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Abstract—Predicting accurate remaining useful life (RUL) of
components plays a crucial role in making optimal decision
for maintenance management. As sensor technology develops,
multiple sensors are used to collect information for monitoring
the condition of components. Deep learning architectures, such
as convolutional neural network (CNN) and long short term
memory (LSTM), can be considered as a successful end-to-end
framework to predict RUL from the multivariate time series
collected by those sensors. For that, we employ an architecture
combining the parallel branch of CNN in series with LSTM
which is referred to as multi-head CNN-LSTM. Furthermore, we
propose a combination of the network with time series prediction
error analysis (PEA). The prediction errors on the entire time
series are estimated by recursive least squares (RLS) and single
exponential smoothing (SES) respectively. We analyze each of
the two sequences of prediction errors with the exponentially
weighted moving average (EWMA) and combine them with the
Fisher’s method. Finally, the output of the PEA is fed into the
multi-head CNN-LSTM network as the additional input. We
evaluate the performance of our method on the widely used
C-MAPSS dataset. The experimental results suggest that using
the PEA improves the performance of the deep learning-based
RUL prediction model. Compared to other methods in recent
literature, the proposed method achieves the state-of-the-art result
on one sub-dataset and very competitive results on the others. In
addition, it also shows promising results in the consecutive RUL
prediction following the degradation process of components.

I. INTRODUCTION

As industrial equipment becomes more and more complex,
more sensors are needed to monitor the state of the equipment.
With the increase of monitoring data availability, a number
of approaches that exploit this has been proposed to support
decisions in industrial applications such as scheduling and
maintenance management [1]. In manufacturing industries, the
achievement of optimal maintenance planning can decrease the
costs that are due to inefficient maintenance strategies such
as preventive maintenance (PvM). PvM is to perform mainte-
nance actions according to a predefined schedule determined
by the age of components. Although PvM is still a common
strategy to avoid a great deal of downtime from unexpected
failures, this strategy requires excessive maintenance in order
to achieve prevention [2]. On the other hand, to manage main-
tenance, predictive maintenance (PdM) utilizes the monitoring
data that are collected by sensors as well as the current age
of the target components. The goal of this monitoring is to
determine the condition of the components, and this can be
achieved by observing degradation-based measures [2]. The
condition of the components can be predicted by analysing
the degradation patterns in the collected sensory information.

Machine learning (ML) has been widely used to analyse
such patterns in the data for PdM [3]. ML techniques can
learn the complicated relation between the analysed historical
pattern and the condition of the components, so that they can
predict the time of future failure based on the monitoring data
from sensors. This can also be considered as remaining useful
life (RUL) estimation of the industrial equipment, since the
RUL is defined as the time left until the predicted failure. In
“Industry 4.0”, the prognostics and health management (PHM)
of industrial components is considered as a key concept for
PdM [3], [4]. As ML developed, the above RUL prediction
has become a mainstream element of the PHM in the context
of PdM research.

The RUL prediction can be interpreted as the regression
problem regarding components’ condition over time. Recently,
as an alternative to traditional ML, many deep learning (DL)-
based approaches have been proposed to solve this problem
because they can offer an end-to-end learning framework for
the prediction without the complex feature engineering which
is the major challenge of traditional ML [3]. Convolutional
neural network (CNN) can be used to estimate the RUL of
components [5]. As an alternative approach, recurrent neural
networks (RNN), including long short term memory (LSTM),
are able to predict the RUL by directly recognizing temporal
patterns of the data instead of extracting their convolutional
features [6]. In addition, deeper networks were proposed to
improve the accuracy of RUL prediction [7].

Recently, the wireless sensor networks (WSN) community
has used the analysis of sensor reading predictions to detect
anomalies resulting from the sensors or the environment [8],
[9]. These methods take into account that the sensor signals
reflect the state of the environment and the future state can
be predicted based on this. Therefore, the deviation between
the prediction and the following measurement, the prediction
error, can represent the degree of the unexpected behavior
of the environment. In our work, similarly, we consider that
the sensor data indicate the state of the physical properties
which are monitored by the sensors. The degree of unexpected
value change in each property is then closely related to the
components’ condition, which is related to the RUL.

This paper introduces a way of employing the multi-
head CNN-LSTM network to predict the RUL of components
based on multivariate time series collected by monitoring
sensors. Furthermore, we improve the accuracy of the RUL
prediction by combining the network with prediction error
analysis (PEA). A recursive least squares (RLS) and a single
exponential smoothing (SES) were used to yield the prediction
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Fig. 1. Framework of multi-head CNN-LSTM with prediction error analysis

errors for every time cycle in each time series. We then use
the combination of the output of the above methods as an
additional information for the RUL prediction of the multi-
head CNN-LSTM network.

The rest of paper is structured as follows: Section II
describes the used network architecture and its combination
with PEA. In Section III, the experimental setup and the results
of the experiments are discussed. Finally, our conclusions are
outlined in Section IV.

II. METHOD

A. Multi-head CNN-LSTM
In recent years, the combination of CNN and RNN has

shown promising results in various research fields such as
script identification [10], speech emotion recognition [11] and
human activity recognition [12]. Based on those successes,
in this paper, it is used for the RUL prediction. We employ
a combination of CNN and LSTM which is inspired by
the multi-head CNN-RNN originally proposed in [13] for
multivariate time series anomaly detection on a real industrial
scenario. This framework of the network is illustrated in Fig.1.
The multi-head CNN-LSTM consists of three parts: multi-
convolutional heads, stacked LSTM layers, and a fully con-
nected layer. Each sensor’s data are segmented by a fixed-size
window and fed into each convolutional head independently.
The data are then processed by one-dimensional (1D) convo-
lutional layers to extract features. To extract an independent
feature for each sensor data, each of the convolutional layers
has its own kernel for individual convolution, without sharing
parameters with other branches. The stacked LSTM layers
recognize the temporal dependencies between the concatenated

features. Lastly, the fully connected layer yields the value of
predicted RUL from the output of the LSTM. The network is
trained based on the mean squared error between the predicted
RUL and the target RUL.

There are two major advantages for this parallel branched
architecture. At first, each branch has its own convolutional
layers and takes one particular time series from a certain sensor
as its input, so that the learning of the convolutional filters in
it specializes to one particular sensor readings. This allows
each CNN to have a flexible architecture and extract a proper
features that can adapt to the particular sensor. Secondly, we
can exploit the additional time series when it is available by
simply adding the input branch.

B. Prediction Error Analysis (PEA)
In this paper, we assume that the time series is collected

by sensors, and it is used as the input for the RUL predictor.
Please note that both sensor readings and the RUL predictions
are in units of time (e.g., minutes or cycles). This means that
we assume that all the sensors update their reading at the end
of each time cycle, so that the sensed measurements of all
the sensors are aligned in time. Because we consider data-
driven methods that merely use historical data to predict RUL,
the accuracy of the prediction is determined by the analysis
of those sensor data and the pattern recognition performance
of the deep learning architecture. Since our deep learning-
based approach does not require any external analysis, such
as feature engineering, we cannot ensure that the feature
extraction occurring within the CNN always fully exploits the
information in the input time series. Moreover, it is a very
challenging task to find such a hyper-parameter setting of the
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CNN, because the final output of the network is determined
by the parameter specification of the LSTM as well as CNN.
Hence, instead of entirely relying on the above network, we
incorporate further analysis of the time series in terms of
prediction errors into the network.

The procedure for obtaining the prediction error is de-
scribed as follows: we consider a sequence of data X that
are determined by a moving window over the sensor readings,
i.e., X = (x0, x1, . . . , xd), where d+ 1 is the size of the
window. Then, we set the last measurement xd in this sequence
as the target value of our prediction model. The remaining
data, X\xd = (x0, x1, . . . , xd−1), are used as the input of the
model in order to predict the last measurement x̂d. Finally,
the prediction error of the data sequence is defined as the
difference between the measurement and the output of the
model, i.e., ε = xd − x̂d. To convert the sensor data into
prediction errors, this procedure is repeated until the moving
window covers the entire time series.

We use two time series prediction methods, namely recur-
sive least squares (RLS) and a single exponential smoothing
(SES):

1) RLS: RLS is an approach that recursively attempts to
estimate the coefficients that minimize the least square error
between the response of a linear model and the target value.
We can describe the linear model for the input sequence as:

x̂d = β·(X\xd) (1)

where the weights β are (β0, . . . , βd−1). For the estimation of
the weights, we adapt the recursive iteration algorithm used in
[8], where RLS is used as a prediction model instead of linear
least squares estimation (LLSE) because of computational
resource limitations in WSN environments. Even though we
did not assume this limitation in our work, we employ the
RLS also for saving computational cost. In fact, the RLS
enables to avoid adding an extra computational cost to the
heavy computations of the multi-head CNN-LSTM network.

Algorithm 1 illustrates how the weights and the prediction
error are updated at every sample step t, i.e., every time cycle
in our case. At first, the algorithm is initialized by determining
the value of the forgetting factor α and a scalar factor δ, that
are used for initializing the inverse auto-correlation matrix P .
Additionally, we determine β0,i as the initial weights, where
i indicates the index of the vector elements. At each iteration,
the prediction error ε is defined as the difference between the
observation x̂ and the output of the model at the previous

Algorithm 1 Recursive least squares [9]

1: Init δ > 1, α > 1, β0,i = {0}, P0 = δI

2: for each sample step t do
3: εt ← x̂t −XT

t βt−1

4: Kt ← Pt−1Xt

5: μt ← XT
t Kt

6: δt ← 1
α+μt

7: κt ← δtKt

8: βt ← βt−1 + κtεt

9: Pt ← 1
α

[
Pt−1 − δtKtK

T
t

]
10: end for

iteration with the current inputs. Then, to estimate the weights
β and the inverse auto-correlation matrix P , the algorithm
takes the linear correlation of the input signals X, which
is denoted by K. By using it, the update gain μ and the
learning rate δ can then be computed. After that, the scaling
factor for β update, κ, is determined by multiplying K by δ.
Finally, β and P are updated based on the above temporary
parameters, so that these are used for the computations of
the following iteration. For further details, we follow the
specification described in [14].

2) SES: Exponential smoothing is a technique for smooth-
ing univariate time series with exponential functions [15]. It
can be used for predicting time series, and the prediction is
defined as a weighted average of the last data point of the
input sequence and the previous prediction:

x̂d = αxd−1 + (1− α)x̂d−1 = x̂d−1 + α(xd−1 − x̂d−1) (2)

where α is the smoothing factor ranging between 0 and 1. We
can expand (2) to represent the exponential weights form as:

x̂d = α[xd−1 + (1− α)xd−2 + · · ·+ (1− α)
d−2

x1]

+ (1− α)
d−1

x0. (3)

The most recent data have the highest weight, and the expo-
nentially decreasing weights are assigned to the older data in
order. We initialize the smoothing factor α using a combination
of grid search and the first value of the data, and adapt the
model by estimating it in the direction of maximizing the log-
likelihood.

We use the SES rather than the triple exponential
smoothing, also called Holt-Winters exponential smoothing
(HWES)[15], for the following reason: we assume that the
length of the data sequence d + 1 is small enough so that its
trend (or seasonal pattern) cannot be reliably recognized, i.e.
the sensor readings do not have a clear trend or seasonality in
a certain period of time.

C. Multi-head CNN-LSTM with PEA
Once the prediction errors are derived by using the RLS

and the SES respectively, we convert the prediction error of
each time cycle into a p-value, in order to use it as the input
for the multi-head CNN-LSTM network. The procedure can
be summarized as follows: the two statistics of the prediction
errors, mean μ and standard deviation σ, are established by
using the exponentially weighted moving average (EWMA)
[16]. These statistics are then used to calculate the p-value
with a predefined confidence level 95%, similar to [9]. Finally,
we combine the two p-values derived from RLS and SES via
the Fisher’s method:

X2
2k ∼ −2

k∑
i=1

ln(pi)

where k is the number of prediction models used, which is
two in our work, and pi refers to the p-value produced by the
i-th prediction model. The method implicitly assumes that the
models are independent. The p-values of those independent
models are combined into one test statistic X2, which has a
chi-squared distribution with 2k degrees of freedom. In turn,
the Fisher’s method provides another p-value based on the
above procedure, and this is the final output of the PEA.
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Taking the advantages of the multi-head CNN-LSTM de-
scribed in Section II-A, we can use the output of the time series
PEA as an additional input for the network. As shown in Fig.1,
we add one convolutional branch per each head, and then we
feed the p-values produced by PEA into the added branches
as the additional inputs. In this way, we can combine our
further analysis on the sensor data, i.e., the degree of unusual
dynamics in sensor readings, into the network for improving
the accuracy of RUL prediction.

III. EVALUATION

In this section, we describe the evaluation setup and proce-
dure that are used to compare the performance of our method
with the existing methods, on the C-MAPSS dataset. We first
outline the description of the dataset. Then, we introduce
two evaluation metrics which help compare the prediction
performance. In addition, the parameters of our network are
specified, and the details of training, validation and test process
are described. Finally, we report experimental results and their
analysis.

A. Benchmark dataset
In our experiment, the Commercial Modular Aero-

Propulsion System Simulation (C-MAPSS)[17] is used to
evaluate our proposed method. The dataset consists of various
NASA turbofan engine degradation simulations under four
different simulation settings, included in four sub-datasets:
FD001, FD002, FD003 and FD004, respectively. In these
sub-datasets, each engine’s data include a multivariate time
series collected from 21 sensors. Among them, we used only
14 time series that show trend over cycles, as it was done
in [18], [19]. While run-to-failure simulations were assumed
for collecting sensor readings in the training sets, the test
simulations were terminated before the failure, so that the
RUL of each test engine was required to be predicted in
the last cycle. An overview of four sub-datasets is described
in Table I. All engines in the dataset are assumed to start
their operation from a healthy condition, and keep operating
afterwards. However, for most engines, the degradation does
not start at the beginning of the time series, and the RUL
does not decrease across all cycles. Therefore, we consider
the piece-wise linear function for the degradation profile of
the RUL, based on [20]. Regardless of the maximum cycles
shown in Table I, we set all the target RUL greater than 125 to
125, that is the fixed value smaller than the minimum number
of cycles in the training set.

B. Evaluation metrics
The used multi-head CNN-LSTM network was trained

in order to accurately predict the RUL of the test samples.
Therefore, the performance of our method is determined by the
error between the predicted RUL and the target RUL. In order

TABLE I. C-MAPSS DATASET OVERVIEW.

Sub-dataset FD001 FD002 FD003 FD004

Number of engines in training set 100 260 100 249
Number of engines in test set 100 259 100 248
Max/min cycles in training set 362/128 378/128 525/145 543/128

Max/min cycles in test set 303/31 367/21 475/38 486/19
Operating conditions 1 6 1 6

Fault modes 1 1 2 2

to compare the performance with other methods in literature,
we considered two following metrics:

1) RMSE: The root-mean-square error (RMSE) is a way to
measure the errors. It represents the square root of the mean
of the squared errors, calculated as:

RMSE =

√√√√ 1

N

N∑
i=1

(RULpredicted
i −RULtarget

i )2 (4)

where N is the total number of test samples, which are fed
into our network during the test.

2) Score: The second metric is calculated as:

Score =
N∑
i=1

SFi, SF =

{
e−

di
13 − 1, di < 0

e
di
10 − 1, di ≥ 0

(5)

where di represents an error, RULpredicted
i −RULtarget

i . And,
N is the total number of test samples. This value corresponds
to the error on the asymmetric score function, assigned to the
score of each prediction. The score is then summed up over all
the test samples. This scoring function, discussed in [21], was
proposed to take into account different penalties between late
and early predictions, because an early prediction is usually
better than a late one in terms of preventing failures.

C. Deep network architecture and training details
This work employs a series combination of CNN and

LSTM networks for the RUL prediction. The performance of
the networks is affected by the parameter specification of both
the convolutional and recurrent layers. For each convolutional
head, the input data are fixed-length univariate time series. We
extract these input data from the entire time series by applying
a moving window. The size of the window depends on the
dataset, and it cannot be larger than the minimum number of
cycles in the test set, which is shown in Table I. Thus, we set
the length of the time series windows (Wts) as 30, 21, 38 and
19 for FD001, FD002, FD003 and FD004 respectively. Before
feeding the extracted time series into the network, we divide
it into fixed-length segments with a segmenting window. The
length of the segmenting window (Wsg) is set to 3 for all the
input branches. The number of input segments (Nsg) for each
branch can be determined by:

Nsg =
Wts −Wsg

stride
+ 1 (6)

where the stride is set to 1.

In the convolutional layer, 1D convolution is applied to
every segment of the input. We chose the kernel size of 1D
convolution as 3, with zero padding. Each convolutional branch
consists of two stacked 1D convolutional layers with two
filters for each layer. In the above branches, the convolutional
layers and filters are independent, which means that each filter
of the branches has the same shape but does not share its
parameters with the other branches. Therefore, the number
of parameters to be trained in multi-head CNN networks has
to be multiplied by the number of sensors. The two stacked
LSTM layers are responsible for recognizing the temporal
patterns throughout the concatenated features extracted from
each segment. Considering the training time, we used different
network specifications for different sub-datasets. The first
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(a)

(b)

(c)

(d)

Fig. 2. Predicted RUL of each engine in the last given cycle by multi-head 
CNN-LSTM with PEA: (a) FD001 dataset, (b) FD002 dataset, (c) FD003 
dataset, (d) FD004 dataset

LSTM layer contains 10 ·Nsg units, and the following LSTM
layer has 5 ·Nsg units.

The architecture of the proposed method, the multi-head
CNN-LSTM with PEA, has a duplicated additional convo-
lutional branch for each sensor. As discussed earlier, the
extracted time series before segmenting is converted into a

Fig. 3. Box plot of the RUL prediction error, defined by RULpredicted − 
RULtarget, for the test sets

p-value with two different prediction models, RLS and SES.
We set the input size of both models as 3, so that we derive the
deviation between the output and the observation at the next
time cycle. The model is then adapted with the prediction error
for the next prediction. Therefore, the model does not provide
the prediction errors of the first three time cycles in the time
series window. The p-values for those samples are assigned
a zero value. To derive the p-value from the prediction error,
we used the EWMA. The mean μ and standard deviation σ
of the prediction errors are initialized on the data from the
same sensor measuring different engines. We combined the p-
values derived from different prediction models via the Fisher’s
method. This method yields another p-value for each time
cycle, and it is fed into the network after segmenting.

All the networks used in our experiments are trained on all
the C-MAPSS sub-datasets, and the piece-wise linear function
with maximum value 125 is used for the target RUL. We
did not perform any pre-processing of the time series but we
normalized its values in order to use them as the network
inputs. As our architecture is designed for a regression task, the
mean squared error is used as a loss function. The RMSprop
algorithm with the leaning rate 0.001 is used as optimizer.
In addition, the batch size is set to 500, and the number of
training epochs is limited to 35.

To avoid overfitting, we use early stopping with 10-fold
cross validation: at first, we prepare 10 identical networks;
then, each of them is trained on the different subsets of the
entire training set. Each model has a different validation set
and stops its training when there is no improvement in the
validation loss for the last 5 epochs. Finally, we take the best
model that has the smallest validation loss compared with the
others. In [19], the authors trained their network until it reached
the maximum number of training epochs without validation, so
that they used the entire training set for training. On the other
hand, our network is trained with only 90 % of the training
samples, while the remaining 10 % are used for validation.
It should be noted that although we use a smaller number of
samples for training, our model can offer a stable performance
on the test set because validation helps training generalize to
previously unseen data.

D. Experimental results
In the experiments, the original split of the test set in the

C-MAPSS dataset is used to evaluate the performance of the
tested methods on previously unseen data. We tested the multi-
head CNN-LSTM without and with PEA (the latter being our
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TABLE II. RUL PREDICTION COMPARISON WITH OTHER METHODS,
BASED ON RMSE.

Methods Year
RMSE

FD001 FD002 FD003 FD004 Sum

MLP [5] 2016 37.36 80.03 37.39 77.37 232.15
SVR [5] 2016 20.96 42.00 21.05 45.35 129.36
CNN [5] 2016 18.45 30.29 19.82 29.16 97.72

LSTM [6] 2017 16.14 24.49 16.18 28.17 84.98
MODBNE [22] 2017 15.04 25.05 12.51 28.66 81.26

RNN [7] 2018 13.44 24.03 13.36 24.02 74.85
DCNN [7] 2018 12.61 22.36 12.64 23.31 70.92

BiLSTM [23] 2018 13.65 23.18 13.74 24.86 75.43
Semi-supervised DL [24] 2019 12.56 22.73 12.10 22.66 70.05

DAG network [19] 2019 11.96 20.34 12.46 22.43 67.09
Multi-head CNN-LSTM [13] 2020 13.27 19.49 13.21 23.89 69.86

Proposed method 2020 12.19 19.93 12.85 22.89 67.86

TABLE III. RUL PREDICTION COMPARISON WITH OTHER METHODS,
BASED ON SCORE.

Methods
Score

FD001 FD002 FD003 FD004

MLP [5] 1.80E4 7.80E6 1.74E4 5.62E6
SVR [5] 1.38E3 5.90E5 1.60E3 3.71E5
CNN [5] 1.29E3 1.36E4 1.60E3 7.89E3

LSTM [6] 3.38E2 4.45E3 8.52E2 5.55E3
MODBNE [22] 3.34E2 5.59E3 4.22E2 6.56E3

RNN [7] 3.39E2 1.43E4 3.47E2 1.43E4
DCNN [7] 2.74E2 1.04E4 2.84E2 1.25E4

BiLSTM [23] 2.95E2 4.13E3 3.17E2 5.43E3
Semi-supervised DL [24] 2.31E2 3.37E3 2.51E2 2.84E3

DAG network [19] 2.29E2 2.73E3 5.53E2 3.37E3
Multi-head CNN-LSTM [13] 3.30E2 2.88E3 4.01E2 6.52E3

Proposed method 2.59E2 4.35E3 3.43E2 4.34E3

proposed method). For each engine in the test set, we predicted
the RUL of the engine at the last time cycle.

The test results for the four C-MAPSS sub-datasets are
depicted in Fig. 2, where the horizontal axis shows the number
of test engines, which is listed in Table I, while the vertical axis
indicates the RUL. In each subfigure, the deviation between
two graphs represents the error of our RUL prediction. The
figure shows that a large number of predictions have a small
error (less than 20 time cycles), but there are only few outliers
that have an error larger than 40 time cycles.

Fig. 3 illustrates the distribution of the error for each test
set. The box plot for FD002 and FD004 larger min-max range
and inter-quartile range (IQR) than for the other two test sets.
This outlines that it is more challenging to make accurate
predictions on FD002 and FD004 than on FD001 and FD003,
because the former two are simulated under six different
operating conditions, while the latter two are simulated in
only one condition. Fig. 3 also shows that the test for FD003
and FD004 results in more outliers (i.e., samples with large
prediction errors) with than the test for FD001 and FD002.
This indicates that FD003 and FD004 are more challenging in
terms of generalization, since the outliers are quite likely test
samples that were not covered in the training set.

The RUL prediction error, described in Fig. 2 and Fig. 3, is
used for calculating the RMSE and score in order to measure
the performance of our method. The value of those two metrics
is reported and compared to other methods in Table II and
Table III. As shown in Table II, the methods introduced over
the past four years managed to provide gradually lower RMSE.
For all four sub-datasets, the deep learning-based methods give
significantly better results in terms of RMSE w.r.t. those that do

not make use of deep neural networks. In Tables II and III, the
result of the proposed method is competitive compared to the
recent state-of-the-art methods from the literature [19], [24].
Although the multi-head CNN-LSTM [13] provides the lowest
RMSE when it is used for predicting the RUL on FD002, this
conventional use of multi-head CNN-LSTM does not achieve
state-of-the-art performance on the other sub-datasets.

The last row of both Tables, which shows the results of the
proposed method, highlights instead that using PEA improves
in general the performance of the RUL prediction model based
on multi-head CNN-LSTM without PEA [13]. By using the
p-values of PEA as additional inputs to the multi-head CNN-
LSTM network, it is possible to decrease RMSE of around 1
and produce better scores for FD001 and FD004, while the
degree of improvement is slightly reduced for FD003.

Overall, when we consider the sum of RMSE on the four 
sub-datasets in the last column of Table II, our proposed 
method outperforms all other methods except the one using 
the DAG network [19]. There are two aspects that lead our 
method to outperform the compared algorithms. Firstly, the use 
of a multi-head CNN-LSTM [13] for RUL prediction already 
provides lower RMSE w.r.t. that obtained using either CNN 
[5], [7] or RNN [7], [23] alone. This result is worth to check 
because it shows that a serial combination of CNN and LSTM, 
which are capable of extracting convolution and temporal 
features, respectively, is a good approach to predict RUL 
from multivariate time series data. However, the DL-based 
data-driven methods discussed above have some limitations: 
in particular, their performance are dependent on the amount 
and quality of labeled training data and the pattern recognition 
capability of the DL architecture. In this context, our solution, 
using external analysis of unexpected changes in sensor read-
ings via PEA, compensates for the above limitations. Although 
the degree of unpredicted changes in the time series of sensed 
measurements is a crucial feature for RUL prediction, it is 
very hard to be extracted and learned by the DL-based data-
driven methods. This is because it requires either an extremely 
large number of labeled data, or unnecessarily deeper networks 
to recognize such a pattern of unpredicted behavior. Instead 
of entirely relying on the DL network, we extract the above 
feature based on the PEA methods introduced in Section II-B. 
This feature can then be reflected i nto t he R UL predictor 
without increasing the depth of the network or needing a larger 
number of labeled training samples, and allowing to achieve 
an overall improved performance.

Despite these clear advantages, it should still be noted 
that in the case of FD002 the proposed method gives slightly 
higher RMSE and increases the score compared to the multi-
head CNN-LSTM without PEA [13]. This indicates that in this 
case the LSTM layers are not able to recognize a meaningful 
temporal pattern in the features of the p-values extracted by 
the CNN layers. The reason is that a trend of p-values over 
time cycles may not have been detected sufficiently b y the 
combination of RLS and SES. In the proposed method, we as-
sumed that an unexpected changes in the sensor data increases 
over time cycle after the engine degradation starts. However, 
each simulated time series in FD002 is likely to follow the 
trend monotonously without any unexpected behavior, even as 
it gradually approaches the engine failure. Thus, while this 
monotonous time series is easier to analyze for the network and 
allows to achieve the lowest RMSE, it does not provide enough
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(a) (b)

Fig. 4. The degradation profile of predicted RUL of engine #46 in FD001 
dataset: (a) multi-head CNN-LSTM, (b) multi-head CNN-LSTM with PEA

(a) (b)

Fig. 5. The degradation profile of predicted RUL of engine #65 in FD002 
dataset: (a) multi-head CNN-LSTM, (b) multi-head CNN-LSTM with PEA

(a) (b)

Fig. 6. The degradation profile of predicted RUL of engine #92 in FD003 
dataset: (a) multi-head CNN-LSTM, (b) multi-head CNN-LSTM with PEA

(a) (b)

Fig. 7. The degradation profile of predicted RUL of engine #8 in FD004 
dataset: (a) multi-head CNN-LSTM, (b) multi-head CNN-LSTM with PEA

prediction error information to improve the RUL prediction.

Finally, in addition to predict the final RUL of each engine,
we tested the proposed method on the entire time series of each
test engine. The purpose of this experiment is to evaluate the
performance of our method when used for estimating engine
degradation. As shown in Fig. 4-7, the output of this test can
be visualized by the graph of the engine degradation over
cycles. Because our method uses a fixed-length time series
as an input for predicting the RUL at the last time cycle, the
data for the first Wts cycles of each engine are not used as
test sample. Therefore, the cycle number of each sub-figure
starts from Wts. Each figure consists of two sub-figures (a)
and (b), that present the result of the test of multi-head CNN-
LSTM without PEA [13] and with PEA (i.e., the proposed
method), respectively. For each test, we illustrate the trajectory
of both the predicted RUL and the ground truth RUL, and the
performance is measured by the RMSE and the score over
all the cycles of each engine. To compare the performance of
the two methods at different engine conditions, we selected
an engine that has a clear degradation in its data. As we can
note by comparing Fig. 4-7(b) to Fig. 4-7(a) respectively, the
proposed method provides lower RMSE and score than those
of multi-head CNN-LSTM without PEA [13]. In particular,
it should be noted that before the actual degradation of the
RUL starts, the benefit of using the PEA is trivial. The time
series prediction error is in fact very small in this period,
because the time series is rather stable within a small range of
values without trend. However, after the RUL curve starts to
decrease linearly over cycles, the PEA substantially improves
the prediction accuracy compared to the beginning of the time
series.

IV. CONCLUSION

In this paper, we proposed a novel method improving
the RUL prediction accuracy by combining multi-head CNN-
LSTM with time series PEA. The RLS and SES were used to
extract the prediction error over time from multiple time series,
and the two prediction error’s p-values were then combined
into another p-value by applying the Fisher’s method. Finally,
we used the output of the above PEA as an additional input for
the multi-head CNN-LSTM, so that the degree of unexpected
change in time series can be used for the RUL prediction.

To evaluate the above methods, we performed experiments
on the widely used public C-MAPSS dataset. Our proposed
method achieved state-of-the-art results on the FD002 sub-
dataset. While the multi-head CNN-LSTM gave slightly infe-
rior performance on the other sub-datasets compared to other
recent methods, the combination of the network with PEA
showed a competitive performance for all the sub-datasets.
These experiments confirmed that using PEA significantly
improves the RUL prediction accuracy compared to not using
it.

In addition, we tested our trained model of the proposed
method on the entire time series of each test engine. The test
results of the selected engines showed that the PEA allows the
network to predict more accurately the degradation process
of the engine. Furthermore, the predicted RUL graph over
time cycles indicated that it is more advantageous to use the
proposed method when the engine condition is somewhat close
to the failure than to use it at the early stage of the engine life.
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