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Abstract—In this paper we consider the problem of Learn-
ing from Satisfying Assignments introduced by [1] of finding
a distribution that is a close approximation to the uniform
distribution over the satisfying assignments of a low complexity
Boolean function f . In a later work [2] consider the same
problem but with the knowledge of some continuous distribution
D and the objective being to estimate Df , which is D restricted
to the satisfying assignments of an unknown Boolean function
f . We consider these problems from the point of view of
parameter estimation techniques in statistical machine learning
and prove similar results that are based on standard optimization
algorithms for Risk Minimization.

I. INTRODUCTION

Computational Learning Theory is a field of theoretical

computer science that mostly deals with computational com-

plexity theoretic aspects of machine learning with its origins

from works of Valiant [5] that introduced the notion of

Probably Approximately Correct (PAC) learnability. Learning

of Boolean Functions has become an important part of this

topic with a variety of results obtained over the past three

decades or so. We consider the problem mentioned in the

previous sections of estimating the uniform distribution over

the satisfying assignments of an unknown Boolean function

f from the point of view of standard parameter estimation

techniques in Statistical Machine Learning which are highly

well established but not much used in the context of Boolean

function analysis. An extensive motivation and background for

the problem is mentioned in [1], [2]. The problem has been

considered in another set up in which we assume that D is a

known continuous distribution like Gaussian, log-concave etc.

and we are given i.i.d. samples from Df , which is defined

as D restricted to satisfying assignments of f where f is

again an unknown Boolean function, and we intend to estimate

Df . In these works the authors prove both algorithmic and

impossibility results depending on the nature of f (for eg. f
being a threshold function w.r.t. a low degree polynomial). In

this paper we restrict our attention to the original version of

the problem and hope that our ideas would translate to other

case as well.

Parameter estimation is a widely explored topic in machine

learning with a variety of techniques which have been devel-

oped over several years. The main goal in this exploration

is to approximate certain unknown distribution (from which

the data is assumed to be coming) by a distribution that

depend on certain parameters θ; and use certain optimization

procedures to find the values of the parameters θ. In this paper

we consider the same problem of learning the distribution

of satisfying assignments but we use standard parameter

estimation techniques for solving this problem. More formally,

for an unknown distribution P (x) chosen from an unknown

distribution D we approximate it with Pθ(x) and compute the

parameters θ by maximizing the log likelihood function. It

turns out that this optimization is equivalent to minimizing the

expected log loss, which in turn is Risk Minimization under

the distribution D. We use these relations along with bounds

that relate KL-divergence and l1 distance to get results similar

and comparable with De et al.

II. RISK MINIMIZATION

Risk Minimization [4] is a statistical machine learning

framework in which we formally define the notion of error

of a classifier. The risk minimization can be defined by either

w.r.t the given data i.e. Empirical Risk Minimization (ERM)

or it can be defined w.r.t the distribution from which the data

is assumed to be coming from. More formally, ERM for a

hypothesis h and a dataset S with |S| = m is defined as

LS(h) = |{i ∈ [m] : h(xi) �= yi}|/m
whereas the risk w.r.t. the distribution D the risk is given as

LS(f, h) = Px∼D[f(x) �= h(x)]

We will use these notions of risk minimization to revisit some

already established relation between Maximum Likelihood

Estimator (MLE) and Empirical Risk Minimization when we

are dealing with a particular loss function. In general when

we have the loss function l(w, x) as

l(w, x) = − log(Pw[x])

where Pw[x] is the parametric estimate of the true and

unknown P [x] (the probability of choosing x from the un-

known distribution D) and w is the unknown parameter to be

estimated. It is known that according to this choice of loss
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function, the MLE is same as the Risk Minimization i.e.

E[l(w, x)] = −
∑
x

P [x] logPw[x]

=
∑
x

P [x] log
P [x]

Pw[x]︸ ︷︷ ︸
+
∑
x

P [x] log
1

P [x]

We notice that the term in the above equation that is in braces

is the Kullback Leibler Divergence of the two distributions

P [x] and Pw[x] which we will denote by KL(P, Pw). In-

tuitively, minimizing the term E[l(w, x)] w.r.t. w leads to

the KL divergence being very small because the other term

is independent of w. There are two approaches that can be

followed to minimize E[l(w, x)]: first is to use the celebrated

Expectation Maximization Algorithm which is not of much use

for us directly because the algorithm is well known to get stuck

at local optima. Instead we prefer the second approach that

is based on using the Stochastic Gradient Descent algorithm

to serve our purpose that is guaranteed to return a value of

w that is close to the global optimum. In what follows we

describe the SGD algorithm and later describe how these

results can be used to get bounds similar to prior works in

the context of learning from the satisfying assignments of a

Boolean function.

III. STOCHASTIC GRADIENT DESCENT

Over the past few years, many learning algorithms for

minimizing risk functions have been proposed in the field

of convex optimization. One of the important algorithms for

convex optimization that is widely used in machine learning

is called Stochastic Gradient Descent (SGD). In SGD we try

to minimize risk function LD(w) in which we are not aware

of the unknown distribution D and hence we can’t directly

compute gradient for LD(w) that is needed for standard

gradient descent. The approach of SGD is to initialize the

gradient in random direction and use update rule of gradient

descent algorithm for optimization. A major component in the

SGD algorithm is the notion of the set of subgradients that is

denoted by ∂l(w, z) that is mentioned in the following vanilla

version of SGD. For a detailed analysis of SGD algorithm in

the context of machine learning can be obtained from [4].

Algorithm 1: SGD(X ,η, T ); // Minimize LD(w)

Input: Scalar η > 0, integer T > 0 ;

Initialization: w(1) = 0;

for t = 1; t ≤ T ; t = t+ 1 do
sample x ∼ D ; // this step picks an
element from given data

pick vt ∈ ∂l(wt, x) ; // this step uses
randomization.

update w(t+1) = w(t) − ηvt ;

end
Output w̄ = 1

T

∑T
t=1 w(t);

Theorem 1: Consider a convex-Lipschitz-bounded learning

problem with parameters ρ, B. Then, for every ε > 0, if we

run the SGD method for minimizing LD(w) with a number

of iterations (i.e., number of examples)

T ≥ B2ρ2

ε2

and with η =
√

B2ρ2

ε2 , then the output of SGD satisfies

E[LD(w̄)] ≤ min
w∈H

LD(w) + ε.

IV. BOOLEAN FUNCTIONS AND MAIN RESULT

In this section we describe how our results relate with the

results in the context of the problem of learning from satisfying

assignments of a Boolean Function. In the Boolean Function

setting we are given satisfying assignments of an unknown

Boolean function f : {−1, 1}n → {−1, 1} and our objective

is to output a highly accurate estimate of Uf−1(1). In a different

version of the problem one is given a continuous distribution

D and i.i.d. samples of Df where Df is obtained by restricting

D to satisfying assignments of an unknown Boolean function

f . The objective again is to get an accurate estimate of Df . In

those papers the authors measure the distance of the estimated

distribution and the actual distribution by variation distance
that is also the l1-norm of the two probability distributions. In

this paper we first estimate there distance by KL divergence

and then use the distortions bounds to translate the error

bounds to the l1-norm.

Lemma 1: If w̄ is the value returned by the algorithm then

KL(P, Pw̄) ≤ ε and l1(P, Pw̄) ≤
√
2ε

a) Proof: Let min
w∈H

LD(w) = A(w′) and Δ =∑
x P [x] log

1
P [x] , Clearly KL(P, Pw′) = 0. Thus LD(w̄) =

KL(P, Pw̄) + Δ. Therefore,

|A(w′)− LD(w̄)| = |KL(P, Pw′)−KL(P, Pw̄)|
From Theorem 1 we know that |A(w′) − LD(w̄)| ≤ ε.
Hence, KL(P, Pw̄) ≤ ε. From Pinsker Inequality we have

l21(P, Pw̄) ≤ 2KL(P, Pw̄).

l(P, Pw̄) ≤
√
2ε

�
Thus we have the following result,st 1 − δ a probability

distribution Pw that is close to uniform distribution over

f−1(1) by a variation distance of ε.
In our framework, we notice that for SGD to be executed

we need to know an exact functional form for LD(w) =
E[l(w, x)] = g(〈w, x〉) in order to compute ∇(g) w.r.t. w.

From the well known No Free Lunch Theorem [4] we are

aware that in order to achieve learnability of any target func-

tion or distribution, we need to have some prior information

about the class of hypothesis we are restricting ourselves

to. In the current set up, we incorporate this information

by assuming that E[l(w, x)] can be expressed as g(〈w, x〉)
where g is convex ρ-Lipschitz function. For eg. we can

choose g to be any of sin, sigmoid,
√
x2 + 5 which are 1-

Lipschitz. Our assumption about LD(w) as g(〈w, x〉) is similar

to the assumptions made by [1], [2] in which authors put a
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restrictions on f as a low degree threshold function. Although

we have not been able to show a mathematical equivalence

between the assumptions; both the assumptions are restricting

the nature of optimization problem to certain extent.

Also w.l.o.g. we will assume that the value of B used in the

SGD is 1 i.e. we are optimizing inside a unit sphere, ‖w‖ = 1.

Retrieving x given w̄: Using the “reformulation” of LD(w)
as g(〈w, x〉), we are able retrieve w̄ and b = LD(w̄) but our

aim was to sample assignments x that are from the desired

distribution. For that we simply pick an x̄ ∈ {−1, 1}n and

compute a = g(〈w̄, x̄〉) and compare with b. If |a − b| ≤ ε1
then we declare that x̄ ∈ f−1(1) otherwise not.

Algorithm 2: Algorithm A

Input: X = x1, x2, . . . xk be the satisfying assignment

of f ;

w̄ = SGD(X,B, ρ, ε) ; // This step uses g,
a 1-Lipschitz function

Output : Pw̄ ; // x can be obtained from
Pw̄

Theorem 2: The Algorithm A returns a probability distri-

bution Pw̄ that is ε close to the unknown distribution Uf−1(1)

w.r.t. variation distance with probability atleast 1− δ and runs

in time in Θ( n
ε2 log(

1
δ )) where n is the number of variables

of the Boolean function f .

b) Proof: From Theorem 1 we know that one iteration of

the SGD requires Θ(B
2ρ2

ε2 ) and from the previous discussion

we know that B = 1 and we can choose an g(〈w, x〉) such

that it is ρ-lipschitz with ρ = 1 for example l can be choosen

as sigmoid, sine etc. Using Chernoff-Hoeffding [4] bounds we

can infer that by repeating the SGD algorithm independently

log( 1δ ) iterations, we can success probability to 1− δ.

V. CONCLUSION

We have shown that the Empirical Risk Minimization ap-

proach can lead us to results that are comparable [2] for the

problem of learning from satisfying assignments [2]. The tech-

nique of machine learning models for parameter estimation

helps us to estimate the uniform distribution over f−1(1).
Since we know that stochastic gradient descent algorithm

converges in Θ( n
ε2 ) iterations, We have been able to conclude

that our algorithm for estimating Uf−1(1) runs in Θ( n
ε2 log(

1
δ ))

time and w.h.p. returns a probability distribution that has low

variation distance with Uf−1(1).
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