
Applying MPLS Technique as On-Chip
Communication Means for Network-on-Chip with

Mesh Topology
Azeddien Sllame, Nagwa Salama

University of Tripoli
Tripoli, Libya

Aziz239@yahoo.com, Nagwa771@gmail.com

Hadeel Youns Ben Rajab
 Technical Electronic College, Ben Ashour

Tripoli, Libya
h.younis@bsisp.ly

Abstract—This paper describes designing efficient mesh
topology Network-on-Chip system by employing MPLS protocol
as an on-chip communication technique. Discrete-event simulator
is developed in C++ to show the applicability of MPLS in
providing efficient on-chip communication for multicore
processing system-on-chip designs. Experimental results are
compared with two simulators: wormhole equipped with virtual
channels; and MPLS-based fat tree network-on-chip systems.
Outstandingly, MPLS as on-chip communication means recorded
better results than the wormhole +virtual channels in terms of
throughput and packet end-to-end delay (latency).

I. INTRODUCTION
The multicore processors are becoming the key success of

multiprocessing and power-efficient computing. Current
embedded applications such as real-time multimedia
applications necessitate intensive computation and higher
communication’s bandwidths which are difficult to handle by
different kinds of bus structure such as multi-bus or hierarchal-
bus as on-chip communication means on traditional SoC
systems. Consequently, powerful on-chip communication
architecture is required to support the full functionality of these
applications. Besides that, multicore principle enforced
designers to shift implementing embedded systems from
system-on-chip (SoC) into multiprocessing SoC (MPSoC),
whereas heavy data transfer between such multicores lead
designers to use interconnection networks as on-chip
communication technique between heterogeneous multicores
composing of MPSoC system, as shown in Fig. 1 [1], [2], [3].
However, the use of interconnection networks imposed
applying the principle of separation between computation and
communication inside the MPSoC systems, as it has been
previously realized in well-known parallel computing and
supercomputing machines and systems. Therefore, cores inside
the chip implementing MPSoC system start communicating by
sending packets through interconnection network instead of
using old fashioned electrical buses which use wires routed
around the chip [4]. Thus, interconnection networks allowed
the current MPSoC systems to be implemented as networks
inside a chip; which is named as network-on-chip (NoC); for
more information about interconnection networks see [5], [6].
NoC systems are a scalable networks built inside a chip based
on using interconnection networks for on-chip communication;
that capable of interconnecting a large number of
heterogeneous cores. Scalability, energy efficiency, and
reliability are the main important advantages of this new on-

chip communication model as borrowed from previously well-
researched interconnection networks. In addition, NoC
structure provides fault tolerance feature by using adaptive
routing protocols which can use different paths for
communication between cores. Furthermore, NoC design
paradigm increases engineering productivity in such a way that
NoC eliminates ad-hoc global wire engineering, as well as it
has advantages of modular, well-structured, flexible structures.

Fig. 1. MPSoC system with different types of interconnection networks

 However, NoC is a complete platform for system design,
heterogeneous cores interfacing, hierarchical integration,
routing and flow control, debugging and testing [2]. Therefore,
recent improvements in MPSoC design techniques and
advances in deep submicron chip technologies opened-up the
feasibility of a wide range of applications making use of
massive parallel processing and tightly interdependent
processes, some adhering to real-time requirements, bringing
into focus new complex aspects of the underlying
communication structure, which facilitated by NoC efficiently.
With NoC implementation an aggregate bandwidth grows
while the bandwidth of the bus is shared and the speed goes
down as the cores added to the bus implementation. In addition,
NoC system designs are based on the interconnection networks
which exhibit pipelining concurrency in their designs as they
have been developed to work with parallel computing and
supercomputers. Whereas, bus implementations did not have
any concurrency, pipelining is difficult to implement with
buses. Furthermore, the NoC designs demonstrate the
separation of abstraction layers. Bus designs suffer from
computation-communication separation feature. However,
unlike NoC designs, the bus designs are fairly simple to build

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

with low cost, while NoC designs need new design techniques
and methodologies, such as network interfacing and novel
router (switch) designs [3],[7],[8]. This paper presents the
applicability of using MultiProtocol Label Switching (MPLS)
networking protocol suite as an on-chip communication
protocol within mesh interconnection network for future NoC
designs. From networking point view MPLS is an intelligent
forwarding mechanism which integrates efficient switching
functions on layer 2 (data link layer) with effective routing of
layer 3 (network layer) technique to provide high-performance
scalable networks to allow efficient use of network resources
such as routers; with the capability of applying different
quality-of-service (QoS) levels according to various
applications’ requirements [9], [10], [11].

This paper demonstrates how we can exploit the capabilities
of the MPLS in terms of efficient label switching, path creation
between communicating cores and routing speed over label-
switched paths on the NoC design paradigm. However, MPLS
inserts labels to packets, specify QoS level, establishes paths
among communicating cores based on labels which maps link-
specific labels in the packet header to outgoing links of the
router (switch), then forwards packets over connected paths;
where packet-forwarding decisions at the routers are completed
quickly based only on the contents of the inserted label, without
the need to examine the whole IP address of that packet as
found in TCP/IP networks. Consequently, such rich features of
MPLS and the work in [11] inspired us to develop a C++
simulator to research on the applicability of MPLS to realize
efficient mesh NoC systems.

This paper is organized as follows: Previous work is
reported in section 2. Mesh interconnection network are briefly
described in section 3. MPLS technique’s principle is given in
section 4. The realized mesh NoC system is described in
section 5. Section 6 illustrates the simulator structure. Section 7
reports the performance analysis results. Concluding remarks
are described in section 8.

II. II. PREVIOUS WORK
There are many related research projects arranged in many

universities and research centers which are supported by
different international research organizations such as IEEE.
Current state-of-the-art in multicore processing SoC systems
focus on NoC design tools, routing algorithms, power
management and design methodologies by different aspects
with diverse point views targeting different interconnection
network topologies such as fat tree, 3D mesh, torus, and 2D
mesh; see [1] and [3]. Some representative of such related
researches are: Tobias and Shanker in [3] presented a detailed
survey of research and practices of NoC systems design in
which they showed the relation between cores, networking
interfaces and switching/routing components inside the NoC
architecture. In addition they discussed the switching methods
and QoS practices, with no mention to MPLS technique.
Nikolay and Gerard in [8] provided a comprehensive survey
about on-chip communication systems which talked over
routing, queuing, flow control with a discussion of mesh
topology. Li-Shiuan Peh et al in [12] presented some NoC
implementations based on mesh topology. Brett and Partha in
[13] evaluated mesh and tree-based NoCs and reported that
they both are accomplished better performance when

implemented in a 3D chips more than the 2D realizations.
However, they claimed that the mesh-based NoC systems
demonstrated improved performance in terms of throughput,
latency, and energy dissipation with an extra area added as a
chip space overhead. In [14] L. Bononi et al offered a
comparison analysis of ring, 2D-mesh, and Spidergon using
theoretical uniform traffic using request/reply on a MPEG4
benchmark example. D. Ludovici, et al. in [15] described a
research work about physical synthesis of Fat trees and 2D
mesh topologies. They provided that as the size of the NoC
system scales up, 2D meshes will suffer from poor performance
scalability, whereas Fat trees will gain better performance
scalability with area cost. Basavaraj et al in [16] presented a
simulation tool written in System-C that is able to search for
NoC designs with mesh and torus topologies for HW
implementation using label switching protocol (LDP) which is
one of MPLS assisted protocols. R. Kurdy et al in [17] showed
a research work which equates the performance between IP and
MPLS with fat tree NoC system with recovery mechanism
using high level simulation in NS-2. However, authors have not
shown any design details; just described upper-level simulation
study using NS-2 which is used in modeling and simulation of
traditional networks. Azeddien Sllame and Asma Elasar in [18]
testified a Fat tree based NoC system with a wormhole routing
+ virtual channels with no use of MPLS mechanism in their
described system. Azeddien Sllame and Nagwa Salama in [19]
described a Fat tree based NoC system with MPLS technique
and provided a comparison against wormhole routing + virtual
channels which showed improvements to MPLS in terms of
throughput and latency.

On the other hand, the work in this paper is a continuation
of research work described in [19]. The discussion here is
focused on applying MPLS technique on 2D mesh topology to
produce efficient mesh NoC system. Therefore, the design of
2D mesh NoC system will include all necessary components,
procedures, and functions for switching, arbitration, routing
and buffering with MPLS networking mechanism. In addition,
a comparison analysis with the work in [20] which describes
NoC systems with wormhole routing + virtual channels will be
provided.

III. MESH INTERCONNECTION NETWORK

Interconnection network is a communication structure
connects a group of processing nodes by means of a specified
number of communication switches to form network
architecture in a particular topology. Switches are responsible
for switching, routing, and flow control of packets flowing over
the interconnection architecture between the processing cores.
Network topology specifies the structure details such as the
static organization of nodes and number of stages of the
network and switches. Interconnection networks can be
categorized according to different characteristics. Their
topologies fall into two main classes static (or direct) and
dynamic (or indirect). In a static network, point-to-point links
interconnect the network nodes in some fixed topology; a
regular topology as mesh or a hypercube is common examples
of direct type. A dynamic network permits the interconnection
arrangement between the network nodes to be changed
dynamically which is made by employing some switching/
routing techniques; such as in Fat trees and multistage
interconnection networks [5], [6].

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 629 --

Nowadays, 2D mesh structure is the most used NoC
topology because of its simple structure which maps very well
in VLSI physical realization. Linear arrays are called 1D mesh,
while the 2D mesh structure is the practical topology that are
frequently used; see Fig. 2; although the 3D mesh structure are
sometimes used but not as the 2D mesh. In a mesh topology
network, the processing cores are organized in a k dimensional
lattice of width w, giving a total of wk processing cores. (When
k=2 we get the 2D mesh layout). In mesh the communication is
allowed between neighboring cores which are directly
interconnected by switches and their switches are
interconnected by communication links. Simply speaking,
mesh topology is regular, simple architecture, in which each
internal switch is connected to 4 neighbor routers (switches),
with short links. Each router is connecting only to one
processing core either with bidirectional or separate in-out
links, each with sufficient buffering. However, XY routing
which uses a typical minimal turn deterministic algorithm is
commonly used with 2D mesh topologies, where the algorithm
determines to what direction packets are routed during every
stage of the routing by routing packets in row (X: horizontal
direction) firstly then it turns to route the packet to the correct
column (Y: vertical direction) toward targeted core. Though,
the XY routing is working well with mesh topology, since
addressing is described by the routers’ positions that are
represented by XY coordinates. To be more precise the
deterministic minimal routing means the selected path is one of
shortest paths between the sender and receiver and is totally
determined only by sending and destination cores, thus every
taken hop toward the destination core makes the packet closer
to the receiving core [5] [6].

Features of the mesh topology [5] [6] [8]:
 Topology: mesh network has a fixed regular topology that
belongs to direct class of interconnection networks. Meshes
arranged as matrixes with switches at intersection points of
rows; with each switch has point-to-point links with its
neighboring switches; processing core is attached also to its
parent switch with a direct link too. Therefore, as the XY-
dimensions of mesh increases the number of switches (routers)
increases, which adds more cost overheads, which disturbs the
scalability.
 Network traffic balance: in 2D mesh topology the
deterministic routing incurs in-order packet forwarding over
the same path which produces simple designs which
efficiently working under uniform traffic only.
 Deadlock, livelock, starvation: mesh uses XY deterministic
routing that is thought-out as deadlock and livelock free.
 Routing: mesh uses XY deterministic routing; in which
traffic does not spread regularly over the entire network
because the algorithm causes the major load to flow in the
middle of the mesh. Consequently, in mesh topology the
deterministic routing produces low routing latency and good
reliability when the network is not under congestion status.
 Fault tolerance: mesh as an interconnection network has
low fault tolerance capability since it is fixed connected
topology.
 Congestion control: due to the fixed regular organization of
mesh topology; it is difficult to respond dynamically to
congestion when happened. This in turn has a side effect on
network efficiency and throughput.

 Latency and throughput: In mesh networks, as the size of
the network increases the latency and throughput will increase,
but this requires to take care about heavy traffic congestion.
 Network utilization: with mesh topology the XY
deterministic routing may causes the network resources to be
underutilized under non-uniform traffic, since the traffic flow
in the center of the mesh is more than outside of the mesh;
which will overwhelm the capacity of the links of the switches
in the center of the mesh. This may increase reaching the
congestion state very quickly and the mesh performance will
be disturbed. Alternatively, under uniform traffic distribution
the XY routing working well.
 Scalability: performance normally increases with the
increase of processing cores which will efficiently utilize the
bandwidth of the network. However, due to the mesh topology
inherited structure as a regular fixed organization it is not
scalable as the number of processing cores increases.
 Energy dissipation: the energy dissipation increases linearly
as the number of processing cores, switches, and links increase
during the operation of the network.

Fig. 2. Mesh topology (4X4 matrix)

IV. MPLS PRINCIPLES

MPLS is a communication protocol standardized by
Internet Engineering Task Force (IETF) that developed to
accommodate communication with other many protocols;
which enables MPLS to establish and maintain a connection-
oriented network over connectionless networks such as TCP/IP
network or makes easy label encapsulation in other network
types such as making packet-over-SONET/SDH, or label over
ATM PVCs, label Frame Relay PVCs, and Ethernet [9]. In
TCP/IP networks the packet decision for forwarding it from
router to the next hop router along the paths is made at each
router by inspecting the whole IP header of that packet; which
consumes processing power of each router and incurs some
delays to the packet transmission. Unlike TCP/IP networks, the
MPLS shortens the delay and reduces the processing power
consumption of the packet forwarding process along the path
from sending core to receiving core [9]. However, MPLS
attaches short label to the packet at the entrance router of the

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 630 --

MPLS domain with proper QoS service level; which will be
used by subsequent routers to forward the packet along
specified path. Thus, MPLS routers made the packet
forwarding decision only by inspecting that short label which
will reduce the transmission delays and processing overhead of
the packet switching and forwarding processes inside the
router; along the path. Simply, within the MPLS network; the
label is used as an index into a label-table that identifies out-
interface of current router directly, and then the old label is
replaced with a new label of the in-interface of the next-hop
router. Hence the packet is forwarded to its next hop very
rapidly [9] [10]. Another powerful feature of MPLS protocol is
that the label contains a field named as forwarding equivalence
class (FEC), which enables classification of packet streams,
where all packets that associated to a specific FEC and which
transferred from an identified node will follow the same path or
a set of certain paths, and got the same treatment by all routers
along the path. However, in the MPLS domain, routers are
using label distribution protocol (LDP) to create labelled
switched paths (LSP) by performing label to a FEC mapping,
where each MPLS routers maintains learned labels in label
forwarding information base (LFIB); each entry of LFIB
associates an FEC with an (LDP Identifier, label) pair, to
maintain LSP path as a series of interconnected (in-to-out)
labels. Thus, when next hop changes for a FEC, MPLS router
retrieves the label for the new next hop from the LFIB.
However, LFIB is extracted from general label information
base (LIB) table; hence LFIB is smaller than the ordinary
routing forwarding table found in TCP/IP networking; which
gives the forwarding speed to MPLS over TCP/IP networks.
MPLS operation details found in [9] [10]. Finally, because of
lower packet transfer delay, efficient path establishment and
resource utilization, rapid forwarding technique, scalability,
and assured performance of the services offered by MPLS
mechanism; MPLS is seen as one of the most suitable
networking technologies for fulfilling transmission
requirements for real-time voice and video applications, as
reported in [21][22]. Those MPLS features encouraged us to
apply MPLS as on-chip communication technique into NoC
system, since many current MPSoC systems such as those
found in mobile computing devices include working with real-
time applications beside different other Internet applications.

V. THE REALIZED MESH NOC SYSTEM
The implemented mesh NoC system contains three major
components: switch, processing core, and mesh network. In
this section these three parts are briefly described.

A. Switch structure

Switching technique describes the HW and SW protocols
that are needed for transmitting and buffering data during
message sending between adjacent switches (or routers) of any
network. The designed switch is based on MPLS switching/
routing technique, with bidirectional links where every port is
linked with a pair of opposite unidirectional channels, for
transmitting and receiving. However, all switches are designed
as the same LER MPLS routers that capable of performing
ordinary IP routing (TCP/IP) and MPLS switching with MPLS
forwarding methods, see Fig. 3.
The switch contains the following components.
(1) Crossbar switch: It is the central module of the switch

which is in charge of connecting switch input buffers to

switch output buffers. Crossbar offers more speed to
further enhance MPLS with more speed. However, by
limiting the crossbar’s size on in-out the scalability will not
be affected.

(2) Link controllers: link controllers are input link controllers
and output link controllers that interconnect switches and
define the network topology. In this switch design every
link controller at input ports and output ports have links to
the three packet types and buffers (IP, MPLS, and LDP).
Buffers sores different packets temporarily, which scales
the bandwidth as the number of ports increases and
requires a switch with a number of input ports equal to the
number of physical channels. Thus, the switch has a buffer
management unit to observe buffers of different packets
(IP, MPLS, and LDP).

(3) Routing unit: MPLS mechanism is considered as a table-
based routing technique because of building many tables
(routing table, routing forwarding table, LIB, and LFIB).
However, both the Hamiltonian paths and XY routing
algorithm are used to support the MPLS operation to help
making of such tables [5] [6].

(4) Arbitration unit: MPLS protocol is a control protocol so the
LSP path has to be established between communicating
cores before sending any packet, which is sufficient to use
only a simple arbitration technique to control the switch
shared resource: switch buffers and switch in/out ports.
However, a simple fair arbiter is employed to treat all links
and requests at each cycle equally.

Fig. 3. Switch internal structure

(5) MPLS component: responsible for applying all functions
and procedure of MPLS technique; which include:

 LSPs creation: this procedure constructs LSP path from the
source switch to the destination switch, where the first
ingress LER switch controls and assigns FEC by using
source/destination IP addresses. A new LSP path is created
at LIB table and a request label message (LDP packet) is
sent to the neighboring switch to perform the mapping of the
label and create a new LSP in LFIB table at every switch the

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 631 --

packet will pass until the packet reaches the parent switch of
the destination processing core. After that the LDP packet
will return back through the same path carrying a mapping
label to complete the desired path on LFIB. Finally the LSP
is activated in LFIB table at ingress switch; the state
diagram is illustrated in Fig. 4.

S0

S1

S2S3

FEC

Mapping label

Request label

Fig. 4. LSP’s creation process using LDP protocol of MPLS

As shown in Fig. 4 the S0 is representing the ingress MPLS
LER switch that defines the FEC of the packet, as well as it
starts the initiiation of LSP path connecting source with
destination using the LDP protocol associated with MPLS.
Hence, the S0 will add a new entry to its FIB table S0 will
define the output interface to S1 inside the FIB table. Then S0
sends a request label to S1, when S1 responds with the
mapping label, a new entry will be added to the LFIB table
where it has the output interface assigned with the label and the
input interface with the assigned label, this process keeps
repeating at each switch until it arrive at the egress LER switch.
Therefore, this will return the mapping to S2 until it reaches S0
and then LFIB entry will be completed and the desired LSP
path is finished.

(6) Forwarding unit of packets using MPLS technique:
Forwarding of packets through a particular mesh NoC
system is made simple by applying MPLS technique over
the routers (switches) enclosed in the selected LSP path.
Therefore, the forwarding of packets is continued until the
packets reach the destination switch by consulting the
LFIB table and determining the outgoing label and the
definite interface of each switch. However, as the packet
reaches the target switch, the switch will strip out the label
and forwards it as traditional IP packet to its final
processing core. The state diagram of this task is depicted
in Fig. 5. As seen in Fig. 5; state S0 receives an IP packet
from processing node N0. As mentioned each switch in the
proposed mesh NoC network works as an edge LER MPLS
switch. Thus, S0 will assign FEC to the incoming IP packet
and defines a label to it, then; it sends it as MPLS packet.
Accordingly, S1 receives that MPLS packet and based on
the LFIB table along the LSP; it searches it and will swap
the incoming label with the next output label and sends it
through the specified outgoing interface as an MPLS
packet. Therefore, the same routine will be repeated in S2
and transfers the MPLS packet to S3, where also the S3
will pull the label off as the LER edge switch (as a last

switch) and passes the traditional IP packet to the final
destination processing node N1.

S0

S1

S2S3

FEC

MPLS Packet

N0

N1

IP Packet

IP Packet

Fig. 5. State diagram of packets forwarding using MPLS technique

(7) Other switch functions: the switch contains four main
algorithms with their related functions and procedures,
which perform the switching of different packets (IP,
MPLS, LDP) across the switches include:

- Moving LDP packet from the switch’s input buffer to the
switch’s output buffer

- Moving LDP-packet from switch’s output buffer to the
neighbor switch input buffer

- Moving MPLS-packet from switch’s input buffer to
switch’s output buffer

- Moving MPLS-packet to the neighboring switch’s input
buffer

B. Processing node (core) internal structure and functions

The processing node is designed as a separate unit that
models and simulates the processing core of mesh topology of
NoC system which simply works by generating messages
(packets), sends packets to other cores, buffer packets
temporarily, and consumes the received messages (packets)
from other cores inside mesh network. The internal structure
that clarifies the operation of a processing node as a source or
as a destination with its relation to the parent switch is
illustrated in Fig. 6.

Fig. 6. The simulator communication flow model

Nodes are connected to the parent switches through one
input physical link and one output physical link. Each node has

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 632 --

its address, its generated message list to hold the produced
messages, and received message list to hold the received
messages from different nodes. The node component in the
developed C++ program contains whole needed methods which
used for messaging and traffic configuration. Messages are
generated from a source node and forwarded to its parent
switch. From that switch, with the aid of MPLS switching and
forwarding components and arbitration, the message either
transferred to an adjacent switch or supplied to the destination
processing core.

C. Mesh network generation process

The network is the main structure at the highest abstraction
level of the modeled mesh NoC system. The mesh NoC
network generation piece of software implements the
operations of generating, transferring, and receiving of the
messages between all processing nodes of the mesh NoC in the
form of packets. The network entity achieves the function of
generating the mesh network structure by creating a list of
cores (nodes) and a list of communicating MPLS switches,
setting adjacent switches which make the whole mesh topology
network, and mapping of nodes with switches, as seen in Fig.
2. Also, this entity implements the transferring function which
forwards packets through the network from output buffer of a
node to the parent switch’s input buffer. Furthermore, this
entity performs the forwarding of packets from switches output
buffers to the nodes input buffers. Basically, it is called upon
request from the switch object and performs the method of
switching/moving packets from node’s input buffer to node’s
output buffer across the crossbar. The mesh network
generation component realizes the following:

(i) Generation the mesh network method
The network object in the developed mesh NoC design creates
all the processing cores, performs nodes linking between every
node with its parent switch, and then interconnects all the
switches to make the required mesh structure NoC network;
the steps of this method cover:

1) Firstly calculate the number of switches by the relation:
Number of switches=number of IP nodes.

2) Determine the position of each switch as row or column
(matrix);

3) Create the switch;
4) Add the switch to the switch list;
5) Create a processing node and link it to its parent switch;
6) Add addressing to every switch;
(ii) Setting adjacent switches
This method completes the generation of the mesh network by
setting the adjacency relationship between the switches in the
mesh matrix layout; defining row and column, e.g. illustrating
example shows (4X4 matrix).This method accomplishes the
following steps:
1) Define the position of each switch;
2) Compare the row of the switch to the max. number of

rows;
3) If the row is smaller than the max. number of row then the

position of the adjacent switch will be in the top;
4) If the row is equal to the max. number of rows then the

position of the adjacent switch is in the same row;

5) If the row is bigger than 0 then position of the adjacent
switch will be in the bottom, and if it equals 0 then it’s in
the same row;

6) Compare the column to the max. number of columns;
7) If the column is smaller than the max. number of columns

then the position of the adjacent switch will be in the right,
if its equal then it is in the same column;

8) If the column is bigger than 0 then position of the adjacent
switch will be in the left, and if it equals 0 then it’s in the
same row;

9) Go to the next switch in the switch list.

VI. SIMULATOR STRUCTURE

The target architecture of the designed NoC system is the
mesh topology which highlights simplicity, simple routing
mechanism and somehow network scalability. However, the
mesh switches are arranged in dimensional matrix in a columns
and rows arrangement in which the processing nodes (cores)
are interconnected to the switches. Remember that the node has
a message generation unit that makes messages in a random
way, transform every message into a series of packets
depending on the packet’s length that is defined in the
simulator setup file, and store those packets inside the node
internal buffers. In addition, the core owns output buffer unit in
order to briefly store packets before transferring them toward
the adjacent switch. Furthermore, the core contains input buffer
element to receive the incoming packets sent to it from other
processing nodes (cores) across the parent switch. The
simulator running procedure is shown in Fig. 7.

Fig. 7. Simulator running procedure

The packet transfer between communicating nodes (cores)
is made through the LSP paths using different switches of the
mesh topology. However, the on-chip communication process
running inside the developed NoC system is implemented by
applying MPLS technique with associated flow control and
packet forwarding mechanism which uses label assignments to
IP-packets using accurate LSP construction procedure that
based on the mappings of (FEC, Labels) to LSP paths, which is
the function of LDP protocol. The communication flow is quite
complex, since every node generates random messages, every
message contains specific number of packets, then packets are
temporarily stored in node’s output buffers to be ready for
sending to a parent switch’s input buffer whenever there are
free buffer cells available at the parent switch’s input buffer.
Subsequently, those packets become ready to be routed and
passed from switch-to-switch by label insertion/deletion

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 633 --

(swapping) through the defined LSP path until the packet
reaches the final switch. However, the final switch then passes
the packet directly to its final destination node’s input buffer
for final processing inside the node (core).

The simulator has the following features:

 The simulator shows the MPLS label advertising and label
bindings with FECs that are made possible by running LDP
protocol to create LSP paths exploiting the matrix of
switches found in mesh topology before transmitting any
data packets between any cores inside the NoC system, as
seen in Fig. 8.

 The simulator shows the movement of label request process,
label and FEC mapping, label insertion to packets, illustrates
the MPLS packets after creation, label swapping during
packet switching, switching of MPLS packets across
switches along the selected LSP path, and demonstrates
label stripping when packet arriving at its destination.

 The simulator generates a random number of messages for
each node; each message has a random length. Then, each
message is divided into a series of packets. These packets
are sent out to random nodes.

 The simulator shows the number of generated messages
from each processing core (IP node), for each message the
simulator also presents while running the total number of its
constructed packets.

 The simulator demonstrates the movement of packets
(forwarding of packet) sent over switches along different
paths inside the network. Also, it shows all sent/received
packets by all cores at every simulation cycle.

 For each packet, the simulator marks on cycle-by-cycle
basis the LSP path taken by that packet from sender to
destination.

 The simulator provides an output log file that records all the
simulation work on packet’s level.

 The simulator at the end of simulation process reports the
average packet latency (end-to-end delay), number of
successfully received packets, and number of lost packets,
calculate core’s throughput, and estimate the system
throughput.

The developed simulator has been tested with 4x4 mesh
topology NoC system shown in Fig. 8 which has 16 cores
(intellectual propriety nodes (IP nodes)), Fig. 8-a illustrates
simulator initial configuration is listed in Fig. 8-b. Fig. 8-c
shows simulation cycle #1 and cycle #2446 as a portion of the
simulator’s output file, which is clear evidence that the
simulator works with efficient MPLS functions and procedures.
In addition it describes how the simulator will use the
previously explained theories and designed components such as
how LDP creates LSP paths, crossbar and switching, MPLS
forwarding and routing procedures.

0,1 1,1 2.1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1.0 2,0 3,0

IP5 IP4

IP3IP2IP1IP0

IP7 IP6

IP8 IP9 IP10 IP11

IP13IP14IP15 IP12

M
apping label

(a) Mesh topology as 4X4 matrix NoC example

(b) Simulator’s initial configuration

Cycle # 1
Moving traffic from IP node output buffer to parent Switch
26 Packets is transferring From Node[4] To Node[1] Cycle 1
GenTime 1

 20 Packets is transferring From Node[11] To Node[6] Cycle
1 GenTime 1

 1 Packets is transferring From Node[12] To Node[5] Cycle 1
GenTime 1

Arriving packets to switches

 Packet is arriving To Switch (3,1) from Node[4]

 Packet is arriving To Switch (1,2) from Node[9]

 Packet is arriving To Switch (3,2) from Node[11]

 Packet is arriving To Switch (3,3) from Node[12]

Moving LDP Messages between Switches............

 Request Label Message of FEC 401 is transferring From
Switch (3,1) To Switch (0,1)

 Request Label Message of FEC 1106 is transferring From
Switch (3,2) To Switch (3,3)

 Request Label Message of FEC 1205 is transferring From
Switch (3,3) To Switch (3,0)

 Request Label Message of FEC 906 is transferring From
Switch (1,3) To Switch (1,2)

 Request Label Message of FEC 1205 is switching From Switch
(3,0) To Switch (3,3)

 Request Label Message of FEC 401 is switching From Switch
(0,1) To Switch (0,2)

 Request Label Message of FEC 906 is switching From Switch
(1,2) To Switch (1,3)

 Request Label Message of FEC 1106 is switching From Switch
(3,3) To Switch (3,2)

Cycle # 2446
Moving traffic from IP node output buffer to parent Switch -

16 Packets is transferring From Node[7] To Node[10] Cycle
2446 GenTime 2446

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 634 --

 Packet is arriving To Switch (0,1) from Node[7]

 Packet is arriving To Switch (2,3) from Node[13]

Moving LDP Messages between Switches............

 Request Label Message of FEC 710 is transferring From
Switch (0,1) To Switch (0,2)

 Request Label Message of FEC 710 is switching From Switch
(0,2) To Switch (1,2)

Moving MPLS Packets between Switches............

 MPLS Packet of Tag 65 is Swapping its Tag by Tag 73 in
Switch (2,0)

 MPLS Packet of Tag 73 is Popping its Tag in Switch (3,0)
and Forward to its IP destination # 3

 MPLS Packet of Tag 125 is Swapping its Tag by Tag 65 in
Switch (2,1)

 MPLS Packet of Tag 207 is Swapping its Tag by Tag 125 in
Switch (2,2)

 Tag 207 is pushing to Packet # 34 in Switch (2,3)
 MPLS Packet of Tag 73 is transferring From Switch (2,0) To
Switch (3,0)

 MPLS Packet of Tag 65 is transferring From Switch (2,1) To
Switch (2,0)

 MPLS Packet of Tag 125 is transferring From Switch (2,2) To
Switch (2,1)

 MPLS Packet of Tag 207 is transferring From Switch (2,3) To
Switch (2,2)

Arrive IP Packets to its Destination:

Node[3] has received Packet 30 from Node[13]
Final statement of the simulator’s out put

- Throughput[Net] -----> 1.57837
- Throughput[Packets Leaving Switch]-> 5.76989
- Node Throughput -----> 1.57856
- Averag Packet Delay ----->26.3531
- Total Generated Messages: 6203
- Total generated packets: 157,875
- Total Sent Messages: 6202 (157,842 packets)
- Total Recieved Messages: 6200(157,835 packets)

(c) Portion of the simulator’s output

Fig. 8. Some parts of the output log file of the simulator

VII. PERFORMANCE ANALYSIS RESULTS

At the end, the achieved end results of the developed
simulator are compared with the results that are obtained from
two other simulators the MPLS FAT tree NoC simulator which
described in [19], and the gpNoCSim simulator that has been
described in [20]. The gbNoCSim simulator is an open source
NoC simulator based on wormhole routing enhanced with
virtual channel mechanism as an on-chip communication
means for mesh NoC system.

A. Experiment (1): Running simulators

The first experiment is to compare 16 node topologies:
(4X4 mesh) and 16 node Fat tree. The results are shown in
tables 1, 2, and 3. However, Table I shows of 16 cores Fat tree
topology results using MPLS reports that the average packet
delay of 21.73ms with 26368 generated packets with a
throughput of 0.26 with zero lost packets, this result is the best
result among the all reported results because of redundancy
links of Fat tree structure. Table II illustrates the results of the
gbNoCSim simulator with wormhole+virtual channels
technique. The maximum generated messages 42642 recorded
the average packet delay of 111.04 ms with 9 lost packets
which is 5 times more than that of MPLS Fat tree with a
throughput value equals to 0.164. Table III describes the results

MPLS network simulator results for 4x4 mesh NoC system
which reported average packet delay of 38.58ms with 115732
generated packets with a throughput of 0.921 with 8 lost
packets. Therefore, MPLS with both topologies (mesh and Fat
tree) reported lowest average packet delay than
wormhole+virtual channels technique. But, the mesh topology
with MPLS reported the worse results of average packet delay
than Fat tree topology because of Fat tree includes redundancy
links.

TABLE I. MPLS NETWORK SIMULATOR’S RESULTS FOR FAT TREE 16
NODES NOC SYSTEM

Generated
packets

Sent
packets

received
packets

Lost
packets

MPLS
Throughput

Avg
Packet
Delay

58222 58222 58222 0 0.58 22.72

41017 41017 41017 0 0.40 21.77

26368 26368 26368 0 0.26 21.73

17069 17069 17069 0 0.16 21.12

11477 11477 11477 0 0.11 20.82

9563 9563 9563 0 0.08 20.71

2392 2392 2392 0 0.02 21.87

TABLE II. GBNOCSIM SIMULATOR RESULTS FOR 4X4 MESH NOC
SYSTEM

generated

packets
Sent

packets
receivd
packets

Lost
packets

wormhole
Throughput

wormhole
Avg
Packet
Delay

42642 42633 42633 9 0.164 111.04

25629 25629 25629 0 0.098 79.50

21275 21275 21273 2 0.082 78.80

12787 12787 12786 1 0.048 68.73

9884 9884 9879 5 0.039 71.99

8465 8465 8463 2 0.032 68.52

6408 6408 6406 2 0.024 68.41

TABLE III. MPLS NETWORK SIMULATOR RESULTS FOR 4X4 MESH NOC
SYSTEM

Generated
packets

Sent
packets

received
packets

Lost
packets

MPLS
Throughput

Avg
Packet
Delay

101731 101731 101726 7 1.647 44.06

115732 115732 115724 8 0.921 38.58

107128 107128 107120 8 0.80 36.50

80441 80441 80440 1 0.671 39.02

57138 57138 57132 6 0.49 36.50

30009 30009 30007 2 0.41 37.75

25790 25790 25780 10 0.21 38.29

B. Experiment (2):Troughput comparisions

In this experiment a comparison between the throughputs of
the developed simulator for MPLS-based mesh NoC with
MPLS-based Fat tree NoC systems against the gbNoCSim
simulator which uses wormhole+ virtual channel mechanism.

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 635 --

However, the node throughput is measured by counting the
packets that sent by the source node and safely arriving at the
destination node over a specified time interval. Whereas, the
total throughput of the whole network is measured by
accumulating all delivered traffic flows; i.e. (total received
packets between all processing cores multiplied by packet’s
length) dividing it by (number of processing cores multiplied
by total cycle of the simulation [20]. Fig. 9 illustrates the
throughput comparison of 8X8 mesh with MPLS against 8X8
mesh with wormhole+virtual channel mechanism of
gbNoCSim simulator, the figure clearly demonstrates that
MPLS technique gained about 5 times better throughput than
the wormhole+virtual channel mechanism. However, with
MPLS the throughput is linearly increasing as the load of
injected packets increases. Another kind of comparison results
is shown in Fig. 10, which shows throughput with MPLS
technique for 64 cores Fat tree and mesh topologies. The figure
remarks that mesh with MPLS technique and with the increase
of processing cores (64 cores) the mesh still gains better
throughput than Fat tree with MPLS. The recorded results
approves also that the mesh throughput is still increases linearly
with the traffic increase and overcomes the fat tree for the size
of 16 and 64.

0

0.5

1

1.5

2

5000 10000 30000 40000 50000 60000 70000

Th
ro
ug

h
pu

t

Generated Packets

Throughput of 8x8 mesh

Mesh Wormhole routing with virtualchannels Throughput

Mesh Mpls Throughput

Fig. 9. Throughput of 8X8 mesh with MPLS against 8X8 mesh with
wormhole+virtual channel mechanism

0

0.5

1

1.5

2

10000 20000 40000 50000 60000 70000 80000

Th
ro
ug

hp
u
t

Generated Packets

Throughput Comparison of 64 processing cores

for both Fat tree and mesh topologies with

MPLS

FAT TREE MPLS MESH MPLS

Fig. 10. Throughput with MPLS technique for 64 cores Fat tree against mesh

C. Experiment (3): Average packet delay

In this experiment an assessment of average packet delay
between the developed simulator with MPLS-based mesh NoC
system against the MPLS-based Fat tree NoC system with a
contrast of gbNoCSim simulator which uses wormhole+ virtual
channel mechanism. However, the latency can be used as a
performance evalution parameter for interconnection network.
Latency (end-to-end delay) can be defined as the time needed
to complete a transfer of a packet from a source core to a
destination core. Therefore, the average packet end-to-end
delay for a network topology can be calculated by dividing the
summation of all the recieved packets' delays by all procesing
cores over the number of all received packets by all cores to get
the value of latency in cycles/packet [20]. Fig. 11 describes the
average packet delay for 8x8 mesh (64 cores) by comparing
MPLS against wormhole+virtual channels techniques, which
show that there is a big variation between the wormhole
+virtual channels when compared to MPLS in 8x8 mesh
topologies. However, the figure results clearly showing that
MPLS has gained nearly constant end-to-end packet delay
value even with increase of the traffic load, while
wormhole+virtual channels has reported 3-times higher end-to-
end packet delay which increases also as the traffic starts to
cross 25000 packets/sec, which indicates the start of network
congestion. In addition, the average packet delay with MPLS
technique is less than the one registered with wormhole
+virtual channels with a value factor of at least 1.5. Another
analysis result is shown in Fig. 12 for the average packet
latency (end-to-end delay) which worked out between Fat tree
and mesh topologies using MPLS in both same size topologies;
with 64 cores. The figure clarifies that the Fat tree topology has
slightly less average packet delay than mesh structure, that due
to the redundancy of the communication links of Fat tree that is
added to the topology to make it with more links as we go up
toward the root. Therefore, Fat tree topology is better
than mesh topology in terms of average packet end-to-end
delay.

Fig. 11. Average packet delay for mesh topology with MPLS against
wornhole+virtual channels

0

20

40

60

80

100

120

5000 10000 15000 20000 25000 30000 35000

A
V
G
 D
e
la
y

Received Pckets

Average packet latency for mesh 8x8 topology
with 64 cores

 Mesh wormhole routing Mesh MPLS

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 636 --

Fig. 12. Average packet delay for 64 cores with MPLS for Fat tree and mesh
topologies

VIII. CONCLUSIONS
MPLS is described as an efficient on-chip communication

technique for mesh NoC design to realize MPSoC systems. A
simulator written in C++ is built to verify all the proposed
functions and procedures to make MPLS as on-chip
communication means such as input/output link controllers,
crossbar switch, MPLS switching and mesh routing units
including LDP protocol for LSP path establishment, buffer
management. In addition processing IP cores are designed with
sufficient methods required to packetize, send, store, transfer,
receive, and forward messages. The presented results of
network throughput and average packet latency (end-to-end
packet delay) demonstrate that the MPLS technique is suitable
to implement efficient mesh NoC system when equated by
wormhole switching+virtual channels. Finally, comparison
analysis with Fat tree topology found that the Fat tree
overcomes the mesh topology in terms of average packet
latency because of the available redundancy links found in
upper levels of fat tree structure toward the root that facilitates
more routes and provides scalability to fat tree topology.

REFERENCES
[1] A. A. Jerraya and W. Wolf (editors), Multiprocessor Systems-On-

Chips. San Francisco, USA: Morgan Kaufmann Publishers, 2005.
[2] A. H. Jantsch and H. Tenhunen, Networks on Chip. USA: Kluwer

Academic Publishers, 2003.
[3] Tobias Bjerregaard, and Shankar Mahadevan: “A Survey of

Research and Practices of Network-on-Chip”, ACM Computing
Surveys, Vol. 38, Article no.1, March 2006.

[4] Dally, W. J., and B. Towles, “Route packets, not wires: On-chip
interconnection networks”, Proc. of the DAC'38 Conference, Las
Vegas, June 2001.

[5] J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks – An
Engineering Approach, USA: Morgan Kaufmann, 2002.

[6] W. J. Dally and B. Towles, Principles and Practices of
Interconnection Networks, San Francisco: Morgan Kaufmann
Publishers, 2004.

[7] De Michelli G, Benini L. Network on Chips, Berlin: Morgan
Kaufmann: 2006.

[8] Nikolay Kavaldjiev and Gerard J. M. Smit: “A survey of on-chip
communications for SoC,

[9] Rosen E., Viswanathan A., and R. Callon: “Multiprotocol Label
Switching architecture”, IETF RFC 3031, 2001.

[10] M. Deepankar and R. Karthikeyan, Network Routing, Protocols,
and Architectures. USA: Morgan Kaufmann Publishers, 2007.

[11] Dominguez-Dorado M., Rodriguez-Perez F. J., Gonzalez-Sanchez
J. L., Marzo J. L., Gazo A., 2005: “An Architecture to provide
Guarantee of Service (GoS) to MPLS”, IV Workshop in G/MPLS
Networks.

[12] Li-Shiuan Peh, Stephen W. Keckler, and Sriram Vangal: On-Chip
Networks for Multicore Systems, Chapter 2 in S.W. Keckler et al.
(eds.), Multicore Processors and Systems, Integrated Circuits and
Systems, DOI 10.1007/978-1-4419-0263-4_2, Springer
Science+Business Media, 2009.

[13] Brett Stanley Feero, Partha Pratim Pande: Networks-on-Chip in a
Three-Dimensional Environment: A Performance Evaluation,
IEEE Transactions on Computers, Vol. 58, No. 1, January 2009,
pp.32-45.

[14] Luciano Bononi, Nicola Concer, Miltos Grammatikakis: NoC
Topologies Exploration based on Mapping and Simulation Models,
IEEE, August 2007.

[15] D. Ludovici, et al., “Assessing Fat-Tree Topologies for Regular
Network-on-Chip Design under Nanoscale Technology
Constraints”, Proc. of Conf. on Design, Automation and Test in
Europe, 2009.

[16] Basavaraj Talwar, Shailesh Kulkarni and Bharadwaj Amrutur,
“Latency, Power and Performance Trade-offs in Network-on-Chips
by Link Microarchitecture Exploration”, 22nd Intl. Conference on
VLSI Design, Jan. 2009.

[17] Reza Kourdy, Mohammad Reza Nouri Rad, Mohammad Pooyan,
Majid Rahimi Nasab, “Improvement MPLS-NOC bandwidth by
dividing bandwidth in Fat-tree topology”, In the 2nd International
Conference on Computer and Automation Engineering (ICCAE),
Singapore, IEEE conference, Feb. 2010, Volume: 3, pp. 470 – 474.

[18] Azeddien M. Sllame and Asma Elasar: Modeling and Simulating
Network-on-Chip Designs: A Case Study of Fat Tree
Interconnection Architecture, In International Journal of Computer
Theory and Engineering, pp. 823-829, Vol. 5, No. 5, October 2013.

[19] Nagwa Salama and Azeddien M. Sllame: Designing an Efficient
MPLS-Based Switch for FAT Tree Network-on-Chip Systems, In
ACM Proceedings of the 1st International Workshop on Advanced
Interconnect Solutions and Technologies for Emerging Computing
Systems (AISTECS workshop), Prague, Czech Republic, January
2016.

[20] Hemayet H. M., A. Ahmed, T. Islam AI-ayeemn and A. Md
Mostofa. 2007. “GPNOCSIM - A General Purpose Simulator for
Netwotk-on-Chip.” In Proceedings of the International Conference
on Information and Communication Technology IEEE ICICT07.

[21] Azeddien M. Sllame, Mohamed Aljafry: “Performance Evaluation
of Multimedia over IP/MPLS Networks”, International Journal of
Computer Theory and Engineering, Vol. 7, No.4,pp.283-291,
August 2015.

[22] J. Evans and C. Filsfils, Deploying IP and MPLS QOS for
Multiservice Networks: Theory and Practice. USA: Morgan
Kaufmann Publishers, 2007.

0

10

20

30

40

50

10000 20000 30000 40000 50000 60000 70000

A
V
G
 D
e
la
y

Received Packets

Average packet latency for 64 cores Fat tree and mesh topologies

 FAT TREE MESH

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 637 --

