PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

Influencing Migration Processes by Real-Time Data

Roman Ceresnak
University of Zilina,
Zilina, Slovakia
roman.ceresnak@fri.uniza.sk

Abstract—The current trend of information systems and
informatization moving forward in big steps also influences
database systems. This direction of a data transfer from the
databases with a rigid structure to the systems with a free data
structure created a vast amount of challenges, including
problems with backward compatibility, the inconsistency of data
types or possibly of data editing during the transformation
transfer. As a solution to this problem, we created
MigrationLayer which can manage the structural and data
compatibility between a relational and nonrelational database
which is divided into three modules: The first is module of
transformation, respectively, of the data transfer from the
relational database to the nonrelational database. The second
module is based on the catching of the data during its’
modification which could influence the data entering the system,
and the third module is a module of backward compatibility,
which, based on the data change, evokes a consolidation edit of
the structure and of course, the data. Experiments show that
MigrationLayer can catch the data incoming to the
transformation module in real-time with sufficient effectiveness.
This leads to reduction of the time needed for the modifications
after the whole migration ends. The module of the backward
compatibility effectively helps us to maintain the backward
compatibility between the structures of relational and
nonrelational database.

I. INTRODUCTION

A development of human society influenced many areas of
interest - such as industry, healthcare, transport, and - last but
not least - informatization. With the data growth, it was
necessary to adjust various data storages, which were
considered to be sufficient enough in the previous phases of
data research. A new type of storage space called NoSQL
database was created. These databases use new techniques,
which support parallel processing and data replication in
several nodes to ensure better performance and data availability

[].

In contrast with the relational databases [6], NoSQL
databases process and manage the vast data, which are
characterized by 3V (volume, variability, velocity) [4]. NoSQL
databases are needed for support of various applications, which
need various levels of performance, consistency, availability,
and scalability [1]. For example, social media such as Twitter
and Facebook [14] generate terabytes of daily data exceeding
the relational databases’ processing possibilities. These
applications demand high performance, but they don’t have to
demand strong consistency.

Karol Matiasko
University of Zilina
Zilina, Slovakia
karol.matiasko@fri.uniza.sk

Adam Dudas
Matej Bel University,
Banska Bystrica, Slovakia
adam.dudas@umb.sk

Nowadays, there are various types of NoSQL databases
such as document databases, key-value databases, columns and
graph databases [21]. However, objective which is common in
all of these database types is the use of the data replication for
improvement of efficiency, availability, and scalability of the
data. The majority of NoSQL databases supports the alternative
consistency instead of the database transactions ensuring strong
data consistency. The possible consistency warrants that all
actualizations achieve all replicas after certain delay. This
principle works in specific applications such as social media,
advertisement records, and so on. Some of the user
applications, however, demand strong data consistency. For
example this can mean that the data related to bank account
does not have to be consistent in every data actualization.

Many companies turn to the NoSQL databases and use it to
store and manage data, and existing relational database
applications need to be transformed into NoSQL databases.
However, the data schemes are different between these two
types of databases, which means a steep learning curve for the
users. Besides, the join operation is not as time-efficient in a
NoSQL database as in a SQL database. Due to that, the
conversion of a scheme is essential in an exchange of relational
database for NoSQL database and, similarly, an import of the
data from the relational scheme to NoSQL. Besides, it is crucial
to ensure the high efficiency of the read operation after the
schema conversion. Even if relational databases such as Oracle,
SQL, Server and MySQL are different, they all share the same
relational scheme. Each NoSQL database has its own data
scheme [1].

This paper examines the data migration between
relational database Oracle and a variety of widely used NoSQL
databases (Key-Value, DynamoDB). DynamoDB is being used
in various industries and by various organizations such as
Airbnb, BMW, Nike, Netflix, Samsung, Duolingo, and so on.
Similarly, Oracle is used by PNC Honeywell, Samsung
Electronics, and so on. MongoDB and Oracle follow various
models and principles of the design. The first one of these is the
key-value database model, while the second one is the
relational database.

We designed and implemented a new way of effective
migration of the data from the relational database to the
nonrelational ~database. We emphasize an effective
manipulation with the data entering the process and correct
influencing of the transformed data. This migration mechanism
is influenced by a vast amount of the data, which can occur in
the databases with various characteristics, data types, and
structures of data storage.

ISSN 2305-7254



PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

Novelty of the approach presented in this article can be
described as follows:

e We develop a new framework capable of effective
work with the data incoming into the system and
capability of influencing effectively the grouped data
which have already entered the migration process,

e We design and implement new framework
maintaining the backward compatibility between the
relational and the nonrelational database, not only
regarding the data but also regarding the data
structure,

e  We compare appropriate tools for the change of data
structure, which enters into the processes,

e  We have experimentally verified our framework from
the point of view of efficiency,

e The method reduces the users’ access to the data
modification after the transformation.

The rest of this article is structured as follows:

Section II of this article presents and analyses research
related to the work described in this article. We are focused on
the area of NoSQL databases and transfer of data between SQL
and NoSQL databases. Third section of the article is focused on
description of our own architecture for real-time data catching.
Fourth part of the work contains experimental verification of
the architecture and presents result from these experiments. The
work is closed with the conclusion of the research and potential
future research areas related to the topic of this article.

IL.

A comparison between the relational data models and
nonrelational data models was already stated in many articles
such as [21], [22], [11], [2] or [12]. In these works, the authors
proved what types of operations are a better match for the
database from an efficiency perspective and offer faster
response compared to other types of databases. In the article
[7], the authors analyzed and compared performance of SQL
databases and NoSQL databases with the key-value type. The
experiments in the articles [3] and [17] provided comparison of
traditional database Oracle and database MongoDB.

RELATED WORKS

Based on these comparisons and experiments, the article
[16] provides more detailed results and analysis regarding the
data efficiency than the article [3]. Authors of these research
works identified problems and challenges in the big data
processing with the help of MapReduce. The four main
categories of these problems and challenges are (1) data
storing, (2) big data analysis, (3) online processing, and (4)
security and protection of personal data. Researchers [18]
analyzed migration between various NoSQL databases oriented
on the columns. It was suggested that it represents the data in a
standard format, and it was responsible for the translation of the
source database to the target database. Results presented in the
article [18] are about 10% more effective than those presented
in the article [10].

While comparing two articles ([8] and [20]) focused on the
data transformation problem, we had a chance to see situations
in which researchers use three parts during the migration of the
data from the relational database to the nonrelational. Results

49

of the research presented in the [20] are more effective and
more easily expandable, based on the experiments and possible
data migration, and offers a more general module for future
work opposite work [8].

In many cases, the researchers use Apache Sqoop [19] and
DataX [15] while transferring the data from the relational
database to the nonrelational database. Apache Sqoop is based
on the data transfer from the relational database to Apache
Hadoop. Apache DataX is created on the principle of the data
exchange between heterogeneous data sources.

It is possible to identify two basic contributions while
solving the problem. The first contribution [5] is a framework
for the transfer from SQL to NoSQL with the help of
MapReduce. The principle of this method is based on the
storing of all tables of the relational database to one table in
HBase. The second contribution [16] represents three
guidelines for transforming the relational scheme to HBase
scheme based on data of the HBase model. It expresses the
relationships between their schemes as a file of nested mapping
schemes on the automatic transformation of relational data to
the HBase representation. These three guidelines include a
grouping of the correlated data to column family, addition of
foreign key references if the one side needs the access to the
data on the other side and merger of connected tables of the
data to decrease the number of the foreign keys.

We came across work that deals with a time-oriented
database architecture during our research in the paper [18],
which manages undefined values and proposes a
comprehensive classification of systems on transactions,
accesses, and indices. Since various data types can enter our
system, whether they are structured or unstructured, research
related to the modeling of undefined values is described in the
mentioned work. Furthermore, it covers synchronization
processes using groups of data. The critical components of the
mentioned article are solutions for effective data acquisition
with emphasis on undefined values and states.

In summary, the previous works are focused primarily on
making the reading performance better or on the migration of
the data from NoSQL database in order to get high availability
and scalability. However, they do not provide a sufficiently
effective solution for the incoming data, which can enter during
the migration process which is already running.

111

Research presented in this article is focused on a solving the
situation resulting from neglecting of real-time data catching in
the migration of the data from the relational database to the
nonrelational one. In this process, the data entering the process
during the data transformation run play a significant role - not
only because of the possibility of influencing the data grouping
when the transformation is already happening but mostly
because of the necessary modification of the data in the target
database. As was published in [7], the select operation is not
equally effective in the nonrelational databases as in the
relational databases.

ARCHITECTURE FOR REAL-TIME DATA CATCHING

We created an architecture that makes data catching in the
transformation process possible in real-time. This prevents
additional modification after the data transfer from relational
database Oracle to nonrelational database DynamoDB.




PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

Insert/Update/Delete ‘

~

v

Kinesis

Real-time data

Erisii ng data EMHFS

Fig 1. Design of new architecture for real-time data catching

This architecture consists of two parts:
e  Upper branch (real-time data)
e  Bottom branch (grouped data)

Real-time data are data, which enter the system during the
run of transformation process. This means they are not stored
in the database. However, they are automatically transferred to
the process of transformation. The data operating in database
Oracle for a longer time, for example, several days, months, or
years, are called grouped data. It is necessary to subject these
data to a particular type of data change. The data had a
structure, and respectively, they were stored in the relational
database. They have to be changed for the efficiency so that
they could be manipulated effectively. Since there is
considerable amount of the nonrelational databases, mentioned
structure could suit the database type for which the
transformation process was specific.

Various tools which fulfill a request for the significant
modification of the data structures based on defined rules for
the data modification process to another type can be used —
some examples of these tools are Apache Flink, Spark, Samza
Hadoop or Hive.

A. Uppear Branch

It is necessary to secure a state in which new instructions -
such as insert, update, and deletion of the data - enter the
system during the run of transformation process.

The values we are recording are for table customers,
presented in the Fig. 2. The table consists of four INT type
attributes, and a primary key is defined as a composite primary
key, based on attributes customer _id, order_id, and product id.

| customer ¥
customer_id INT
> ordar_id INT
» praduct_id INT
» guantity INT
>

Fig 2. Customer data table

_!__,.u .

50

Update/Delete

Glie save_item()

— put item[]

DynamoDB

The upper branch serves as was mentioned above. The data
entering the system are caught by the Amazon Kinesis tool.
Amazon Kinesis makes catching, processing, and analyzing the
data streams in real-time more accessible, helping us in getting
the necessary information and quickly react to them. In the
Oracle configuration we set up binlong formatto ROW to
catch the transaction with module binlogstreamreader. We also
set up the parameter value log_bin to allow binlog. A script for
these settings looks as follow:

[oracleld]

secure-file-priv = ""
Log_bin=/data/binlog/binlog
binlog_format=ROW

server-id =

tmpdir=/data/tmp

We created this script because of the data catching from
relational database Oracle that catches the transactions and
sends them directly to service Amazon Kinesis Streams. The
script that needed to perform this process is provided at the
address https.//github.com/romanceresnak/real-time-data-
capture/blob/master/kinesis.py.

INSERT INTO customer

(customer_id, order_id, product_id, quantity)

VALUES (5000, 2345,234,356); (1)
UPDATE customer

SET quantity = 55

WHERE customer_id = (2)

DELETE customer WHERE order_id = (3)

The given script represents illustrative JSON data generated
by a python script. An attribute type defines the transactions
recorded in a JSON type of record:




PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

Oracle{normalized model)

1 1 1 1 S
1 1 2 3 S
1 1 100 3 >
2 1 4 5 —
2 1 5 6 S

Fig 3. Mapping of data from Oracle DB to the DynamoDB

o WriteRowsEvent(INSERT)
o UpdateRowsEvent(UPDATE)
e DeleteRowsEvent(DELETE)

Here is an illustration of the data in JSON format.

{"table": "customer", "row": {"values": {"order_id": "1",
"quantity": 100, ‘"customer_id": "74187", ‘"product_id":
"1"}}, "type": "WriteRowsEvent", "schema": "test"}
{"table": "customer"”, "row": {"before_values":
{"order_1id": "1", "quantity": 1, "customer_1id": "74187",
"product_id": "1"}, "after_values": {"order_id": "1",
"quantity": 99, ‘"customer_id": "74187", ‘"product_id":
"1"}}, "type": "UpdateRowsEvent"”, "schema": "test"}
{"table”: “customer"”, "row": {"values": {"order_id":
"100", "quantity”: 1, "customer_1id": "74187",
"product_1id": "1"}}, "type": "DeleteRowsEvent"”, "schema":
"test"}

B. Bottom Branch

Data can enter the system in two possible ways. The first
way is the creation of an export database that already exists in
Amazon background. The export of every database in the
Amazon background creates the data export to the S3 bucket
in CSV format. The second way is creating relational database
export on any device and, subsequently, the uploading of the
file in CSV format to the Amazon S3 bucket.

SELECT * FROM customer WHERE <condition_1>

INTO OUTFILE '/data/export/customer/1.csv’ FIELDS
TERMINATED BY ',' ESCAPED BY '\\' LINES TERMINATED BY
"\n';

SELECT * FROM customer WHERE <condition_2>

INTO OUTFILE '/data/export/customer/2.csv’ FIELDS
TERMINATED BY ', ' ESCAPED BY '\\' LINES TERMINATED BY
“\n';

SELECT * FROM customer WHERE <condition_n>

INTO OUTFILE '/data/export/customer/n.csv’ FIELDS
TERMINATED BY ', ' ESCAPED BY '\\' LINES TERMINATED BY
\n*

Amazon AWS S3 sync was used for this purpose. This tool
works internally with a function of multipart uploading of S3.
A pattern matching can exclude or include specific files. In

DynamoDB (Schema-less model)

{{hashkey:{customer_id:"1"}},{{sortkey:{order_id:"1"}},{1:1},{2:3},{100:3}

51

{{hashkey:{customer_id:"2"}},{{sortkey:{order_id:"1"}},{4:5},{6:6}

such case, when the synchronization fails during the
processing, we do not have to transmit the same files again.
This sync tool compares the size and time of editing of the
files between the local versions and S3 versions and
synchronizes only the local files, whose size and editing time
are different from S3 files. The instructions look as follow:

aws s3 sync /data/export/purchase/
s3://<romanceresnak.aws >/purchase/

aws s3 sync /data/export/<romanceresnak/result>/ s3://<
romanceresnak.aws >/<romanceresnak/order>/

aws s3 sync /data/export/<romanceresnak/result>/ s3://<
romanceresnak.aws >/<romanceresnak/order>/

IV. COMPARISON OF OBJECT-MAPPING METHODS

This section of the presented article is concerned with the
experiment related to a comparison of methods belonging to
most popular object-mapping methods in big data. We
compare how the change of the framework will influence the
velocity of the data change in the transformation process. We
chose two tools and procedures for these purposes:

e  Apache Hive method with external table
e  MapReduce method

1) Apache Hive with external table

We created the external table Hive opposite the data on S3
and inserted it to another extern table opposite table
DynamoDB, with characteristic
org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandle
r. In the following sample code, we assume that Hive table for
DynamoDB was created as an addition to the table customer
as the column of the type ARRAY <STRING>. Columns
product_id and quantity id are aggregated and grouped
according to customer_id and order id, and inserted to the
table customer with columns Collect UDAF and Brickhouse.
A code providing the modification can be seen on this
address https://github.com/romanceresnak/real-time-data-
capture/blob/master/HiveMapper.txt .

Unfortunately, data types MAP, LIST, BOOLEAN, and
NULL are not supported by the DynamoDBStorageHandler,
so data type ARRAY String was chosen. The column of
ARRAY type in Hive is comparable to the attribute of type
StringSet in DynamoDB. The sample code mostly shows how
Brickhouse works only for the data which are going to be
aggregated in such a way, that more values of attributes will




PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

be aggregated to one attribute of type StringSet in
DynamoDB.

2)  Apache MapReduce

The role of mapper is to read every record from input data
in S3 and map the input pairs key-value to the middle pairs
key-value. It divides the source data from S3 into two parts
(key and value part) separated by the sign TAB. The mappers’
data are organized according to their mediator key
(customer_id and order_id) and are sent to the reduction part
of computation. The records are inserted into DynamoDB in a
reduced step.

We attach the script written in programming language
Python with the name mapper.py:

#!/usr/bin/env python.
import sys

# get all Llines from stdin
for Lline in sys.stdin:
Line = line.strip()
cols = Lline.split(',")
# divide source data into Key and attribute part.

# example output : “1,1 1,10”

print '%s,%s\t%s,%s' %
(cols[@],cols[1],cols[2],cols[3] )

Generally, the role of reduction is to accept an output
created after the processing of the mapping (coupled key/list
of values) and then to perform the operation of reduction on
the list of values according to every key.

In this case, the reduction is written in the Python language
and it is based on stream: STDIN/STDOUT/Hadoop. The
reducer accepts the data organized and ordered by the
mediator key set in the mapper, in the identification customer
and order (columns (0), columns (1)), and stores all attributes
for the chosen key in dictionary item data. The item data
dictionary attributes are inserted to or deleted from
DynamoDB whenever a new mediator key comes from the
server sys_stdin. The script we used can be found at the
following address: https://github.com/romanceresnak/real-
time-data-capture/blob/master/MapReduce.py, marked in the
program as reducer.py.

We started the MapReduce task after writing the scripts,
which connected local user to the main EMR node and started
streaming Hadoop tasks. A location or name of file Hadoop-
streaming.jar can be changed, depending on the version of
EMR used. Particular messages occurring during the run of
reducer are stored in a directory marked as choice-output. The
values of hash key and the keys of the range are also recorded
to find out which data cause exceptions or errors.

$ hadoop fs -rm -r
s3://<transformation>/<nosql/result>

$ hadoop jar /usr/Llib/hadoop-mapreduce/hadoop-
streaming.jar \

-input s3://< transformation
>/<romanceresnak/input> -output s3://
<romanceresnak/result>/<romanceresnak/output>\

-file /<transformation>/mapper.py -mapper /<
transformation >/mapper.py \

-file /< transformation >/reducer.py -reducer /<
transformation >/reducer.py

3) Connection of the branches

The connection of the branches always happens after the
successful data modification in the upper and bottom branches
of proposed model. This data transformation can last anywhere
from couple of minutes to several hours and any amount of
data updates, deletes and inserts can be enter the system during
this modification.

All new data connected with operation insert are
automatically stored to S3 with name transformation to the
new.txt folder. After finishing the transformations of the
grouped data, we used the script written in the programming
language Python that makes it possible to connect all, which
are result of transformations in the bottom branch - that is, the
branch with the grouped data - and upper branch with the data
entering the system during the transformation process. The
script we created for this purpose is at the following address:
https://github.com/romanceresnak/real-time-data-
capture/blob/master/merge.py.

Amazon Glue will connect all the files into one sizable file
called merge.txt and subsequently, data updates are done with
the use of Amazon Athena, which is connected with the
Lambda function. Amazon Athena compares the values
situated in the queue of Lambda function with the values in
file with the use of same principle as a relational database. If
the operation update is in the queue of Lambda function, it is
also situated in the file, this change is made by the
management of the queue, a message from the front is deleted,
and it continues like this until the queue is empty. After the
emptying of the queue, the automatic storing of the values to
the database DynamoDB follows.

We use the following settings for the server configuration:

TABLE I. SERVER CONFIGURATION

Oracle Instance m4.2xlarge
master : 1x
m3.xlarge

EMR cluster
core : 2x
m4.4xlarge
DynamoDB 2000 write capacity unit

We used following sizes of datasets:

TABLE II. TABLE OF DATA

1,000,000
Number of records 500,000,000

1,000,000,000

49 GB
Database file size (.lbc) 52,6 GB

108,4 GB

DynamoDB 2000 write capacity unit




PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

We used our architecture and measured time of data
modification. In the Table III, we present times for export to
CSV file, upload to S3 (synchronisation) and import of the
data to DynamoDB itself.

TABLE III. TABLE OF PERFORMANCE

32 sec
Export to CSV 4 min and 30 sec

6 min and 50 sec

22 sec
Upload to S3 (sync) 1 min and 48 sec

3 min and 30 sec

Import to DynamoDB -

During the storing of the data, it is not possible to modify
this data further. Therefore, the values entering the system
during process of data storing are processed in an individual
branch to DynamoDB. We created another script in Python to
perform the mentioned operation, helping us catch the
mentioned data. The script is located at the following
address: https://github.com/romanceresnak/real-time-data-
capture/blob/master/lambda.py.

4)  Experiments on proposed model

It is essential to test the correctness of velocity operation
and reliability of our newly created architecture. We designed
following experiments for the verification of the model:

a) Finding out how the use of Apache influences the
velocity of the process with an increasing amount of
the data,

b) Finding out the advantages of the newly designed and
implemented model with data modification after the
transformation with an increasing amount of the data.

A. Comparison of computation time with the use of
Apache MapReduce and Apache Hive

Comparison of computation time

1200
1000
600
200
0 .

1000 000 500 000 000 100 000 000 000
records records records

Duration of process in seconds
)
8
S

Fig 4. Comparison of computation time with the use of MapReduce (blue,
left) and Hive (orange, right)

The values measured in this experiment will be used as
agent in the setting of direction of our future research. As seen
in Fig. 4 first pair of columns on the left, we measured
computational time of 54 seconds for transformation with the
use of MapReduce and 57 seconds with the use of Apache
Hive. The difference between these values is related to the

necessity of retyping which is needed during the data structure
change from relational database Oracle to nonrelational
database DynamoDB. Even with as small amount of the data as
1 000 000 records are, a difference can be observed.

When we used relational database with 500 000 000
records, the difference of computational time of this
transformation was significant. As is presented in the middle
pair of columns of Figure 4, the difference between using
MapReduce and Hive was about 40 seconds in favor of
MapReduce system. We do not assume that Apache Hive will
become more effective with the increasing number of records.

Nevertheless, we experimented with our premise — we used
dataset of 100 000 000 000 records and used the proposed
transformation process on this dataset. We got the assumed
conclusion — even for 100 000 000 000 records, time of
computation was significantly higher with the use of Hive than
while using MapReduce. The result of the third experiment
shows, that method MapReduce was more effective (with time
difference of approximately 124 seconds). This clearly shows
that the tool fit for our further experimentation is system
number 1 — Apache MapReduce, respectively Apache Hadoop.
Even though MapReduce seems more effective in the presented
case, it may not apply to every type of data. The results could
be diametrically different in situations using the data types
supported by apache Hive.
data

B.  Advantages of proposed model  with

modification after the transformation

Table IV presents comparison of experiments described in
the section IV with and without the use of our proposed
architecture while using the Apache Hadoop system.

TABLE IV. COMPARISON OF EXPERIMENTS WITH AND
WITHOUT PROPOSED ARCHITECTURE WHILE USING APACHE HADOOP

Experim Number of Using Without our Number of
ent records our approach operations
architect
ure
(1) 1,000,000 1 min 50 sec 3
@ 10,000,000 6 min 6““2§fd10 18
. 13 min and
3) 500,000,000 12 min 36
48 sec
@) 1000,000,000 | 20min | 22Minand 60
24 sec

We used following operations for needs of testing:

UPDATE customer SET quantity = 55
WHERE customer_1id = 55;
DELETE customer WHERE order_id = 50;

INSERT INTO customer (customer_id, order_id,
product_id, quantity)

VALUES (5000, 2345, 234, 356);

The values of attributes quantity, customer_id, and order id
were random based on the size of data which entered
transformation process. These operations were sent to the
database in the intervals of 20 seconds. In the Table IV, the




PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

column on the far right shows the number of operations
entering the process during the transformation.

While comparing the values in the table 4, we can state that
in the first experiment (1) our proposed architecture was not
significant addition from the velocity perspective compared to
the process where modifications of data are already done in the
database. In this case, the number of operations entering the
process is equal to 3, which is not sufficiently effective from
the point of view of file connecting with the use of grouped
data and new data and following editing of the file.

The efficiency of our solution manifests itself more
significantly with the increasing number of the data entering
the process (experiment (2), (3), and (4), and we can state that
these results point to the fact that our method is sufficient to
use because of the higher efficiency. It is possible to relieve the
user with the suggested architecture from performing the
additional edits after the end of the transformation process.

VII. CONCLUSION

The majority of methods which transform data from the
relational database to the nonrelational database is focused on
the data already situated in the system. These methods focus
on designing the new way of effectively de-normalizing the
data to get these data transferred to the target database more
easily. This article presents different point of view and shows
that during the data transformation, catching the data in real-
time is a significant part since it prevents necessity of data
modification after the transformation process. Even if this
architecture change brings additional costs, it significantly
influences the time of computation needed for data editing in
the target database. Thus, it makes the whole process of the
data transformation more effective. We used this methodology
on three simple transfers, and we showed that with the
increasing number of data entering the system, our method
becomes more and more effective. It’s important that the data,
which were influenced by the data entering the system, did not
cause any data loss. This aspect makes our proposed method
unique in comparison to other works e.g. [18].

According to our experiences, making of data rules from
the original structure of data and query templates takes only a
few minutes. On the other hand, power needed for execution
of the actual implementation of the required changes depends
mainly on the computational units provided, in which case
architecture, which enables automatic scaling of computational
units helps.

The data catching uses the fact that the data entering the
process influence the data grouped in the system. It is
necessary to point out that our algorithm catches the data and
edits the grouped data, which did not enter the nonrelational
database DynamoDB yet.

The changes which were no longer possible to make cause
partial ineffectiveness of our method, but in the end, it is still
sufficient to apply proposed method to the transformation
process.

Our method could be appropriate while using the
application or threads, which can influence each other and,

54

based on the priorities, edit the data in real-time. We can
imagine incoming data could serve on the principle of the
transaction serving as superior tread during the data editing in
parallel intervention to the user's account. We will apply this
knowledge and designs to our future work.

ACKNOWLEDGMENT

This work was supported by Grant System of University of
Zilina No. 1/2020. (8056).

REFERENCES

D. Abadi, “Consistency tradeoffs in modern distributed database

system design,” Comput. Comput. Mag., 2012.

S. Binani, A. Gutti, and S. Upadhyay, “SQL vs. NoSQL vs.

NewSQL- A Comparative Study,” Commun. Appl. Electron., 2016.

A. Boicea, F. Radulescu, and L. I. Agapin, “MongoDB vs Oracle -

Database comparison,” in Proceedings - 3rd International Conference

on Emerging Intelligent Data and Web Technologies, EIDWT 2012,

2012.

R. Casado and M. Younas, “Emerging trends and technologies in big

data processing,” Concurr. Comput., 2015.

W. C. Chung, H. P. Lin, S. C. Chen, M. F. Jiang, and Y. C. Chung,

“JackHare: a framework for SQL to NoSQL translation using

MapReduce,” Autom. Softw. Eng., 2014.

E. F. Codd, “A Relational Model of Data for Large Shared Data

Banks,” Commun. ACM, 1983.

R. Ceresiidk and M. Kvet, “Comparison of query performance in

relational a non-relation databases,” in Transportation Research

Procedia, 2019.

S. Defit, "Intelligent Data Transformation Based on Knowledge

Based," 2009 International Conference on Information and

Multimedia Technology, Jeju Island, 2009, pp. 393-395, doi:

10.1109/ICIMT.2009.102.

D. DeWitt and J. Gray, “Parallel Database Systems: The Future of

High Performance Database Systems,” Commun. ACM, 1992.

K. Grolinger, M. Hayes, W. A. Higashino, A. L’Heureux, D. S.

Allison, and M. A. M. Capretz, “Challenges for MapReduce in Big

Data,” 2014.

[11] L. Issac, “SQL vs NoSQL Database Differences Explained with few
Example DB,” The Geek Stuff, 2014.

[12] K. M. W., “SQL vs. NoSQL,” 2010.

[13] M. Kvet, S. Toth, and E. Krsak, “Concept of temporal data retrieval:
Undefined value management,” Concurrency Computat Pract Exper,
vol. 32, no. 13, Jun. 2019, doi: 10.1002/cpe.5399.

[14] A. Lakshman and P. Malik, “Cassandra - A decentralized structured
storage system,” in Operating Systems Review (ACM), 2010.

[15] H. Lei, M. Blount, and C. Tait, “DataX: An approach to ubiquitous
database access,” in Proceedings - WMCSA’99: 2nd IEEE Workshop
on Mobile Computing Systems and Applications, 1999.

[16] C. Li, “Transforming relational database into HBase: A case study,”
in Proceedings 2010 IEEE International Conference on Software
Engineering and Service Sciences, ICSESS 2010, 2010.

[17] W. Naheman and J. Wei, “Review of NoSQL databases and
performance testing on HBase,” in Proceedings - 2013 International
Conference on Mechatronic Sciences, Electric Engineering and
Computer, MEC 2013, 2013.

[18] M. Scavuzzo, E. Di Nitto, and S. Ceri, “Interoperable data migration
between NoSQL columnar databases,” in Proceedings - IEEE
International Enterprise Distributed Object Computing Workshop,
EDOCW, 2014.

[19] D. Vohra and D. Vohra, “Apache Sqoop,” in Practical Hadoop
Ecosystem, 2016.

[20] Z. Wei, J. Dejun, P. Guillaume, C. H. Chi, and M. Van Steen,
“Service-oriented data  denormalization for scalable web
applications,” in Proceeding of the 17th International Conference on
World Wide Web 2008, WWW’08, 2008.

[21] C. Wodehouse, “SQL vs. NoSQL: What’s the difference?,” Upwork,
2016. .

[22] Xplenty, “The SQL vs NoSQL Difference: MySQL vs MongoDB,”

Xplent Blog. 2017.

(9]
[10]




