

different Arabic dialects and accents: Egyptian, the Arabian

Peninsula dialect and Levantine dialect [24]. The dataset

samples vary in length from 3 to 7 seconds in order to verify

the minimum time required to detect the speaker’s dialect.

This corpus consists of 3,480 voice recordings divided evenly

between the three dialects.

Multi Dialect Arabic Speech (MDAS): This corpus was

designed to recognize three dialects along with Modern

Standard Arabic (MSA). These dialects are Levant, Gulf,

and Egyptian [25]. The recordings were conducted with the

consent of 52 participants. The recordings’ duration totaled

around 32 hours. After the segmentation stage, 67,132 speech

files were obtained.

King Saud University (KSU): King Saud University

Arabic Speech Database was developed by Speech Group

(SG) at King Saud University and consists of 590 hours

of recorded Arabic speech from 269 males and females

speakers [26]. The corpus was designed principally for

speaker recognition research and other applications. However,

in this research, it is used for gender detection. Only 49

hours were taken from the original corpus, which accounts

for 9,050 utterances spoken by 350 different speakers.

All these datasets were aggregated together and then di-

vided into train, development, and test sets while obeying

to a couple of restrictions: (i) there should be no speaker

overlap between the train, development, and test sets, (ii) each

class of each dataset is almost divided between train(80%),

development(10%) and test(10%) sets. Following these rules

implies that the entire dataset will be divided with the same

percentages. When abiding with these restrictions, it is almost

impossible to get a perfect split because each speaker has

several utterances labeled with multiple classes. Choosing the

set for a speaker could be optimal for one class, but not the

other. A dataset split using this format can be reduced into an

integer programming problem. Table I shows the distribution

of each class in each set.

IV. FEATURE EXTRACTION

This section briefly describes the features used to train

the network. Five types of features are used in this paper:

MFCC, MEL, i-vector, d-vector, and x-vector. They are briefly

described below. It is worth mentioning that i-vector, d-vector,

and x-vector extracted or trained during the experiments were

either trained on data that is available to the public or extracted

from available pre-trained models. Regarding the specification

of the speech files, they were converted to the WAV file type,

with a 16k sampling rate, mono-channel, and 16-bit precision.

A. Mel-spectrogram (Mel) Extraction

Mel-spectrogram and MFCC are common methods for fea-

ture extraction from speech. A speech signal is first segmented

into frames, each with a length between 20 to 40 ms to get

a stationary signal. The Discrete Fourier Transform (DFT)

is calculated for each frame in order to calculate the power

density. Then, the frequency response calculated from DFT

is passed through triangular band-pass filters to smoothen the

energy, which is then finally converted to the Mel-scale. In

this paper, parameter selection follows [11] where frames are

25 ms each. FFT size is 1024, and the number of filters is 24.

B. Mel-Frequency Cepstral Coefficients (MFCC) Extraction

Previously, the steps to compute filter banks energies in

a log-spaced frequency domain were discussed, which are

known as Mel-spectrogram features. These steps were orig-

inally motivated by the way humans perceive audio. An addi-

tional step of passing the computed log-filter banks energies

is through a Discrete Cosine Transform (DCT). Using DCT

will de-correlate the filter banks energies and transform the

frequency domain into time-like domain features. A L = 14
mel-scaled cepstral coefficients were calculated. The result

coefficients are called Mel-Frequency Cepstral Coefficients

(MFCC).

C. I-Vector Extraction

The need to represent speech utterances in a low dimen-

sional, fixed-length vector regardless of the utterance length

led to the emergence of i-vector-based frameworks [8]–[10] .

I-vector captures the long-term characteristics of audio, such

as the speaker’s characteristics or recording device. Originally,

this representation was developed for speaker recognition and

verification, but it is now used in many areas of speech

processing. Also, it has been widely used in the classification

tasks in these papers, including dialect and emotion detection.

In this paper, i-vectors of dimension 400 were trained on
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TABLE I. DISTRIBUTION OF DATASETS

Dataset Gender Dialect Emotion Total
Labels M F MSA LEV GUL NOR EGY NEU SAD HAP SUR ANG QUES TOT

Train Set
KSU 1,360 1,357 0 0 0 0 0 544 542 544 544 288 255 5,434
ANAD 0 0 0 0 0 0 0 0 0 122 33 210 0 365
QCRI 0 0 1,998 2,807 2,586 2,885 2,860 0 0 0 0 0 0 13,136
SARA 1,691 1,342 0 949 961 0 1,123 0 0 0 0 0 0 6,066
MDAS 0 0 12,910 7,746 12,910 0 20,655 0 0 0 0 0 0 54,221
KING 3,887 3,374 0 0 0 0 0 0 0 0 0 0 0 7,261
Total 6,938 6,073 14,908 11,502 16,457 2,885 24,638 544 542 666 577 498 255 86,483

Dev Set
KSU 200 80 0 0 0 0 0 56 56 56 56 24 32 560
ANAD 0 0 0 0 0 0 0 0 0 19 4 32 0 55
QCRI 0 0 221 311 287 320 317 0 0 0 0 0 0 1,456
SARA 224 204 0 146 125 0 157 0 0 0 0 0 0 856
MDAS 0 0 1,291 1,291 1,290 0 2,582 0 0 0 0 0 0 6,454
KING 482 410 0 0 0 0 0 0 0 0 0 0 0 892
Total 906 694 1,512 1,748 1,702 320 3,056 56 56 75 60 56 32 10,273

Test Set
KSU 79 200 0 0 0 0 0 56 55 56 56 24 32 558
ANAD 0 0 0 0 0 0 0 0 0 19 4 32 0 55
QCRI 0 0 283 348 265 355 315 0 0 0 0 0 0 1566
SARA 187 191 0 149 144 0 85 0 0 0 0 0 0 756
MDAS 0 0 1,291 1,291 1,291 0 2,582 0 0 0 0 0 0 6455
KING 478 419 0 0 0 0 0 0 0 0 0 0 0 897
Total 744 810 1,574 1,788 1700 355 2,982 56 55 75 60 56 32 10,287

the dataset mentioned in the previous section. I-vector is

considered to be the first generation of low dimensional fixed-

length vector representations of speech, as it is based on the

factor analysis on Gaussian Mixture Model (GMM) mean

supervectors and the Non-negative Factor Analysis (NFA)

framework, which is based on a constrained factor analysis

on GMM weights.

D. D-Vector Extraction
The d-vector features were extracted from a pre-trained

network that had been trained on a text-independent speaker

verification task using a large amount of data [12], [27]. The

network input is 40-channel log-Mel spectrograms of a WAV

of arbitrary length, passed to a stack of 3 LSTM layers of 768

cells, each followed by a projection to 256 dimensions. The

final embedding is created by L2-normalizing the output of

the top layer at the final frame. The output is an embedding

vector of length 256 known as a d-vector.

E. X-Vector Extraction
X-vectors are fixed-dimensional embeddings extracted from

a network trained on a speaker verification task [11]. Embed-

dings of this type need substantial amounts of data, which

called for the need to augment the data by adding noise and

reverberations as an inexpensive way to multiply the training

data. Furthermore, it was found that x-vector benefited more

from the augmentation techniques when compared to i-vector

and performed better in speaker verification tasks. In this

paper, x-vectors were extracted from a pre-trained model on

large data.

All these features were pre-computed and stored into sep-

arate files, each containing the feature type for audio files in

all datasets. This step was performed for two reasons: (i) to

make the training process fast and efficient, (ii) to remove

any indeterministic nature that could exhibit some of these

extraction methods. We refrain from disclosing those files due

to license agreements for some of the datasets which forbid

redistribution.

V. METHOD

This section describes the multi-task learning networks

implemented, trained, and their combinations. It also describes

the tuned hyper-parameters and the training setup of the

experiments.

A. Network Architecture

There are many approaches to build a network that tack-les 
the problem of multi-task speech classification. In our 
research, machine learning blocks that can be utilized in com-

bination with specific input features to formulate an end-to-end 
prediction model are identified and briefly described. Fig. 1 
illustrates the building blocks of the SPARTA network. The 
illustration does not represent a network, but a framework on 
which components can be connected to create a network. 
These building blocks are grouped into 3 main sections:

1) Input Layer: This layer was designed to extract fea-

ture representations from an utterance signal. These

features, as described in the previous section, are ei-

ther fixed-size learned feature extractions using methods
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Fig. 1. Building blocks of SPARTA framework

such as i-vector, d-vector, and x-vector or dynamic-

size frequency cepstrum representations such as MFCC

and MEL. Given that fixed-size features learn different

representations, concatenating these vectors could enrich

the feature space. All possible permutations of vectors

are generated: id-vector, ix-vector, dx-vector, and idx-

vector. However, since MFCC is a compressed version

of MEL, they were not concatenated, as having both

would produce redundant information.

2) Shared Layers: These layers consume the output of

the previous layer and transform it into an intermediate

representation that captures more information to help

classify the selected tasks. The type of shared layer

chosen is dependent on the selected features. Fully

connected layers are chosen to consume dense and fixed

input representations (i, d, x vectors, and their com-

binations), while either convolutional layers or LSTM

are chosen for variable-size inputs (MFCC and MEL).

Certain combinations were omitted, such as consuming

a fixed-size vector with an LSTM network which is

designed to consume sequential variable length input.

It is worth noting that the weights of these layers are

tweaked by the error propagated from all tasks.

3) Task Layers: These layers are composed of several

sub-networks where each sub-network consumes output

from the shared layers and computes predictions for its

assigned task. Each sub-network is built from a con-

figurable number of fully connected layers, and ending

with a softmax layer. Cross entropy loss is used across

all tasks. Note that parameters are not shared between

tasks, hence the back-propagation algorithm only tweaks

one sub-network per batch. When performing single-task

learning, only one prediction layer is active while the

other two are disabled.

There are eleven possible variations available to connect the

aforementioned blocks to build a multi-task speech classifica-

tion model. All these models were built and trained with the

dataset described in section III in both MLT and STL format.

B. Experimental Setup

As mentioned in the previous section, three network archi-

tectures were implemented followed by task-specific networks.

The hyper-parameters of the networks were explored to obtain

the best possible combination of parameters that results in

the best accuracy and F1 score. Table II presents each hyper-

parameter and their ranges.

In addition to exploring the network hyper-parameters,

different training parameters and setups were investigated,

including the optimizer, the learning rate and its decay, and

the number of epochs. Furthermore, in order to balance the

number of utterances for each task, a multiplication factor

for the utterances of a selected task was added to ensure the

balance of the datasets for all the tasks. The training setup has

two variations: (i) train one task at a time wherein each epoch

the model finishes training on one task then moves to the next,

or (ii) shuffled where each batch is selected at random from

any task.

A combination of manual and grid search algorithm [28]

was applied to explore all tuning parameters. The model was

evaluated against the dev set after each epoch in each training

process. The best epoch’s weights were stored, and the final

scores were computed by evaluating the best model on the test

set as seen in table III.

Finally, it is worth mentioning that the networks described

in this section were implemented using the TensorFlow frame-

work [29] and trained on GPUs of type Tesla T4.

VI. RESULTS AND DISCUSSION

To evaluate the multi-task learning paradigm against the

conventional single-task learning for the aforementioned tasks,

several experiments were conducted on the previously de-

scribed networks with different features, while varying the

hyper-parameters of the networks in an attempt to obtain the
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TABLE II. NETWORKS HYPER-PARAMETERS

Network Hyper-parameter Range Network Hyper-parameter Range

CNN

Features MFCC, MEL

LSTM

Features MFCC, MEL
Number of filters [32, 64] Direction Uni/bi- directional

Filter size [3, 4, 5] Hidden nodes [16, 32, 64, 128]
Number of layers [1, 2, 4] Number of layers [1,2,4]

Activation [relu, tanh] Activation [relu, tanh]
Dropout [0, 0.1, 0.2, 0.3] Dropout [0, 0.1, 0.2, 0.3]

Fully Connected

Features i/d/x/id/ix/dx/idx-vector

Task Specific
layers

Hidden nodes [16, 32, 64, 128]
Hidden nodes [16, 32, 64, 128, 256] Number of layers [1,2]

Number of layers [1,2,4] Activation [relu, tanh, sigmoid]
Activation [relu, tanh, sigmoid] Dropout [0, 0.1, 0.2, 0.3, 0.5]
Dropout [0, 0.1, 0.2, 0.3]

best possible results. Also, to create benchmarks for the used

datasets, the results of each dataset separately are reported in

the section.

A. Network Architecture Results

The best results reported for each network and features in 
terms of F1 scores are presented in Table III. From this table 
and throughout the experiments, it is evident that utterance 
modeling techniques such as i-vectors and d-vector outperform 
raw features (MFCC and MEL), especially in dialect and 
emotion detection tasks. This can be explained by the fact 
that these techniques take into consideration phonetic and 
lexical features with only a limited amount of data, unlike raw 
features that require far more hours of speech to capture such 
features on their own. Also, the performance resulting from 
the concatenation of i-vector, d-vector, and x-vector surpasses 
their individual performances, as each one of these captures 
different characteristics since they are trained on different 
and larger datasets. It is noteworthy that the performance 
of d-vector on its own is relatively poor. However, when 
concatenated with i-vector and x-vector the model’s perfor-

mance was boosted as it contains a different information type 
than the others and has been trained on different kinds of 
data. Furthermore, in the case of pre-trained vectors, multi-

task learning outperformed single-task learning in each task. 
However, the difference was more apparent in the emotion and 
dialect detection tasks. To further indicate the importance of 
utterance modeling techniques, in comparison to MFCC and 
MEL, utterance modeling techniques achieved better results 
in the gender detection task. This can be attributed to the 
fact that these techniques were originally designed for speaker 
verification tasks, hence they can recognize the gender of the 
speaker better.

On the other hand, CNN and LSTM networks require more

data to surpass the performance of fully connected networks

with utterance modeling techniques. Also, in the case of CNN

adn LSTM, multi-task learning slightly enhanced the perfor-

mance of the model when compared to single-task learning,

which can be attributed to the fact that the network had more

data and more shared layers, which positively affected that

network’s performance. However, LSTM and CNN performed

less in comparison to other networks, due to the networks

degrading ability to capture learning in proportion to the length

of the sequence.

B. Data Specific Results

Table IV illustrates the F1 score obtained for each dataset 
separately on single-task learning and multi-task learning 
(all datasets combined). This table sets a benchmark for all 
datasets used in this work. It can be noticed that the results of 
multi-task learning almost persistently outperform the single-

task learning for each dataset, especially when using pre-

trained vectors for utterances. The effect of multi-task learning 
enhancement is especially evident in the emotion and dialect 
detection tasks. However, on the gender tasks, the results 
are close between the single task learning and multi-task 
learning. The work in [2] used the KSUEmtotion dataset for 
emotion and gender recognition; the accuracy recorded was 
79.3% for the task of emotion recognition and 98.7% on 
gender detection. The best experiment of the proposed model 
outperformed these results as shown in Table IV.

VII. CONCLUSION AND FUTURE WORK

This paper presents a novel approach that utilizes multi-

task learning for the tasks of gender, emotion, and dialect

detection from Arabic speech. It also explores various pre-

trained vectors, their concatenation, and raw features on differ-

ent networks and implementations. Additionally, it introduces

a new Arabic Speech benchmark collected from publicly

available datasets with code to reproduce the features and pre-

trained vectors.

Throughout the experiments conducted in this paper, the

following can be concluded. First, pre-trained vectors such as

i-vector, d-vector, and x-vector enhance any network’s perfor-

mance on detection tasks and should be further explored and

improved on. Also, similar to text classification tasks, multi-

task learning improves performance on speech classification

and recognition tasks. Therefore, its utilization must be ex-

panded further on speech-related tasks. Moreover, despite the

significant shortage of publicly available corpora for Arabic

speech, speech corpora that can be used for gender, emotion,

and dialect detection tasks are assembled with benchmarks

for each task and dataset. Future work of this paper should
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TABLE III. RESULTS (F1 SCORES) FOR MULTI-TASK AND SINGLE-TASK FOR 
EACH TASK

Network Features
Gender Emotion Dialect Overall

STL MTL STL MTL STL MTL STL MTL

Fully connected

d-vector 99.10 98.58 42.60 55 36.75 37.33 59.48 63.63
i-vector 92.59 93.88 55.9 58.35 46.61 46.67 65.03 66.3
x-vector 98.90 99.61 54.13 54.48 48.61 48.77 67.21 67.62
id-vector 97.10 96.39 62.88 66.47 51.14 53.44 70.34 72.1
ix-vector 99.42 99.48 62.26 61.98 52.33 52.59 71.41 71.35
dx-vector 98.71 99.81 57.14 64.24 52.35 51.07 69.4 71.71
idx-vector 99.10 99.41 66.53 70.16 56.05 58.44 73.89 76.01

CNN
MFCC 96.13 95.54 52.91 51.95 21.19 26.7 56.98 58.08
MEL 97.16 95.54 51.18 51.25 22.74 27.89 57.02 58.22

LSTM
MFCC 96.39 95.49 54.9 57.04 26.8 29.07 59.3 60.53
MEL 94.96 95.12 50.4 57.05 28 27.94 57.78 60.2

TABLE IV. RESULTS (F1 SCORES) FOR MULTI-TASK AND SINGLE-TASK FOR EACH EACH DATASET (G: GENDER, E: EMOTION, D: 
DIALECT)

Model Features
Dataset

KSUEmotion G KSUEmotion E ANAD E SARA G
ST MT ST MT ST MT ST MT

CNN
MFCC 96.5 97.4 50.7 50.35 56.3 54.93 87.8 85.8
MEL 92.9 94.1 50.51 50.13 51.11 50.81 83.8 87.1

LSTM
MFCC 80.1 98.25 51.9 55.53 32.3 44.64 85.2 87.39
MEL 81.4 95.32 46.1 54.79 34.2 44.34 83 84.96

Fully Connected

d-vector 100 100 48.1 52.4 72.1 73.6 94.4 96.8
i-vector 100 100 62.6 66.7 88.1 85.36 79.3 79.5
x-vector 100 100 66.32 69.54 88.8 84.34 94.9 98.4
id-vector 100 100 61.56 64.36 87.1 85.46 86.3 87.5
ix-vector 100 100 73.4 75.4 90.3 91 98.4 97.8
dx-vector 100 100 67 70.3 85.9 83.87 95.4 99.4
idx-vector 100 100 72.34 80.35 91.8 91.6 99.4 97.6

SARA D KSU G MDAS D QCRI D
ST MT ST MT ST MT ST MT

CNN
MFCC 26.6 25.9 98.9 98.8 24.2 23.9 25.8 25.2
MEL 26.1 24.82 99.1 99.2 22.9 25.7 25.4 23.8

LSTM
MFCC 30.4 22.1 98.7 97.87 43.4 27.6 30.6 27.5
MEL 28.8 21.2 98.3 97.13 30.7 25.91 31.0 28.49

Fully Connected

d-vector 40.1 36.32 100 99.6 40.7 38.36 34.7 29.1
i-vector 44.7 44.67 98.6 97.9 47.5 45.68 52.3 50.93
x-vector 38.3 37.93 99.8 100 56.7 53.7 38.5 37.5
id-vector 55.4 50.3 99.6 99.3 55.9 53.21 50.7 50.8
ix-vector 39.9 40.12 99.8 100 60 56.87 49.6 47.3
dx-vector 31.2 30.45 99.8 99.8 55.9 54.3 39.4 36.8
idx-vector 50.4 49.8 99.8 99.88 60.6 70.67 53.6 54.46

include enhancing pre-trained vectors for utterance modeling

by training them on larger Arabic corpus and include available

Arabic ASR data. Furthermore, explore more architectures and

features such as self-attention, TDNN, and filter banks.
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