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Abstract—Nowadays a multi-label classification problem arises
in different areas for which the significant amount of data has
been gained. This problem can be viewed as the one comprising
two steps: training some ranking function sorting instances in
each class and defining the optimal number of predictions for
it. This paper is devoted to the second step of the optimal
threshold selection while maximizing the F-macro measure. To
do so, we reduce the multi-dimensional problem to the two-
dimensional problem of finding a fixed point of a specifically
introduced transformation defined on a unit square. We suggest
the algorithm of finding the vector of optimal thresholds based on
the domain analysis of the introduced transformation. Moreover,
we provide the complexity estimations of the proposed algorithm.
We evaluate the algorithm on the extreme classification bench-
mark WikiLSHTC-325K comparing its performance with some
baseline results.

I. INTRODUCTION

The growing amount of text and image databases increases

the importance of multi-label classification which significantly

reduces manual labour and allows the automatic processing of

these databases. Classification problems may relate to various

areas: biology[1], [2], natural language processing (namely,

sentiment classification [3], [4], toxicity classification[5] and

text analysis[6]), cybersecurity[7], aerial image processing[8]

and even driver drowsiness detection[9].

The problem of the multi-label classification can be divided

into two substeps. During the first inference step, some binary

classifier for each class (in other words, a ranking function)

sorts the instances according to some scores. In practice, at

this step one usually employs some probability estimation

procedure or even just sorts instances, optimizing some rank-

ing loss, like in extreme classification methods [10]. At the

subsequent step, we decide on the number of instances to be

assigned to each class so as to improve the score of the chosen

evaluation measure. This approach is called plug-in and it has a

number of advantages [11], among which there is a possibility

to optimize a wide variety of evaluation measures. Another

important feature of the plug-in approach is its consistency in

the sense of converging to the Bayes optimal prediction [12].

The papers [13], [14], [15], [16] are devoted to the optimal

threshold selection for multi-label classification, while a more

detailed review can be found in [17]. In general, there are

different approaches to the process of threshold selection:

rank-based thresholding, proportion-based assignments and

score-based local optimization. All of these methods were

employed in the works accomplished by [18], [19]. While

the first two methods provide only the approximate threshold

values, the last one results in an optimal value in a coordinate-

wise sense, when the function considered as the function of

each threshold separately is optimal [14]. Unfortunately, it is

not true for the measure that we put under the analysis in this

work.

In the scope of this work, we are concerned with the

F -measure optimization. In the literature, there are two ap-

proaches to averaging when calculating F -measure for multi-

label tasks [20]. According to the first of the definitions, we

average the F -measure computed for each class (so we can

refer to it as to macro-F measure), while using another one

we calculate F -measure as a geometric mean of the average

precision and recall (we will call it F-macro vice versa).

The former approach is more common, but the latter is also

widely employed in many works (for example, in [21], [22],

[23]). When precision and recall are balanced in most of the

classes, there is no substantial difference between these scores.

But given the majority of unbalanced classes, the macro-F
becomes significantly smaller than the F-macro score of the

average precision and recall. Besides, not only are the optimal

threshold values for each class different, but also they lead

to dramatically distinct classification results. Precision and

recall are included in the macro-F measure in a way that

both of them should be high in order to reach the optimum.

Meanwhile, computing F-macro allows us to optimize only

precision at the expense of low recall in some classes and

vice versa in others.

The issues described above make the optimization of the

number of recommendations for the F-macro measure a

challenging problem as the threshold chosen in one class

affects the threshold choice in others. In order to define the

vector of thresholds which maximizes the F-macro measure,

one can apply the coordinate descent method, though selecting

the best threshold in each class separately does not yield an

optimal solution. To find the global optimum, we reduce the

problem to the problem of finding the fixed point of a two-

dimensional transformation V defined on a unit square. After

that, we analyse the domain of the resulting transformation

and design an algorithm to find out the optimal vector of

thresholds. This domain has a complex discrete structure and

it requires some heuristics to build a good representation of

it. Moreover, we estimate the complexity of the suggested
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algorithm.

The developed algorithm of F-macro measure optimization

is further applied to the text classification WikiLSHTC-325K

dataset [24]. Text classification problems are of great impor-

tance nowadays as confirmed by the number of publications

concerning text data (e.g. [25], [26], [27]). WikiLSHTC-325K

is one of the labelled sets used for benchmarking extreme

multi-label classification problems [28] in which the number

of classes is immense (325 056 in this particular case). As

for the ranking function, we employed the propensity scored,

reranked PfastreXML method [29] which can be used on a

regular desktop computer. It uses trees to learn the hierarchy

of labels and optimizes the nDCG-based ranking loss function

which is sensitive to both ranking and relevance.

The remainder of the paper is structured as follows. In Sec-

tion II we set up the problem and introduce the main def-

initions. In Section III we reduce the optimization problem

to the problem of locating the fixed point of an introduced

transformation V and define its domain. In Section IV we

demonstrate the suggested algorithm, discuss the motivation

behind it and provide some complexity analysis. Section V is

devoted to the application of the discussed algorithm to the

extreme text classification problem. Section VI discusses the

obtained results and elaborates on the possible directions for

future work.

II. PROBLEM SETTING

We consider the problem of a multi-label classification for n
intersecting classes c1, c2, ..., cn; ck ⊂ X, where X is the set

of objects. Let Y = {0, 1}n, and for each (x,y) ∈ X×Y, the

label coordinates y are yk = [[x ∈ ck]] i.e. yk = 1, if x ∈ ck,

and yk = 0 otherwise. A multi-label classifier h : X → Y,

h(x) = (h1(x), h2(x), . . . , hn(x)) is essentially a mapping

between X and Y.

The classification quality is evaluated on a test set

{(xi,yi)}mi=1 with the help of F -measure which is the har-

monic mean between precision and recall:

F (p, r) =
2pr

p+ r
.

In each class, precision and recall of a given classifier are

computed with the following formulas:

pk(hk) =

m∑
i=1

yikhk(xi)

m∑
i=1

hk(xi)
, rk(hk) =

m∑
i=1

yikhk(xi)

m∑
i=1

yik

We employ a specific version of F-measure of macro precision

P and recall R calculated as:

F-macro(h) = F (P (h), R(h)),

P (h) =
1

n

n∑
k=1

pk(hk), R(h) =
1

n

n∑
k=1

rk(hk).
(1)

Throughout the paper, we refer to it as F-macro as macro

averaging is performed before the harmonic mean computing.

Fig. 1. A simple example of a multi-label classification problem with 3
intersecting classes and 6 objects: a dog, a duck, a flying fish, an ostrich, a
sparrow and a swift. The threshold positions are fixed by some given classifier
and set to t1 = 3, t2 = 2, t3 = 4. The computed F-macro measure for this
threshold positions equals to 1463/1788.

Let us illustrate and clarify the problem setting with a simple

example which considers a multi-label classification problem

for 3 intersecting classes: ,,can run“, ,,can swim“ and ,,can

fly“ (see Fig 1). There are 6 objects to classify: a dog, a duck, a

flying fish, an ostrich, a sparrow and a swift. There also exists a

fixed ranking function built with some algorithm which is out

of the scope of this article. It sorts the objects in every class

according to some probability of their belonging to the class,

maybe making some mistakes, and our goal is to select the

optimal threshold for each maximizing the F-macro-measure.

Let us compute the F-macro measure for some selected

threshold positions: t1 = 3, t2 = 2, t3 = 3. For the class

,,can run“ p1 = 1, r1 = 3/4 as a sparrow can also run and it

was not included into the prediction; for the class ,,can swim“

p2 = 1, r2 = 2/3 as a dog can as well swim but it was not

included; and for the class ,,can fly“ p2 = 3/4, r2 = 4/5 as

an ostrich cannot fly while a duck indeed can. Computing the

average precision and recall of the given classifier, we obtain

P = 11/12, R = 133/180 which leads to the F-macro measure

value of 1463/1788.
F-macro is monotonic with respect to pk and rk, and that is

why the optimal classifier in population utility sense h∗ indeed

has a thresholded form[20]. Therefore, the plug-in approach

can be employed for solving this problem.

So, as demonstrated by the example, our goal is to select
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the optimal vector of thresholds T = {tk}nk=1 which max-

imizes the F-macro-measure for the fixed ranking function

η = (η1, η2, . . . , ηk) : X → [0, 1]n.

For the sake of brevity, here and after we omit the ex-

plicit notation of the threshold classifier h when referring to

functions F-macro(h(T )), pk(hk(T )), rk(hk(T )), P (h(T )),
R(h(T )), which depend on T through h, and we will denote

them with the same letters as F-macro(T ), pk(tk), rk(tk),
P (T ), R(T ). Using ηk, we can sort the instances in each class

and choose the optimal number of observations to be classified

as positive. Later on, instead of employing absolute values

of ηk, we will use the numbers as thresholds instead. The

number tk = 1 corresponds to the threshold position between

the first and the second instance in the ranked list, tk = 2
— between the second and the third, etc. The last possible

threshold position is tk = m, where m — is the number of

instances in the given test set.

III. REDUCTION TO TWO-DIMENSIONAL PROBLEM

To find the optimum, one can apply the coordinate descent

and determine the best threshold in each class one by one.

Due to the structure of F-macro, selecting the thresholds in

each class independently does not lead to an optimal solution.

But in the obtained point for each class ck the function

F (P (T ), R(T )) (1) as a univariate function of the threshold

tk reaches its maximum. Let T0 = (t01, t
0
2, . . . , t

0
n), T

k,τ
0 be

obtained from T0 by replacing the k-th coordinate by τ :

T k,τ
0 = (t01, . . . , t

0
k−1, τ, t

0
k+1, . . . , t

0
n).

Definition 1: We call T0 a coordinate maximum if and

only if ∀k = 1, . . . , n the function F (P (T k,τ
0 ), R(T k,τ

0 )) of

τ reaches its maximum when τ = t0k.

All maxima of any function are its coordinate maxima. The

opposite is, generally speaking, not true. Taking this into

account, one can suggest the following approach to the op-

timal threshold selection. We need to find all coordinate-wise

maxima and choose the one with the biggest F-measure value.

Let us find all coordinate maxima of F (P (T ), R(T )).
Therefore, we decompose our problem and reduce it to

a coordinate-wise optima search performed in each class

independently. Though this approach does not lead directly to

the problem solution, for F-macro given the initial distribution

of thresholds T0 we obtain a new one T1 upon which we can

construct the following T2, then T3 and so forth.

Definition 2: We define the transformation W of the thresh-

old space as

W (P (T ), R(T )) = W (T ) = (w1(T ), w2(T ), ..., wn(T )) ,

where wk(T ) = argmax
τ

F (P (T k,τ ), R(T k,τ )),

T k,τ = (t1, . . . , tk−1, τ, tk+1, . . . , tn).
(2)

The coordinate-wise maximum T of F (P (T ), R(T )) is a

fixed point of a threshold space transformation W . Functions

wk(T ) are, generally speaking, multivalued. In this case, we

define T as a fixed point if T belongs to a set of values W (T ),
which we will further denote by the same designation W (T ).

Locating the fixed point of W is a complicated problem

because of the high dimensionality of the threshold space as

this dimensionality is equal to the number of classes n. To

simplify the process, we examine the countertype of W —

a transformation V defined on the square [0; 1]2 so as the

equality of compositions holds: V ◦ (P,R) = (P,R) ◦W .

Definition 3: Let P , R be the values of macro precision

and recall for some vector of thresholds T . Define V (P,R) =
(P (W (T )), R(W (T ))).
As well as W , V is also multivalued. In this case, the

precision P and recall R of a set of threshold vectors W (T )
are calculated as images under the functions P and R corre-

spondingly. Let us find the fixed points of V .

The domain of the transformation V has a complicated

discrete structure. It can be defined as:

D(V ) =
{
(P,R) | ∃T P = P (T ) =

1

n

n∑
k=1

pk(tk),

R = R(T ) =
1

n

n∑
k=1

rk(tk)
} (3)

Each point (P,R) ∈ D(V ) is an average value of the precision

pk and recall rk for some vector of thresholds T .

IV. ALGORITHM

If there is a good approximation to the domain D(V ), then

maximizing F (P,R) on it allows us to find the optimal values

of precision P and recall R, by which one can define the

optimal vector of thresholds.

Even if the problem is not high-dimensional, for example,

the number of instances is m = 1000 and the number of

classes is n = 10, the number of points comprised in D(V )
is about 100010 and, therefore, infeasible to process. But we

can avoid overflowing by tackling this issue from another side.

We consider the convex hull of D(V ) H = hull D(V ). As

F (P,R) defined on [0; 1]2 does not have internal maximums

in [0; 1]2, then the maximum in H is attained at the boundary

H . This way we can approximately obtain the maximum

of F (P,R) on D(V ). Theorem 1 allows us to reduce the

number of points under consideration and advocates for a new

approach to find the optimal solution to the problem.

Theorem 1: Let Γ ⊂ D(V ) be the set of H vertices. Then

max
Γ

F ≤ max
D(V )

F ≤ max
H

F.

The proof results directly from the embedding

Γ ⊂ D(V ) ⊂ H.

A straightforward maximization of a two-variable function

F (P,R) on the convex polygon H and a search for the vertex

from Γ with a minimal function F value provide us with the

upper and lower estimations for the unknown maximum of F
on D(V ). The extremum vertex from Γ represents a vector of

thresholds close to the optimal one.
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The described procedure allows us to suggest Algorithm 1.

It subsequently computes the approximation Hi to H

Hi =hull
{
(P,R) | ∃T P = P (T ) =

1

n

i∑
k=1

pk(tk),

R = R(T ) =
1

n

i∑
k=1

rk(tk)
}
, i = 1, 2, . . . , n.

(4)

Hi are easily calculated with the following recursive formula

Hi+1 = hull (Hi + hull({pi(τ), ri(τ)}mτ=1)) . (5)

According to the central limit theorem, the average values

of precision and recall in the classes are distributed according

to the Gaussian law. The number of points in D(V ) grows

not faster than N = mn. As mentioned in [30], the number of

vertices in a convex hull of normally distributed samples grows

not faster than 2
√
2π lnN = O(

√
n lnm). Using the described

Algorithm 1, at each step we compute the convex hull,

add new points to consideration and then, compute another

convex hull. Given that linear time is required for the convex

hull computation, overall time computational complexity is

O(nm
√
n lnm). So, with Algorithm 1 we manage to improve

complexity comparing to direct computation of convex hull of

D(V ), but we can do better.

Algorithm 1 Construction of hullD(V )

1: Input: lists of instances x, sorted in each class ci, i = 1..n
according to some fixed ranking function η(x) and true

class membership y.

2: H1 = hull({p1(τ), r1(τ)}mτ=1)
3: for i = 2, . . . , n do
4:

Hi = hull (Hi−1 + hull({pi(τ), ri(τ)}mτ=1))

5: end for
6: Find the point (P ∗

Γ , R
∗
Γ) ∈ Γ in which F-macro reaches its

maximum — the lower bound for maximum of F-macro
on D(V ).

7: Find the point (P ∗
H , R∗

H) ∈ H in which F-macro
reaches its maximum — the upper bound for maximum

of F-macro on D(V ).
8: Compute the optimal vector of thresholds T ∗ =

W (P ∗
Γ , R

∗
Γ) corresponding to (P ∗

Γ , R
∗
Γ).

Given the polar angle φ, we denote by e(φ) the most distant

point of D(V ) in this direction

e(φ) = argmax
(p,r)∈D(V )

(p cosφ+ r sinφ).

Consider the grid of nα different directions (polar angles).

Let us limit the computations of H vertices to nα edge points

the most distant in these directions. Again we examine each

category and compute the convex hull hull({pi(τ), ri(τ)}mτ=1)
for each category. But in this modification of the algorithm

represented as Algorithm 2, we recount only some of nα

points on the convex hull. The greater nα, the more precise the

approximation to the strict convex hull is. The time complexity

for Algorithm 2 is much improved and now makes O(nαnm).

Algorithm 2 Fast construction of hullD(V )

1: Input: lists of instances x, sorted in each class ci, i =
1..n, according to some fixed ranking function η(x) and

true class membership y, number of polar angles nα.

2: Initialize the approximation to convex hull randomly Γα =
{(0, 0)}nα

j=1

3: for i = 1, . . . , n do
4: Mi = hull({pi(τ), ri(τ)}mτ=1)
5: Iterate over points in Mi in counter-clockwise order:

6: for (pm, rm) in Mi do
7: Compute polar angles φprev and φnext of normals

to previous segment between (pm−1, rm−1) and (pm, rm)
and next segment between (pm, rm) and (pm+1, rm+1).

8: Update vertices e(φ) = (pφ, rφ) ∈ Γα for φ ∈
[φprev, φnext]:

pφ =
pφ · (i− 1) + pm

i
, rφ =

rφ · (i− 1) + rm
i

.

9: end for
10: end for
11: Find the point (P ∗, R∗) ∈ Γα in which F-macro reaches

its maximum — the lower bound for maximum of

F-macro on D(V ).
12: Compute the optimal vector of thresholds T ∗ =

W (P ∗, R∗) corresponding to (P ∗, R∗).

V. EXPERIMENTS

In our experiments we consider a dataset used as a bench-

mark in extreme multi-label learning where the goal is to learn

features and classifiers that can automatically tag the instance

with the most relevant subset of labels from an extremely

large labelled set. The WikiLSHTC-325K dataset contains

2 365 435 documents and is annotated with n = 325 056
classes representing one of extreme classification problems

(see more in the repository [28]). The training set employed

during the experiments comprises 1 778 351 documents, the

test set consists of m = 587 084 documents. Fig 2 exhibits

the distribution of classes in the test set, demonstrating that

the majority of classes are very small and contain less than 20

documents which makes the problem more perplex.

To obtain the scores for the test instances in a reasonable

time, we apply the propensity scored reranked PfastreXML

method [29]. By default, it predicts 5 labels per instance and

we report the results for these scores in the last column of Ta-

ble I. Still, we consider these results insufficient and, therefore,

increase the number of predicted labels per instance to achieve

better results reported in the second column of Table I.

To investigate the classifier performance in different classes,

we build the precision-recall curves for some of them (shown

in Fig 3) which demonstrate the trade off in performance

between precision and recall for different values of threshold.
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Fig. 2. Class sizes distribution for the WikiLSHTC-325K dataset, x-axis
represents size of the classes, y-axis (given in log scale) stands for the number
of classes of this size.

Fig. 3. Precision-recall curves for the categories 4023, 4656, 15017, 15461
and 16729 from the WikiLSHTC-325K dataset and the classifier built with
PfastreXML method. The choice of the categories is random among the
categories containing at least 30 documents for precision-recall curves to look
smoother.

The categories are chosen randomly but so as their size extends

30 documents for precision-recall curves to look smoother.

The better the classifier performs in the class, the closer

the curve bows to the point with coordinates (1, 1). The

best threshold for each class should be selected close to the

threshold corresponding to the point closest to the upper right

corner of the unit square.

To compare the optimal F-macro values, we use the follow-

ing baseline. First, we optimize the F measure of each class

independently and calculate corresponding threshold values

T b = (tb1, . . . , t
b
n):

tbk = arg max
τ

F (pk(τ), rk(τ)), k = 1, . . . , n. (6)

Thus, we maximize macro-F measure: max
T

macro-F(T ) =

macro-F(T b). Then we evaluate F-macro and macro-F for

same threshold vector T b. The resulting values are presented

in Table I.

TABLE I. F-MEASURE VALUES FOR THE TEST PART OF THE 
WIKILSHTC-325K DATASET. THE F (P, R) VALUE STANDS FOR THE 
RESULT OF THE PROPOSED ALGORITHM 2. THE BASELINE VALUES F-

macro(T b) AND macro-F(T b) ARE OBTAINED FOR THE THRESHOLDS T 
b WHICH MAXIMIZE F MEASURE IN EACH CLASS INDEPENDENTLY.

.

WikiLSHTC
1000 lpi

WikiLSHTC
5 lpi

F (P,R) 0.693 0.439
F-macro(T b) 0.654 0.422

macro-F(T b) 0.533 0.206

We also demonstrate the appearance of D(V ) built for
the WikiLSHTC-325K dataset in Fig 4. One can observe
the discrete structure of the domain which sophisticates the
process of its building. The optimal point corresponding for
the highest F-macro measure is equal to (0.631, 0.768).

VI. CONCLUSION

When solving multi-label classification problems, F-

measure of macro precision and recall is especially difficult for

optimization as it does not allow separate parallel optimization

in each class. Cyclic optimization procedure provides us with

some local coordinate-wise maximum which is not guaranteed

to be a global optimum. Therefore, the need in simple and

efficient solution is indeed strong and vast.

The proposed method is based on introducing a transforma-

tion and the further analysis of its domain. As the resulting

transformation is two-dimensional, it is already much more

pleasant to deal with. Moreover, we suggest the approach

allowing us to obtain the point in which the F-measure

reaches its optimum. The complexity of the suggested algo-

rithm depends on the chosen algorithm of the convex hull

building which can be done in linear time with respect to

the number of vertices. It also exploits the idea of building

a fast approximation to the convex hull which allows us to

evaluate it in a reasonable time. The overall complexity of

the algorithm is estimated as O(nαnm) as we need to look

through all elements in every category to obtain all the possible

domain points.

The suggested approach is applied to one of the bench-

mark extreme multi-label text classification datasets —

WikiLSHTC-325K. The work of the suggested algorithm is

demonstrated and the results obtained with the means of this

algorithm are compared with some baseline results, clearly

demonstrating the advantage of the suggested approach.
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Fig. 4. The domain of V for the test set of the WikiLSHTC-325K dataset. The green point corresponds to the optimal values of P and R.

There are some possible directions in which this work

may progress. The process of building the convex hull can

be improved if the convex hull is built on-the-fly upon the

considering each class. Another conceivable problem to tackle

is to investigate the applicability of this method to optimization

of different widely used quality metrics.
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