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Abstract—This paper describes designing efficient mesh 
topology Network-on-Chip system by employing MPLS protocol 
as an on-chip communication technique. Discrete-event simulator 
is developed in C++ to show the applicability of MPLS in 
providing efficient on-chip communication for multicore 
processing system-on-chip designs. Experimental results are 
compared with two simulators: wormhole equipped with virtual 
channels; and MPLS-based fat tree network-on-chip systems. 
Outstandingly, MPLS as on-chip communication means recorded 
better results than the wormhole +virtual channels in terms of 
throughput and packet end-to-end delay (latency).  

I. INTRODUCTION 
The multicore processors are becoming the key success of 

multiprocessing and power-efficient computing. Current 
embedded applications such as real-time multimedia 
applications necessitate intensive computation and higher 
communication’s bandwidths which are difficult to handle by 
different kinds of bus structure such as multi-bus or hierarchal-
bus as on-chip communication means on traditional SoC 
systems. Consequently, powerful on-chip communication 
architecture is required to support the full functionality of these 
applications. Besides that, multicore principle enforced 
designers to shift implementing embedded systems from 
system-on-chip (SoC) into multiprocessing SoC (MPSoC), 
whereas heavy data transfer between such multicores lead 
designers to use interconnection networks as on-chip 
communication technique between heterogeneous multicores 
composing of MPSoC system, as shown in Fig. 1 [1], [2], [3]. 
However, the use of interconnection networks imposed 
applying the principle of separation between computation and 
communication inside the MPSoC systems, as it has been 
previously realized in well-known parallel computing and 
supercomputing machines and systems. Therefore, cores inside 
the chip implementing MPSoC system start communicating by 
sending packets through interconnection network instead of 
using old fashioned electrical buses which use wires routed 
around the chip [4]. Thus, interconnection networks allowed 
the current MPSoC systems to be implemented as networks 
inside a chip; which is named as network-on-chip (NoC); for 
more information about interconnection networks see [5], [6]. 
NoC systems are a scalable networks built inside a chip based 
on using interconnection networks for on-chip communication; 
that capable of interconnecting a large number of 
heterogeneous cores. Scalability, energy efficiency, and 
reliability are the main important advantages of this new on-

chip communication model as borrowed from previously well-
researched interconnection networks. In addition, NoC 
structure provides fault tolerance feature by using adaptive 
routing protocols which can use different paths for 
communication between cores. Furthermore, NoC design 
paradigm increases engineering productivity in such a way that 
NoC eliminates ad-hoc global wire engineering, as well as it 
has advantages of modular, well-structured, flexible structures. 

Fig. 1. MPSoC system with different types of interconnection networks 

 However, NoC is a complete platform for system design, 
heterogeneous cores interfacing, hierarchical integration, 
routing and flow control, debugging and testing [2]. Therefore, 
recent improvements in MPSoC design techniques and 
advances in deep submicron chip technologies opened-up the 
feasibility of a wide range of applications making use of 
massive parallel processing and tightly interdependent 
processes, some adhering to real-time requirements, bringing 
into focus new complex aspects of the underlying 
communication structure, which facilitated by NoC efficiently. 
With NoC implementation an aggregate bandwidth grows 
while the bandwidth of the bus is shared and the speed goes 
down as the cores added to the bus implementation. In addition, 
NoC system designs are based on the interconnection networks 
which exhibit pipelining concurrency in their designs as they 
have been developed to work with parallel computing and 
supercomputers. Whereas, bus implementations did not have 
any concurrency, pipelining is difficult to implement with 
buses. Furthermore, the NoC designs demonstrate the 
separation of abstraction layers. Bus designs suffer from 
computation-communication separation feature. However, 
unlike NoC designs, the bus designs are fairly simple to build 

______________________________________________________PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



with low cost, while NoC designs need new design techniques 
and methodologies, such as network interfacing and novel 
router (switch) designs [3],[7],[8]. This paper presents the 
applicability of using MultiProtocol Label Switching (MPLS) 
networking protocol suite as an on-chip communication 
protocol within mesh interconnection network for future NoC 
designs. From networking point view MPLS is an intelligent 
forwarding mechanism which integrates efficient switching 
functions on layer 2 (data link layer) with effective routing of 
layer 3 (network layer) technique to provide high-performance 
scalable networks to allow efficient use of network resources 
such as routers; with the capability of applying different 
quality-of-service (QoS) levels according to various 
applications’ requirements [9], [10], [11].  

This paper demonstrates how we can exploit the capabilities 
of the MPLS in terms of efficient label switching, path creation 
between communicating cores and routing speed over label-
switched paths on the NoC design paradigm. However, MPLS 
inserts labels to packets, specify QoS level, establishes paths 
among communicating cores based on labels which maps link-
specific labels in the packet header to outgoing links of the 
router (switch), then forwards packets over connected paths; 
where packet-forwarding decisions at the routers are completed 
quickly based only on the contents of the inserted label, without 
the need to examine the whole IP address of that packet as 
found in TCP/IP networks. Consequently, such rich features of 
MPLS and the work in [11] inspired us to develop a C++ 
simulator to research on the applicability of MPLS to realize 
efficient mesh NoC systems.  

This paper is organized as follows: Previous work is 
reported in section 2. Mesh interconnection network are briefly 
described in section 3. MPLS technique’s principle is given in 
section 4. The realized mesh NoC system is described in 
section 5. Section 6 illustrates the simulator structure. Section 7 
reports the performance analysis results. Concluding remarks 
are described in section 8. 

II. II. PREVIOUS WORK  
There are many related research projects arranged in many 

universities and research centers which are supported by 
different international research organizations such as IEEE. 
Current state-of-the-art in multicore processing SoC systems 
focus on NoC design tools, routing algorithms, power 
management and design methodologies by different aspects 
with diverse point views targeting different interconnection 
network topologies such as fat tree, 3D mesh, torus, and 2D 
mesh; see [1] and [3]. Some representative of such related 
researches are: Tobias and Shanker in [3] presented a detailed 
survey of research and practices of NoC systems design in 
which they showed the relation between cores, networking 
interfaces and switching/routing components inside the NoC 
architecture. In addition they discussed the switching methods 
and QoS practices, with no mention to MPLS technique. 
Nikolay and Gerard in [8] provided a comprehensive survey 
about on-chip communication systems which talked over 
routing, queuing, flow control with a discussion of mesh 
topology. Li-Shiuan Peh et al in [12] presented some NoC 
implementations based on mesh topology. Brett and Partha in 
[13] evaluated mesh and tree-based NoCs and reported that 
they both are accomplished better performance when 

implemented in a 3D chips more than the 2D realizations. 
However, they claimed that the mesh-based NoC systems 
demonstrated improved performance in terms of throughput, 
latency, and energy dissipation with an extra area added as a 
chip space overhead. In [14] L. Bononi et al offered a 
comparison analysis of ring, 2D-mesh, and Spidergon using 
theoretical uniform traffic using request/reply on a MPEG4 
benchmark example. D. Ludovici, et al. in [15] described a 
research work about physical synthesis of Fat trees and 2D 
mesh topologies. They provided that as the size of the NoC 
system scales up, 2D meshes will suffer from poor performance 
scalability, whereas Fat trees will gain better performance 
scalability with area cost. Basavaraj et al in [16] presented a 
simulation tool written in System-C that is able to search for 
NoC designs with mesh and torus topologies for HW 
implementation using label switching protocol (LDP) which is 
one of MPLS assisted protocols. R. Kurdy et al in [17] showed 
a research work which equates the performance between IP and 
MPLS with fat tree NoC system with recovery mechanism 
using high level simulation in NS-2. However, authors have not 
shown any design details; just described upper-level simulation 
study using NS-2 which is used in modeling and simulation of 
traditional networks. Azeddien Sllame and Asma Elasar in [18] 
testified a Fat tree based NoC system with a wormhole routing 
+ virtual channels with no use of MPLS mechanism in their 
described system. Azeddien Sllame and Nagwa Salama in [19] 
described a Fat tree based NoC system with MPLS technique 
and provided a comparison against wormhole routing + virtual 
channels which showed improvements to MPLS in terms of 
throughput and latency.  

On the other hand, the work in this paper is a continuation 
of research work described in [19]. The discussion here is 
focused on applying MPLS technique on 2D mesh topology to 
produce efficient mesh NoC system. Therefore, the design of 
2D mesh NoC system will include all necessary components, 
procedures, and functions for switching, arbitration, routing 
and buffering with MPLS networking mechanism. In addition, 
a comparison analysis with the work in [20] which describes 
NoC systems with wormhole routing + virtual channels will be 
provided. 

III. MESH INTERCONNECTION NETWORK 

Interconnection network is a communication structure 
connects a group of processing nodes by means of a specified 
number of communication switches to form network 
architecture in a particular topology. Switches are responsible 
for switching, routing, and flow control of packets flowing over 
the interconnection architecture between the processing cores. 
Network topology specifies the structure details such as the 
static organization of nodes and number of stages of the 
network and switches. Interconnection networks can be 
categorized according to different characteristics. Their 
topologies fall into two main classes static (or direct) and 
dynamic (or indirect). In a static network, point-to-point links 
interconnect the network nodes in some fixed topology; a 
regular topology as mesh or a hypercube is common examples 
of direct type. A dynamic network permits the interconnection 
arrangement between the network nodes to be changed 
dynamically which is made by employing some switching/ 
routing techniques; such as in Fat trees and multistage 
interconnection networks [5], [6]. 
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Nowadays, 2D mesh structure is the most used NoC 
topology because of its simple structure which maps very well 
in VLSI physical realization. Linear arrays are called 1D mesh, 
while the 2D mesh structure is the practical topology that are 
frequently used; see Fig. 2; although the 3D mesh structure are 
sometimes used but not as the 2D mesh. In a mesh topology 
network, the processing cores are organized in a k dimensional 
lattice of width w, giving a total of wk processing cores. (When 
k=2 we get the 2D mesh layout). In mesh the communication is 
allowed between neighboring cores which are directly 
interconnected by switches and their switches are 
interconnected by communication links. Simply speaking, 
mesh topology is regular, simple architecture, in which each 
internal switch is connected to 4 neighbor routers (switches), 
with short links. Each router is connecting only to one 
processing core either with bidirectional or separate in-out 
links, each with sufficient buffering. However, XY routing 
which uses a typical minimal turn deterministic algorithm is 
commonly used with 2D mesh topologies, where the algorithm 
determines to what direction packets are routed during every 
stage of the routing by routing packets in row (X: horizontal 
direction) firstly then it turns to route the packet to the correct 
column (Y: vertical direction) toward targeted core. Though, 
the XY routing is working well with mesh topology, since 
addressing is described by the routers’ positions that are 
represented by XY coordinates. To be more precise the 
deterministic minimal routing means the selected path is one of 
shortest paths between the sender and receiver and is totally 
determined only by sending and destination cores, thus every 
taken hop toward the destination core makes the packet closer 
to the receiving core [5] [6]. 

Features of the mesh topology [5] [6] [8]: 
 Topology: mesh network has a fixed regular topology that
belongs to direct class of interconnection networks. Meshes 
arranged as matrixes with switches at intersection points of 
rows; with each switch has point-to-point links with its 
neighboring switches; processing core is attached also to its 
parent switch with a direct link too. Therefore, as the XY-
dimensions of mesh increases the number of switches (routers) 
increases, which adds more cost overheads, which disturbs the 
scalability. 
 Network traffic balance: in 2D mesh topology the
deterministic routing incurs in-order packet forwarding over 
the same path which produces simple designs which 
efficiently working under uniform traffic only. 
 Deadlock, livelock, starvation: mesh uses XY deterministic
routing that is thought-out as deadlock and livelock free. 
 Routing: mesh uses XY deterministic routing; in which
traffic does not spread regularly over the entire network 
because the algorithm causes the major load to flow in the 
middle of the mesh. Consequently, in mesh topology the 
deterministic routing produces low routing latency and good 
reliability when the network is not under congestion status. 
 Fault tolerance: mesh as an interconnection network has
low fault tolerance capability since it is fixed connected 
topology. 
 Congestion control: due to the fixed regular organization of
mesh topology; it is difficult to respond dynamically to 
congestion when happened. This in turn has a side effect on 
network efficiency and throughput.  

 Latency and throughput: In mesh networks, as the size of
the network increases the latency and throughput will increase, 
but this requires to take care about heavy traffic congestion. 
 Network utilization: with mesh topology the XY
deterministic routing may causes the network resources to be 
underutilized under non-uniform traffic, since the traffic flow 
in the center of the mesh is more than outside of the mesh; 
which will overwhelm the capacity of the links of the switches 
in the center of the mesh. This may increase reaching the 
congestion state very quickly and the mesh performance will 
be disturbed. Alternatively, under uniform traffic distribution 
the XY routing working well. 
 Scalability: performance normally increases with the
increase of processing cores which will efficiently utilize the 
bandwidth of the network. However, due to the mesh topology 
inherited structure as a regular fixed organization it is not 
scalable as the number of processing cores increases.  
 Energy dissipation: the energy dissipation increases linearly
as the number of processing cores, switches, and links increase 
during the operation of the network. 

Fig. 2. Mesh topology (4X4 matrix) 

IV. MPLS PRINCIPLES

MPLS is a communication protocol standardized by 
Internet Engineering Task Force (IETF) that developed to 
accommodate communication with other many protocols; 
which enables MPLS to establish and maintain a connection-
oriented network over connectionless networks such as TCP/IP 
network or makes easy label encapsulation in other network 
types such as making packet-over-SONET/SDH, or label over 
ATM PVCs, label Frame Relay PVCs, and Ethernet [9]. In 
TCP/IP networks the packet decision for forwarding it from 
router to the next hop router along the paths is made at each 
router by inspecting the whole IP header of that packet; which 
consumes processing power of each router and incurs some 
delays to the packet transmission. Unlike TCP/IP networks, the 
MPLS shortens the delay and reduces the processing power 
consumption of the packet forwarding process along the path 
from sending core to receiving core [9]. However, MPLS 
attaches short label to the packet at the entrance router of the 
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MPLS domain with proper QoS service level; which will be 
used by subsequent routers to forward the packet along 
specified path. Thus, MPLS routers made the packet 
forwarding decision only by inspecting that short label which 
will reduce the transmission delays and processing overhead of 
the packet switching and forwarding processes inside the 
router; along the path. Simply, within the MPLS network; the 
label is used as an index into a label-table that identifies out-
interface of current router directly, and then the old label is 
replaced with a new label of the in-interface of the next-hop 
router. Hence the packet is forwarded to its next hop very 
rapidly [9] [10]. Another powerful feature of MPLS protocol is 
that the label contains a field named as forwarding equivalence 
class (FEC), which enables classification of packet streams, 
where all packets that associated to a specific FEC and which 
transferred from an identified node will follow the same path or 
a set of certain paths, and got the same treatment by all routers 
along the path. However, in the MPLS domain, routers are 
using label distribution protocol (LDP) to create labelled 
switched paths (LSP) by performing label to a FEC mapping, 
where each MPLS routers maintains learned labels in label 
forwarding information base (LFIB); each entry of LFIB 
associates an FEC with an (LDP Identifier, label) pair, to 
maintain LSP path as a series of interconnected (in-to-out) 
labels. Thus, when next hop changes for a FEC, MPLS router 
retrieves the label for the new next hop from the LFIB. 
However, LFIB is extracted from general label information 
base (LIB) table; hence LFIB is smaller than the ordinary 
routing forwarding table found in TCP/IP networking; which 
gives the forwarding speed to MPLS over TCP/IP networks. 
MPLS operation details found in [9] [10]. Finally, because of 
lower packet transfer delay, efficient path establishment and 
resource utilization, rapid forwarding technique, scalability, 
and assured performance of the services offered by MPLS 
mechanism; MPLS is seen as one of the most suitable 
networking technologies for fulfilling transmission 
requirements for real-time voice and video applications, as 
reported in [21][22]. Those MPLS features encouraged us to 
apply MPLS as on-chip communication technique into NoC 
system, since many current MPSoC systems such as those 
found in mobile computing devices include working with real-
time applications beside different other Internet applications. 

V. THE REALIZED MESH NOC SYSTEM  
The implemented mesh NoC system contains three major 
components: switch, processing core, and mesh network. In 
this section these three parts are briefly described. 

A. Switch structure 

Switching technique describes the HW and SW protocols 
that are needed for transmitting and buffering data during 
message sending between adjacent switches (or routers) of any 
network. The designed switch is based on MPLS switching/ 
routing technique, with bidirectional links where every port is 
linked with a pair of opposite unidirectional channels, for 
transmitting and receiving. However, all switches are designed 
as the same LER MPLS routers that capable of performing 
ordinary IP routing (TCP/IP) and MPLS switching with MPLS 
forwarding methods, see Fig. 3. 
The switch contains the following components.  
(1) Crossbar switch: It is the central module of the switch 

which is in charge of connecting switch input buffers to 

switch output buffers. Crossbar offers more speed to 
further enhance MPLS with more speed. However, by 
limiting the crossbar’s size on in-out the scalability will not 
be affected. 

(2) Link controllers: link controllers are input link controllers 
and output link controllers that interconnect switches and 
define the network topology. In this switch design every 
link controller at input ports and output ports have links to 
the three packet types and buffers (IP, MPLS, and LDP). 
Buffers sores different packets temporarily, which scales 
the bandwidth as the number of ports increases and 
requires a switch with a number of input ports equal to the 
number of physical channels. Thus, the switch has a buffer 
management unit to observe buffers of different packets 
(IP, MPLS, and LDP). 

(3) Routing unit: MPLS mechanism is considered as a table-
based routing technique because of building many tables 
(routing table, routing forwarding table, LIB, and LFIB). 
However, both the Hamiltonian paths and XY routing 
algorithm are used to support the MPLS operation to help 
making of such tables [5] [6]. 

(4) Arbitration unit: MPLS protocol is a control protocol so the 
LSP path has to be established between communicating 
cores before sending any packet, which is sufficient to use 
only a simple arbitration technique to control the switch 
shared resource: switch buffers and switch in/out ports. 
However, a simple fair arbiter is employed to treat all links 
and requests at each cycle equally.  

Fig. 3. Switch internal structure 

(5) MPLS component: responsible for applying all functions 
and procedure of MPLS technique; which include: 

 LSPs creation: this procedure constructs LSP path from the
source switch to the destination switch, where the first
ingress LER switch controls and assigns FEC by using
source/destination IP addresses. A new LSP path is created
at LIB table and a request label message (LDP packet) is
sent to the neighboring switch to perform the mapping of the
label and create a new LSP in LFIB table at every switch the
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packet will pass until the packet reaches the parent switch of 
the destination processing core. After that the LDP packet 
will return back through the same path carrying a mapping 
label to complete the desired path on LFIB. Finally the LSP 
is activated in LFIB table at ingress switch; the state 
diagram is illustrated in Fig. 4. 

S0

S1

S2S3

FEC

Mapping label

Request label

Fig. 4. LSP’s creation process using LDP protocol of MPLS 

As shown in Fig. 4 the S0 is representing the ingress MPLS 
LER switch that defines the FEC of the packet, as well as it 
starts the initiiation of LSP path connecting source with 
destination using the LDP protocol associated with MPLS. 
Hence, the S0 will add a new entry to its FIB table S0 will 
define the output interface to S1 inside the FIB table. Then S0 
sends a request label to S1, when S1 responds with the 
mapping label, a new entry will be added to the LFIB table 
where it has the output interface assigned with the label and the 
input interface with the assigned label, this process keeps 
repeating at each switch until it arrive at the egress LER switch. 
Therefore, this will return the mapping to S2 until it reaches S0 
and then LFIB entry will be completed and the desired LSP 
path is finished. 

(6) Forwarding unit of packets using MPLS technique: 
Forwarding of packets through a particular mesh NoC 
system is made simple by applying MPLS technique over 
the routers (switches) enclosed in the selected LSP path. 
Therefore, the forwarding of packets is continued until the 
packets reach the destination switch by consulting the 
LFIB table and determining the outgoing label and the 
definite interface of each switch. However, as the packet 
reaches the target switch, the switch will strip out the label 
and forwards it as traditional IP packet to its final 
processing core. The state diagram of this task is depicted 
in Fig. 5. As seen in Fig. 5; state S0 receives an IP packet 
from processing node N0. As mentioned each switch in the 
proposed mesh NoC network works as an edge LER MPLS 
switch. Thus, S0 will assign FEC to the incoming IP packet 
and defines a label to it, then; it sends it as MPLS packet. 
Accordingly, S1 receives that MPLS packet and based on 
the LFIB table along the LSP; it searches it and will swap 
the incoming label with the next output label and sends it 
through the specified outgoing interface as an MPLS 
packet. Therefore, the same routine will be repeated in S2 
and transfers the MPLS packet to S3, where also the S3 
will pull the label off as the LER edge switch (as a last 

switch) and passes the traditional IP packet to the final 
destination processing node N1. 

S0

S1

S2S3

FEC

MPLS Packet

N0

N1

IP Packet

IP Packet

Fig. 5. State diagram of packets forwarding using MPLS technique 

(7) Other switch functions: the switch contains four main 
algorithms with their related functions and procedures, 
which perform the switching of different packets (IP, 
MPLS, LDP) across the switches include: 

- Moving LDP packet from the switch’s input buffer to the 
switch’s output buffer

- Moving LDP-packet from switch’s output buffer to the 
neighbor switch input buffer

- Moving MPLS-packet from switch’s input buffer to 
switch’s output buffer

- Moving MPLS-packet to the neighboring switch’s input 
buffer 

B. Processing node (core) internal structure and functions 

The processing node is designed as a separate unit that 
models and simulates the processing core of mesh topology of 
NoC system which simply works by generating messages 
(packets), sends packets to other cores, buffer packets 
temporarily, and consumes the received messages (packets) 
from other cores inside mesh network. The internal structure 
that clarifies the operation of a processing node as a source or 
as a destination with its relation to the parent switch is 
illustrated in Fig. 6. 

Fig. 6. The simulator communication flow model 

Nodes are connected to the parent switches through one 
input physical link and one output physical link. Each node has 
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its address, its generated message list to hold the produced 
messages, and received message list to hold the received 
messages from different nodes. The node component in the 
developed C++ program contains whole needed methods which 
used for messaging and traffic configuration. Messages are 
generated from a source node and forwarded to its parent 
switch. From that switch, with the aid of MPLS switching and 
forwarding components and arbitration, the message either 
transferred to an adjacent switch or supplied to the destination 
processing core.  

C. Mesh network generation process 

The network is the main structure at the highest abstraction 
level of the modeled mesh NoC system. The mesh NoC 
network generation piece of software implements the 
operations of generating, transferring, and receiving of the 
messages between all processing nodes of the mesh NoC in the 
form of packets. The network entity achieves the function of 
generating the mesh network structure by creating a list of 
cores (nodes) and a list of communicating MPLS switches, 
setting adjacent switches which make the whole mesh topology 
network, and mapping of nodes with switches, as seen in Fig. 
2. Also, this entity implements the transferring function which
forwards packets through the network from output buffer of a 
node to the parent switch’s input buffer. Furthermore, this 
entity performs the forwarding of packets from switches output 
buffers to the nodes input buffers. Basically, it is called upon 
request from the switch object and performs the method of 
switching/moving packets from node’s input buffer to node’s 
output buffer across the crossbar. The mesh network 
generation component realizes the following: 

(i) Generation the mesh network method 
The network object in the developed mesh NoC design creates 
all the processing cores, performs nodes linking between every 
node with its parent switch, and then interconnects all the 
switches to make the required mesh structure NoC network; 
the steps of this method cover: 

1) Firstly calculate the number of switches by the relation:
Number of switches=number of IP nodes.

2) Determine the position of each switch as row or column
(matrix);

3) Create the switch;
4) Add the switch to the switch list;
5) Create a processing node and link it to its parent switch;
6) Add addressing to every switch;
(ii) Setting adjacent switches 
This method completes the generation of the mesh network by 
setting the adjacency relationship between the switches in the 
mesh matrix layout; defining row and column, e.g. illustrating 
example shows (4X4 matrix).This method accomplishes the 
following steps: 
1) Define the position of each switch;
2) Compare the row of the switch to the max. number of

rows;
3) If the row is smaller than the max. number of row then the

position of the adjacent switch will be in the top;
4) If the row is equal to the max. number of rows then the

position of the adjacent switch is in the same row;

5) If the row is bigger than 0 then position of the adjacent
switch will be in the bottom, and if it equals 0 then it’s in
the same row;

6) Compare the column to the max. number of columns;
7) If the column is smaller than the max. number of columns

then the position of the adjacent switch will be in the right,
if its equal then it is in the same column;

8) If the column is bigger than 0 then position of the adjacent
switch will be in the left, and if it equals 0 then it’s in the
same row;

9) Go to the next switch in the switch list.

VI. SIMULATOR STRUCTURE

The target architecture of the designed NoC system is the 
mesh topology which highlights simplicity, simple routing 
mechanism and somehow network scalability. However, the 
mesh switches are arranged in dimensional matrix in a columns 
and rows arrangement in which the processing nodes (cores) 
are interconnected to the switches. Remember that the node has 
a message generation unit that makes messages in a random 
way, transform every message into a series of packets 
depending on the packet’s length that is defined in the 
simulator setup file, and store those packets inside the node 
internal buffers. In addition, the core owns output buffer unit in 
order to briefly store packets before transferring them toward 
the adjacent switch. Furthermore, the core contains input buffer 
element to receive the incoming packets sent to it from other 
processing nodes (cores) across the parent switch. The 
simulator running procedure is shown in Fig. 7. 

Fig. 7. Simulator running procedure 

The packet transfer between communicating nodes (cores) 
is made through the LSP paths using different switches of the 
mesh topology. However, the on-chip communication process 
running inside the developed NoC system is implemented by 
applying MPLS technique with associated flow control and 
packet forwarding mechanism which uses label assignments to 
IP-packets using accurate LSP construction procedure that 
based on the mappings of (FEC, Labels) to LSP paths, which is 
the function of LDP protocol. The communication flow is quite 
complex, since every node generates random messages, every 
message contains specific number of packets, then packets are 
temporarily stored in node’s output buffers to be ready for 
sending to a parent switch’s input buffer whenever there are 
free buffer cells available at the parent switch’s input buffer. 
Subsequently, those packets become ready to be routed and 
passed from switch-to-switch by label insertion/deletion 
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(swapping) through the defined LSP path until the packet 
reaches the final switch. However, the final switch then passes 
the packet directly to its final destination node’s input buffer 
for final processing inside the node (core).  

The simulator has the following features: 

 The simulator shows the MPLS label advertising and label
bindings with FECs that are made possible by running LDP
protocol to create LSP paths exploiting the matrix of
switches found in mesh topology before transmitting any
data packets between any cores inside the NoC system, as
seen in Fig. 8.

 The simulator shows the movement of label request process,
label and FEC mapping, label insertion to packets, illustrates
the MPLS packets after creation, label swapping during
packet switching, switching of MPLS packets across
switches along the selected LSP path, and demonstrates
label stripping when packet arriving at its destination.

 The simulator generates a random number of messages for
each node; each message has a random length. Then, each
message is divided into a series of packets. These packets
are sent out to random nodes.

 The simulator shows the number of generated messages
from each processing core (IP node), for each message the
simulator also presents while running the total number of its
constructed packets.

 The simulator demonstrates the movement of packets
(forwarding of packet) sent over switches along different
paths inside the network. Also, it shows all sent/received
packets by all cores at every simulation cycle.

 For each packet, the simulator marks on cycle-by-cycle
basis the LSP path taken by that packet from sender to
destination.

 The simulator provides an output log file that records all the
simulation work on packet’s level.

 The simulator at the end of simulation process reports the
average packet latency (end-to-end delay), number of
successfully received packets, and number of lost packets,
calculate core’s throughput, and estimate the system
throughput.

The developed simulator has been tested with 4x4 mesh 
topology NoC system shown in Fig. 8 which has 16 cores 
(intellectual propriety nodes (IP nodes)), Fig. 8-a illustrates 
simulator initial configuration is listed in Fig. 8-b. Fig. 8-c 
shows simulation cycle #1 and cycle #2446 as a portion of the 
simulator’s output file, which is clear evidence that the 
simulator works with efficient MPLS functions and procedures. 
In addition it describes how the simulator will use the 
previously explained theories and designed components such as 
how LDP creates LSP paths, crossbar and switching, MPLS 
forwarding and routing procedures. 

0,1 1,1 2.1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1.0 2,0 3,0

IP5 IP4

IP3IP2IP1IP0

IP7 IP6

IP8 IP9 IP10 IP11

IP13IP14IP15 IP12

M
apping label

(a) Mesh topology as 4X4 matrix NoC example 

(b) Simulator’s initial configuration 
------------------- 
|      Cycle # 1  
------------------- 
Moving traffic from IP node output buffer to parent Switch 
26 Packets is transferring From Node[4] To Node[1] Cycle 1 
GenTime 1 

 20 Packets is transferring From Node[11] To Node[6] Cycle
1 GenTime 1 

 1 Packets is transferring From Node[12] To Node[5] Cycle 1
GenTime 1

-------------------------- 
Arriving packets to switches 

 Packet  is arriving To Switch (3,1) from Node[4]

 Packet  is arriving To Switch (1,2) from Node[9]

 Packet  is arriving To Switch (3,2) from Node[11]

 Packet  is arriving To Switch (3,3) from Node[12]
-------------------------- 
Moving LDP Messages between Switches............ 
-------------------------- 
 Request Label Message of FEC 401 is transferring From
Switch (3,1) To Switch (0,1)

 Request Label Message of FEC 1106 is transferring From
Switch (3,2) To Switch (3,3)

 Request Label Message of FEC 1205 is transferring From
Switch (3,3) To Switch (3,0)

 Request Label Message of FEC 906 is transferring From
Switch (1,3) To Switch (1,2)

 Request Label Message of FEC 1205 is switching From Switch
(3,0) To Switch (3,3)

 Request Label Message of FEC 401 is switching From Switch
(0,1) To Switch (0,2)

 Request Label Message of FEC 906 is switching From Switch
(1,2) To Switch (1,3)

 Request Label Message of FEC 1106 is switching From Switch
(3,3) To Switch (3,2)

-------------------------- 
|      Cycle # 2446 
-------------------------- 
Moving traffic from IP node output buffer to parent Switch -
------------------------- 

16 Packets is transferring From Node[7] To Node[10] Cycle 
2446 GenTime 2446 
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 Packet  is arriving To Switch (0,1) from Node[7]

 Packet  is arriving To Switch (2,3) from Node[13]
-------------------------- 
Moving LDP Messages between Switches............ 
-------------------------- 
 Request Label Message of FEC 710 is transferring From
Switch (0,1) To Switch (0,2)

 Request Label Message of FEC 710 is switching From Switch
(0,2) To Switch (1,2)

-------------------------- 
Moving MPLS Packets between Switches............ 
-------------------------- 
 MPLS Packet of Tag 65 is Swapping its Tag by Tag 73 in
Switch (2,0 )

 MPLS Packet of Tag 73 is Popping its Tag in Switch (3,0)
and Forward to its IP destination # 3

 MPLS Packet of Tag 125 is Swapping its Tag by Tag 65 in
Switch (2,1 )

 MPLS Packet of Tag 207 is Swapping its Tag by Tag 125 in
Switch (2,2 )

 Tag 207 is pushing to Packet # 34 in Switch (2,3)
 MPLS Packet of Tag 73 is transferring From Switch (2,0) To
Switch (3,0)

 MPLS Packet of Tag 65 is transferring From Switch (2,1) To
Switch (2,0)

 MPLS Packet of Tag 125 is transferring From Switch (2,2) To
Switch (2,1)

 MPLS Packet of Tag 207 is transferring From Switch (2,3) To
Switch (2,2)

-------------------------- 
Arrive IP Packets to its Destination: 
-------------------------- 
Node[3] has received Packet 30 from Node[13] 
Final statement of the simulator’s out put 

- Throughput[Net] -----> 1.57837 
- Throughput[Packets Leaving Switch]-> 5.76989 
- Node Throughput -----> 1.57856 
- Averag Packet Delay ----->26.3531 
- Total Generated Messages: 6203 
- Total generated packets: 157,875 
- Total Sent Messages: 6202 (157,842 packets) 
- Total Recieved Messages: 6200(157,835 packets) 

(c) Portion of the simulator’s output 

Fig. 8. Some parts of the output log file of the simulator 

VII. PERFORMANCE ANALYSIS RESULTS

At the end, the achieved end results of the developed 
simulator are compared with the results that are obtained from 
two other simulators the MPLS FAT tree NoC simulator which 
described in [19], and the gpNoCSim simulator that has been 
described in [20]. The gbNoCSim simulator is an open source 
NoC simulator based on wormhole routing enhanced with 
virtual channel mechanism as an on-chip communication 
means for mesh NoC system. 

A. Experiment (1): Running simulators 

The first experiment is to compare 16 node topologies: 
(4X4 mesh) and 16 node Fat tree. The results are shown in 
tables 1, 2, and 3. However, Table I shows of 16 cores Fat tree 
topology results using MPLS reports that the average packet 
delay of 21.73ms with 26368 generated packets with a 
throughput of 0.26 with zero lost packets, this result is the best 
result among the all reported results because of redundancy 
links of Fat tree structure. Table II illustrates the results of the 
gbNoCSim simulator with wormhole+virtual channels 
technique. The maximum generated messages 42642 recorded 
the average packet delay of 111.04 ms with 9 lost packets 
which is 5 times more than that of MPLS Fat tree with a 
throughput value equals to 0.164. Table III describes the results 

MPLS network simulator results for 4x4 mesh NoC system 
which reported average packet delay of 38.58ms with 115732 
generated packets with a throughput of 0.921 with 8 lost 
packets. Therefore, MPLS with both topologies (mesh and Fat 
tree) reported lowest average packet delay than 
wormhole+virtual channels technique. But, the mesh topology 
with MPLS reported the worse results of average packet delay 
than Fat tree topology because of Fat tree includes redundancy 
links.  

TABLE I.  MPLS NETWORK SIMULATOR’S RESULTS FOR FAT TREE 16 
NODES NOC SYSTEM 

Generated 
packets 

Sent 
packets 

received 
packets 

Lost 
packets 

MPLS 
Throughput 

Avg 
Packet 
Delay 

58222 58222 58222 0 0.58 22.72 

41017 41017 41017 0 0.40 21.77 

26368 26368 26368 0 0.26 21.73 

17069 17069 17069 0 0.16 21.12 

11477 11477 11477 0 0.11 20.82 

9563 9563 9563 0 0.08 20.71 

2392 2392 2392 0 0.02 21.87 

TABLE II.  GBNOCSIM SIMULATOR RESULTS FOR 4X4 MESH NOC 
SYSTEM 

generated 

packets 
Sent

packets 
receivd 
packets 

Lost 
packets 

wormhole 
Throughput 

wormhole 
Avg 
Packet 
Delay 

42642 42633 42633 9 0.164 111.04 

25629 25629 25629 0 0.098 79.50 

21275 21275 21273 2 0.082 78.80 

12787 12787 12786 1 0.048 68.73 

9884 9884 9879 5 0.039 71.99 

8465 8465 8463 2 0.032 68.52 

6408 6408 6406 2 0.024 68.41 

TABLE III. MPLS NETWORK SIMULATOR RESULTS FOR 4X4 MESH NOC 
SYSTEM 

Generated 
packets 

Sent 
packets 

received 
packets 

Lost 
packets 

MPLS 
Throughput 

Avg 
Packet 
Delay 

101731 101731 101726 7 1.647 44.06 

115732 115732 115724 8 0.921 38.58 

107128 107128 107120 8 0.80 36.50 

80441 80441 80440 1 0.671 39.02 

57138 57138 57132 6 0.49 36.50 

30009 30009 30007 2 0.41 37.75 

25790 25790 25780 10 0.21 38.29 

B. Experiment (2):Troughput comparisions 

In this experiment a comparison between the throughputs of 
the developed simulator for MPLS-based mesh NoC with 
MPLS-based Fat tree NoC systems against the gbNoCSim 
simulator which uses wormhole+ virtual channel mechanism. 
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However, the node throughput is measured by counting the 
packets that sent by the source node and safely arriving at the 
destination node over a specified time interval. Whereas, the 
total throughput of the whole network is measured by 
accumulating all delivered traffic flows; i.e. (total received 
packets between all processing cores multiplied by packet’s 
length) dividing it by (number of processing cores multiplied 
by total cycle of the simulation [20]. Fig. 9 illustrates the 
throughput comparison of 8X8 mesh with MPLS against 8X8 
mesh with wormhole+virtual channel mechanism of 
gbNoCSim simulator, the figure clearly demonstrates that 
MPLS technique gained about 5 times better throughput than 
the wormhole+virtual channel mechanism. However, with 
MPLS the throughput is linearly increasing as the load of 
injected packets increases. Another kind of comparison results 
is shown in Fig. 10, which shows throughput with MPLS 
technique for 64 cores Fat tree and mesh topologies. The figure 
remarks that mesh with MPLS technique and with the increase 
of processing cores (64 cores) the mesh still gains better 
throughput than Fat tree with MPLS. The recorded results 
approves also that the mesh throughput is still increases linearly 
with the traffic increase and overcomes the fat tree for the size 
of 16 and 64. 
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Fig. 9. Throughput of 8X8 mesh with MPLS against 8X8 mesh with 
wormhole+virtual channel mechanism 
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Fig. 10. Throughput with MPLS technique for 64 cores Fat tree against mesh 

C. Experiment (3): Average packet delay 

In this experiment an assessment of average packet delay 
between the developed simulator with MPLS-based mesh NoC 
system against the MPLS-based Fat tree NoC system with a 
contrast of gbNoCSim simulator which uses wormhole+ virtual 
channel mechanism. However, the latency can be used as a 
performance evalution parameter for interconnection network. 
Latency (end-to-end delay) can be defined as the time needed 
to complete a transfer of a packet from a source core to a 
destination core. Therefore, the average packet end-to-end 
delay for a network topology can be calculated by dividing the 
summation of all the recieved packets' delays by all procesing 
cores over the number of all received packets by all cores to get 
the value of latency in cycles/packet [20]. Fig. 11 describes the 
average packet delay for 8x8 mesh (64 cores) by comparing 
MPLS against wormhole+virtual channels techniques, which 
show that there is a big variation between the wormhole 
+virtual channels when compared to MPLS in 8x8 mesh 
topologies. However, the figure results clearly showing that 
MPLS has gained nearly constant end-to-end packet delay 
value even with increase of the traffic load, while 
wormhole+virtual channels has reported 3-times higher end-to-
end packet delay which increases also as the traffic starts to 
cross 25000 packets/sec, which indicates the start of network 
congestion. In addition, the average packet delay with MPLS 
technique is less than the one registered with wormhole 
+virtual channels with a value factor of at least 1.5. Another 
analysis result is shown in Fig. 12 for the average packet 
latency (end-to-end delay) which worked out between Fat tree 
and mesh topologies using MPLS in both same size topologies; 
with 64 cores. The figure clarifies that the Fat tree topology has 
slightly less average packet delay than mesh structure, that due 
to the redundancy of the communication links of Fat tree that is 
added to the topology to make it with more links as we go up 
toward the root. Therefore, Fat tree topology is better 
than mesh topology in terms of average packet end-to-end 
delay. 

Fig. 11. Average packet delay for mesh topology with MPLS against 
wornhole+virtual channels 
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Fig. 12. Average packet delay for 64 cores with MPLS for Fat tree and mesh 
topologies 

VIII. CONCLUSIONS 
MPLS is described as an efficient on-chip communication 

technique for mesh NoC design to realize MPSoC systems. A 
simulator written in C++ is built to verify all the proposed 
functions and procedures to make MPLS as on-chip 
communication means such as input/output link controllers, 
crossbar switch, MPLS switching and mesh routing units 
including LDP protocol for LSP path establishment, buffer 
management. In addition processing IP cores are designed with 
sufficient methods required to packetize, send, store, transfer, 
receive, and forward messages. The presented results of 
network throughput and average packet latency (end-to-end 
packet delay) demonstrate that the MPLS technique is suitable 
to implement efficient mesh NoC system when equated by 
wormhole switching+virtual channels. Finally, comparison 
analysis with Fat tree topology found that the Fat tree 
overcomes the mesh topology in terms of average packet 
latency because of the available redundancy links found in 
upper levels of fat tree structure toward the root that facilitates 
more routes and provides scalability to fat tree topology. 

REFERENCES 
[1] A. A. Jerraya and W. Wolf (editors), Multiprocessor Systems-On-

Chips. San Francisco, USA: Morgan Kaufmann Publishers, 2005. 
[2] A. H. Jantsch and H. Tenhunen, Networks on Chip. USA: Kluwer 

Academic Publishers, 2003. 
[3] Tobias Bjerregaard, and Shankar Mahadevan: “A Survey of 

Research and Practices of Network-on-Chip”, ACM Computing 
Surveys, Vol. 38, Article no.1, March 2006.  

[4] Dally, W. J., and B. Towles, “Route packets, not wires: On-chip 
interconnection networks”, Proc. of the DAC'38 Conference, Las 
Vegas, June 2001. 

[5] J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks – An 
Engineering Approach, USA: Morgan Kaufmann, 2002. 

[6] W. J. Dally and B. Towles, Principles and Practices of 
Interconnection Networks, San Francisco: Morgan Kaufmann 
Publishers, 2004. 

[7] De Michelli G, Benini L. Network on Chips, Berlin: Morgan 
Kaufmann:  2006.  

[8] Nikolay Kavaldjiev and Gerard J. M. Smit: “A survey of on-chip 
communications for SoC, 

[9] Rosen E., Viswanathan A., and R. Callon: “Multiprotocol Label 
Switching architecture”, IETF RFC 3031, 2001. 

[10] M. Deepankar and R. Karthikeyan, Network Routing, Protocols, 
and Architectures. USA: Morgan Kaufmann Publishers, 2007.  

[11] Dominguez-Dorado M., Rodriguez-Perez F. J., Gonzalez-Sanchez 
J. L., Marzo J. L., Gazo A., 2005: “An Architecture to provide 
Guarantee of Service (GoS) to MPLS”, IV Workshop in G/MPLS 
Networks. 

[12] Li-Shiuan Peh, Stephen W. Keckler, and Sriram Vangal: On-Chip 
Networks for Multicore Systems, Chapter 2 in S.W. Keckler et al. 
(eds.), Multicore Processors and Systems, Integrated Circuits and 
Systems, DOI 10.1007/978-1-4419-0263-4_2, Springer 
Science+Business Media, 2009. 

[13] Brett Stanley Feero, Partha Pratim Pande: Networks-on-Chip in a 
Three-Dimensional Environment: A Performance Evaluation, 
IEEE Transactions on Computers, Vol. 58, No. 1, January 2009, 
pp.32-45. 

[14] Luciano Bononi, Nicola Concer, Miltos Grammatikakis: NoC 
Topologies Exploration based on Mapping and Simulation Models, 
IEEE, August 2007. 

[15] D. Ludovici, et al., “Assessing Fat-Tree Topologies for Regular 
Network-on-Chip Design under Nanoscale Technology 
Constraints”, Proc. of Conf. on Design, Automation and Test in 
Europe, 2009. 

[16] Basavaraj Talwar, Shailesh Kulkarni and Bharadwaj Amrutur, 
“Latency, Power and Performance Trade-offs in Network-on-Chips 
by Link Microarchitecture Exploration”, 22nd Intl. Conference on 
VLSI Design, Jan. 2009. 

[17] Reza Kourdy, Mohammad Reza Nouri Rad, Mohammad Pooyan, 
Majid Rahimi Nasab, “Improvement MPLS-NOC bandwidth by 
dividing bandwidth in Fat-tree topology”, In the 2nd International 
Conference on Computer and Automation Engineering (ICCAE), 
Singapore, IEEE conference, Feb. 2010, Volume: 3, pp. 470 – 474. 

[18] Azeddien M. Sllame and Asma Elasar: Modeling and Simulating 
Network-on-Chip Designs: A Case Study of Fat Tree 
Interconnection Architecture, In International Journal of Computer 
Theory and Engineering, pp. 823-829, Vol. 5, No. 5, October 2013. 

[19] Nagwa Salama and Azeddien M. Sllame: Designing an Efficient 
MPLS-Based Switch for FAT Tree Network-on-Chip Systems, In 
ACM Proceedings of the 1st International Workshop on Advanced 
Interconnect Solutions and Technologies for Emerging Computing 
Systems (AISTECS workshop), Prague, Czech Republic, January 
2016. 

[20] Hemayet H. M., A. Ahmed, T. Islam AI-ayeemn and A. Md 
Mostofa. 2007. “GPNOCSIM - A General Purpose Simulator for 
Netwotk-on-Chip.” In Proceedings of the International Conference 
on Information and Communication Technology IEEE ICICT07. 

[21] Azeddien M. Sllame, Mohamed Aljafry: “Performance Evaluation 
of Multimedia over IP/MPLS Networks”, International Journal of 
Computer Theory and Engineering, Vol. 7, No.4,pp.283-291, 
August 2015. 

[22] J. Evans and C. Filsfils, Deploying IP and MPLS QOS for 
Multiservice Networks: Theory and Practice. USA: Morgan 
Kaufmann Publishers, 2007. 

0

10

20

30

40

50

10000 20000 30000 40000 50000 60000 70000

A
V
G
 D
e
la
y

Received Packets

Average packet  latency for 64 cores Fat tree and mesh topologies

 FAT TREE MESH

 

______________________________________________________PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 637 ----------------------------------------------------------------------------




